[LaBs™)

A survey of B-treelocking techniques

Goetz Gragfe

HP Laboratories
HPL-2010-9

Keyword(s):
storage systems, databases, B-tree, indexes, concurrency control, locking

Abstract:

B-trees have been ubiquitous in database management systems for several decades, and they are used in
other storage systems aswell. Their basic structure and basic operations are well and widely understood
including search, insertion, and deletion. Concurrency control of operationsin B-trees, however, is
perceived as a difficult subject with many subtleties and special cases. The purpose of this survey isto
clarify, simplify, and structure the topic of concurrency control in B-trees by dividing it into two sub-topics
and exploring each of them in depth.

External Posting Date: January 21, 2010 [Fulltext] Approved for External Publication (ﬁa
Internal Posting Date: January 21, 2010 [Fulltext]

To be published in ACM Transactions on Database Systems (TODS), Volume 35, Issue 2, 2010.

© Copyright ACM 2010.

A survey of B-tree locking techniques

Goetz Graefe
Hewlett-Packard Laboratories

Abstract

B-trees have been ubiquitous in database manageysteims for several decades, and they are used
in other storage systems as well. Their basic &tracand basic operations are well and widely ustded
including search, insertion, and deletion. Conawyecontrol of operations in B-trees, however, &-p
ceived as a difficult subject with many subtletée®l special cases. The purpose of this surveydkmtdy,
simplify, and structure the topic of concurrencyntrol in B-trees by dividing it into two sub-topiesnd
exploring each of them in depth.

1 Introduction

B-tree indexes [Bayer and McCreight 1972] have tesdled ubiquitous more than a quarter of a cen-
tury ago [Comer 1979], and they have since becoree more ubiquitous. Gray and Reuter asserted that
“B-trees are by far the most important access ptiticture in database and file systems” [Gray aadtét
1993]. In spite of many innovative proposals andtqtypes for alternatives to B-tree indexes, tlédes
ment remains true today.

As with all indexes, their basic function is to megarch keys to associated information. In addiion
exact-match lookup, B-trees efficiently supportgamueries and they enable sort-based query egacuti
algorithms such as merge join without explicit sgperation. More recently, B-tree indexes have len
tended to support multi-dimensional data and gsebi using space-filling curves, for example, the Z
order in UB-trees [Bayer 1997, Ramsak et al. 2000].

The basic data structure and algorithms for B-tegeswell understood. Search, insertion, and aeleti
are often implemented by college students as pnomiag exercises, including split and merge openatio
for leaves and interior nodes. Accessing B-treeesazh disk storage using a buffer pool adds féittlg to
the programming effort. Variable-length recordshivitfixed-length B-tree nodes add moderate compfexi
to the code, mostly book-keeping for lengths, dffsand free space. It is far more challengingriabée
correct multi-threaded execution and even transaatiexecution of B-tree operations.

Database servers usually run in many threads @ seany users as well as to exploit multiple preces
sor cores and, using asynchronous 1/0, many diskan for single-threaded applications, e.g., orsqaal
computing devices, asynchronous activities for loleéa maintenance and index tuning require condurren
threads and thus concurrency control in B-treexede

The plethora of terms associated with concurrermytrol in B-trees may seem daunting, including
row-level locking, key value locking, key range kow, lock coupling, latching, latch coupling, aadb-
bing, the last term applied to both root-to-leadrsbes and leaf-to-leaf scans. A starting pointfarifying
and simplifying the topic is to distinguish protiect of the B-tree structure from protection of tBdree
contents, and to distinguish separation of threagsnst one another from separation of user traionsac
against one another. These distinctions are cetttriie treatment of the topic here. Confusion leetw
these forms of concurrency control in B-trees upssarily increases the efforts for developer edutat
code maintenance, test development, test execuatimhgefect isolation and repair.

The foundations of B-tree locking are the well-kmotransaction concept, including multi-level trans-
actions [Weikum 1991], open nested transactionsefNil. 2007, Weikum and Schek 1992], and pessimis-
tic concurrency control, i.e., locking, rather thaptimistic concurrency control [Kung and Robinson
1981]. Multiple locking concepts and techniques @diseussed here, including phantom protection, ipred
cate locks, precision locks, key value locking, kawpge locking, multi-granularity locking, hierarcl
locking, and intention locks.

No actual system works precisely as described fdrere are many reasons for this fact; one is that
code for concurrency control is complex and ratelyched, such that many concepts and implemengation
are years or even decades old.

Page 1

1.1 Historical background

Although the original B-tree design employed da&éams and their keys as separators in the nodes
above the B-tree leaves, even the earliest workamturrency control in B-trees relied on all dagamis
being in the leaves, with separator keys in theeuptree levels serving only to guide searchesauit
carrying actual information contents.

Bayer and Schkolnick [1977] presented multiple lngk(latching) protocols for Btrees (all data re-
cords in the leaves, merely separator or “referekegs in upper nodes) that combined high concuyen
with deadlock avoidance. Their approach for insaréind deletion is based on deciding during a t@ot-
leaf traversal whether a node is “safe” from sipigt(during an insertion) or merging (during a diele),
and on retaining appropriate locks (latches) fareators of unsafe nodes. Bernstein et al. [198V&rcthis
and other early protocols for tree locking. Unfoutely, this definition of safety does not work lmeith
variable-size records and keys.

IBM’'s System R project explored many transactiomagement techniques, including transaction iso-
lation levels and lock duration, predicate lockamy key locking, multi-granularity and hierarchitatk-
ing, etc. These techniques have been adapted &nddrén many research and product efforts sines.th
Research into multi-level transactions [Weikum 1984d into open nested transactions [Moss 2006] en-
ables crisp separation of locks and latches, thadoprotecting database contents against conéitisng
transactions and the latter protecting in-memoitg deructures against conflicts among concurreetits.

Mohan’s ARIES/KVL design [Mohan 1990] explicitly garates locks and latches in a similar way as
described here, i.e., logical database contentuséstructure maintenance” in a B-tree. A key gdhck
covers both a gap between two B-tree keys and pperdboundary key. In non-unique indexes, an inten-
tion lock on a key value permits operations orr@is with the same value in the indexed columrcdn-
trast, other designs include the row identifiethe unique lock identifier and thus do not needligiin-
guish between unique and non-unique indexes. GrdyReeuter’s book [1993] describes row-level locking
in B-trees based primarily on ARIES/KVL.

In order to reduce the number of locks requiredrduindex-to-index navigation, e.g., searchingdor
row in a non-clustered index followed by fetchirdpdional columns in a clustered index, a singlekln
ARIES/IM [Mohan and Levine 1992] covers all indextrées for a logical row even in the presence of-mu
tiple indexes. Srinivasan and Carey [1991] compénederformance of various locking techniques.

Lomet's design for key range locking [Lomet 1993fempts to adapt hierarchical and multi-
granularity locking to keys and half-open intervialg requires additional lock modes, e.g., a ‘raimgert’
mode, to achieve the desired concurrency. Graelessgn [2007] applies traditional hierarchical limgk
more rigorously to keys and gaps (open intervagtyvben keys, employs ghost (pseudo-deleted) records
during insertion as well as during deletion, antiees more concurrency with fewer special casks. T
same paper also outlines hierarchical locking itne®- structures (key range locking on separatos)kagd
in B-tree keys (key range locking on fixed-lengtkfixes of compound keys).

Numerous text books on database systems cover wency control in index structures, with various
degrees of generality, completeness, and clarityiklWn and Vossen’s book [2002] comes closest to our
perspective on the material, focusing on a pagerlayd an access layer. The discussion here resonat
with their treatment but focuses more specificallycommon implementation techniques using latcfang
data structures and key range locking for conteratection.

Some researchers have used “increment” locks asm&a for general locking concepts, e.g., Korth
[1983]. Others have argued that increment locK&rintly than write locks, should enable highen@ar-
rency as increment operations commute. In fachrigeies very similar to increment locks have besadu
in real high-performance systems [Gawlick and Kakd 985] and described in a more general and con-
ceptual way with additional “escrow” guaranteesN@&il 1986]. A more recent effort has focused or-int
grating increment locks with key range locking ifrBe indexes including maximal concurrency during
creation and removal of summary records [GraefeZamitling 2004].

In spite of these multiple designs and the manyghtful variants found in actual implementations,
we believe with Gray and Reuter [1993] that “thst lord on how to control concurrency on B-trees op
timally has not been spoken yet.”

Page 2

1.2 Overview

The following two short sections clarify assumptcand define the two forms of B-tree locking that
are often confused. The next two sections covesetitwo forms of locking in depth, followed by dédi
discussions of a variety of locking techniques psmal for B-tree indexes. Future directions, sumiremy
conclusions close this paper.

2 Preliminaries

Most work on concurrency control and recovery itr&s assumes what Bayer and Schkolnick [1977]
call B'-trees and what Comer [1979] callé-fees, i.e., all data records are in leaf nodeskays in non-
leaf or “interior” nodes act merely as separatoabding search and other operations but not cagriigi-
cal database contents. We follow this traditiorehemd ignore the original design of B-trees wittada-
cords in both leaves and interior nodes.

We also ignore many other variations of B-treesshéihis includes what Comer, following Knuth,
calls B-trees, i.e., attempting to merge an overflowindeith a sibling rather than splitting it immedi-
ately. We ignore whether or not underflow is redegd and acted upon by load balancing and merging
nodes, whether or not empty nodes are removed iateddor ever, whether or not leaf nodes formm si
gly or doubly linked list using physical pointepage identifiers) or logical boundaries (fence kegaal to
separators posted in the parent node during 3,spliether suffix truncation is employed when puogta
separator key [Bayer and Unterauer 1977], whethefixptruncation or any other compression is emptby
on each page, and the type of information assatiaith B-tree keys. Most of these issues haveelittl no
bearing on locking in B-trees, with the exceptidisibling pointers, as indicated below where appedp.

Most concurrency control schemes distinguish betweading and writing, the latter covering any
form of update or state change. These actions rateqted by shared and exclusive locks, abbrevigted
and X locks hereafter (some sections also use &Nlask mode indicating no lock). For these, thedtad
lock table is shown in Figure 1.

_ 1S X
N | ok ok
S| ok

X

Figure 1. Minimal lock table.

One axis indicates the lock already held by oneatiror transaction and the other axis indicates the
lock requested by another thread or transactiomeSsystems employ non-symmetric lock tables; if in
doubt, the left column indicates the lock alreaéjdhand the top row indicates the lock requestdali-O
ously, if no lock is held yet on a resource, argkleequest may succeed.

3 Two forms of B-tree locking

B-tree locking, or locking in B-tree indexes, medaws things. First, it means concurrency control
among concurrent database transactions queryimgodifying database contents and its representation
B-tree indexes. Second, it means concurrency doatnong concurrent threads modifying the B-treeadat
structure in memory, including in particular imagéslisk-based B-tree nodes in the buffer pool.

These two aspects have not always been separaaalycl Their difference becomes very apparent
when a single database request is processed biplaparallel threads. Specifically, two threadshivi
the same transaction must “see” the same dataloetents, the same count of rows in a table, etis Th
includes one thread “seeing” updates applied byother thread. While one thread splits a B-treeenod
however, the other thread must not observe intelateednd incomplete data structures. The difference
also becomes apparent in the opposite case whagla execution thread serves multiple transactions

3.1 Locksand latches

These two purposes are usually accomplished bydifferent mechanisms, locks and latches. Unfor-
tunately, the literature on operating systems andnamming environments usually uses the term léaks
the mechanisms that in database systems are tatltheés. Figure 2 summarizes their differences.

Page 3

Locks separate transactions using read and witeslon pages, on B-tree keys, or even on gaps (open
intervals) between keys. The latter two methodscatied key value locking and key range lockingyKe
range locking is a form of predicate locking thaés actual key values in the B-tree and the Bdrsert
order to define predicates. By default, locks jggstite in deadlock detection and are held until-efad
transaction. Locks also support sophisticated adhveg] e.g., using queues for pending lock requasts
delaying new lock acquisitions in favor of lock ensions, e.g., an existing shared lock to an ekodu
lock. This level of sophistication makes lock aifion and release fairly expensive, often thousaoid
CPU cycles, some of those due to cache faultssihoitk manager’s hash table and linked lists.

Locks Latches
Separate ... | User transactions Threads
Protect ... Database contents In-memory data structures
During ... Entire transactions Critical sections
Modes ... Shared, exclusive, update, Read, writes,
intention, escrow, schema, etc. (perhaps) update
Deadlock ...| Detection & resolution Avoidance
... by ... Analysis of the waits-for graph, Coding discipline,
timeout, transaction abort, “lock leveling”
partial rollback, lock de-escalation
Keptin ... Lock manager’s hash table Protected data structure

Figure 2. Locks and latches.

Latches separate threads accessing B-tree pagdsyffier pool's management tables, and all other in
memory data structures shared among multiple tlsre@icice the lock manager’s hash table is oneef th
data structures shared by many threads, latchegqué&ed while inspecting or modifying a databags-
tem’s lock information. With respect to shared dstraictures, even threads of the same user tramsact
conflict if one thread requires a write latch. Llzs are held only during a critical section, wéhile a data
structure is read or updated. Deadlocks are avdigegbpropriate coding disciplines, e.g., requgstinul-
tiple latches in carefully designed sequences. De&desolution requires a facility to roll backigar ac-
tions, whereas deadlock avoidance does not. Theellock avoidance is more appropriate for latches,
which are designed for minimal overhead and maxipeaformance and scalability. Latch acquisition and
release may require tens of instructions only, pweith no additional cache faults since a lat@nde
embedded in the data structure it protects. Fog@saf disk pages in the buffer pool, the latch lmamem-
bedded in the descriptor structure that also costdie page identifier etc.

The difference between locking and latching alsoob@es apparent in concurrency control for non-
clustered indexes, i.e., redundant indexes thattpoio non-redundant storage structures. Data-tmdly-
ing makes no attempt to separate transactions ubki@gnon-clustered index and its keys. All inter-
transaction concurrency control is achieved by somk non-redundant data items, e.g., record idersiin
the table’s heap structure. Latches, on the otlamdhare required for any in-memory data structure
touched by multiple concurrent threads, includihgaurse the nodes of the non-clustered index.

3.2 Recovery and B-treelocking

The difference between latches and locks is impbmat only during normal transaction processing
but also during recovery from a system crash. Clamsig the requirements for latching and locking iy
crash recovery may further illuminate their diffece.

Latches and locks also differ both during systewovery and while waiting for the decision of a
global transaction coordinator. While waiting, raiches are required, but retaining locks is essetdi
guarantee a local transaction’s ability to abideth®y global coordinator’s final decision. Duringogery
without concurrent execution of new transactionsks$ are not required, because concurrency codhirol
ing forward processing prior to the system crashaaly ensured that active transactions do not icanfl
Latches, however, are as important during recoasrguring normal forward processing if recovery em-
ploys multiple threads and shared data structurels as the buffer pool.

The separation of locks and latches does not daterwhether an operation must be logged for recov-
ery purposes. Logging is required if disk contectiange, whether or not the logical database cantent
changes. Note that physiological logging referseimords by their identifier within their page anat ty
their byte location; thus, movement of records imith page is one of the few operations that daemqtire
auditing in the recovery log. Compaction of frea@pand record space within a page does not relggire

Page 4

ging, unless invalid records are removed in sualagthat remaining records change their identifierg.,
their slot numbers within a page.

Locks must be retained during transaction rollbadihough they could be released incrementally,
e.g., during a partial rollback to a transactiomegmint. During recovery from a system failure K@cqui-
sition during log analysis permits resuming tratismcprocessing while repeating logged actions and
plying compensating actions of aborted transacti@hgse locks need not be the same ones acquired du
ing the original transactions. For example, if hrehical locking (see below) is supported in thstemy,
locks during recovery may be smaller or largeroag as they cover the actions performed by theste-
tion. If lock escalation and de-escalation are sufgol, these techniques can be employed even hgetra
tions currently in recovery. Similarly, lock esd@da and de-escalation may be invoked while a |teads-
action waits for a global decision by a transactioordinator.

The operations protected by latches only (and gdbbks) are those that modify a B-tree’s structure
without modifying its logical contents. Typical erples are splitting a B-tree node and balancindahd
among neighboring B-tree nodes. Other examplesdfiatt entire B-tree indexes include compression,
defragmentation, and other forms of reorganizatibramples that affect less than an entire noderaa
tion and removal of ghost records (see below).h&dldgical database contents is the same whethbrasu
operation is completed or not, recovery from aeysfailure during such an operation may either !
operation back or complete it. Completion or “fordiaecovery” of such operations may be faster &d r
quire less log volume than rollback. In order tegare an operation for forward recovery, pre-atiooeof
all required resources is essential, most notabsyfficient disk space. In general, forward reagve@eems
more promising for deletion or deallocation openasi e.g., dropping a B-tree index or erasing asgho
record, than for creation or allocation operations.

3.3 Lock-free B-trees

Occasionally, one sees claims or descriptions tfldese indexes implemented “lock-free.” This might
refer to either of the two forms of B-tree lockirkpr example, it might mean that the in-memory fatis
such that pessimistic concurrency control in forffatches is not required. Multiple in-memory copand
atomic updates of in-memory pointers might enabthsan implementation. Nonetheless, user transactio
and their access to data must still be coordindjgdcally with locks such as key range locking Bitree
entries.

On the other hand, a lock-free B-tree implementatiaght refer to avoidance of locks for coordina-
tion of user transactions. A typical implementatioechanism would require multiple versions of relsor
based on multi-version concurrency control. Howgeegation, update, and removal of versions miist st
be coordinated for the data structure and its imprg image. In other words, even if conflicts amoegd
transactions and write transactions can be rembyedheans of versions rather than traditional dat@ba
locks, modifications of the data structure stitjuées latches.

In the extreme case, a lock-free implementatioB-tiee indexes might avoid both forms of locking in
B-trees. Without further explanation, however, das no way of knowing what specifically is meantaby
lock-free B-tree implementation.

3.4 Summary

In summary, latching and locking serve differemdiions for B-tree indexes in database systems. Ac-
cordingly, they use different implementation privés. The difference is starkly visible not onlyritg
normal transaction processing but also during itwdfl activities such as crash recovery.

4 Protecting a B-tree’s physical structure

If multiple threads may touch an in-memory dataicttire, their concurrent accesses must be coordi-
nated. This is equally true whether these datatsires always reside in memory, e.g., the lookalgbetin
a buffer pool or pages in an in-memory databasesgide in memory only temporarily, e.g., imagesliek
pages in a buffer pool. Multiple threads are rezpliif multiple concurrent activities are desiredy.gin
shared-memory machine or in a modern many-coresgeat.

The simplest form of a latch is a “mutex” (mutuatkision lock). Any access precludes concurrent
access. For data structures that change const#riiymight be an appropriate mechanism; for dsggs

Page 5

that remain unchanged during query processingusimi of all concurrent activities should be reserv

for updates. Latches with shared and exclusivel(aga write) modes are common in database systems.
Since latches protect in-memory data structures,dédita structure representing the latch can be em-

bedded in the data structure being protected. Léichtion is usually very short and amenable talware

support and encapsulation in transactional memioayus and Rajwar 2006]. This is in contrast to kKck

discussed below, that protect the logical datalbaséents. Since locks often protect data not evesemt

in memory, and sometimes not even in the datallses is no in-memory data structure within whilé t

data structure representing the lock can be embeddeis, database systems employ lock tables. Since

lock table is an in-memory data structure, conauraecess to a lock table and its components i ghed

by latches embedded in the protected data striscture

4.1 |ssues

Latches ensure the consistency of data structunes \eccessed by multiple concurrent threads. They
solve several problems that are similar to eachrdtiat nonetheless lend themselves to differenttisols.

All these issues are about the consistency of imamg data structures, including images of disk gage
the buffer pool.

First, a page image in the buffer pool must notmmalified (written) by one thread while it is inter-
preted (read) by another thread. This issue doediffer from other critical sections for sharedalatruc-
tures in multi-threaded code, including criticattsens in a database system protecting the lockagenr's
hash table or the buffer pool’s table of contents.

Second, while following a pointer (page identifitdm one page to another, e.g., from a parent node
to a child node in a B-tree index, the pointer mgtbe invalidated by another thread, e.g., byloesting
a child page or balancing the load among neighgopages. This issue requires more refined solutions
than the first issue above because it is not adlega retain a latch (or otherwise extend a @itgection)
while performing I/O (e.qg., to fetch a child pagéoi the buffer pool).

Third, “pointer chasing” applies not only to parehild pointers but also to neighbor pointers, ,drg.

a chain of leaf pages during a range scan or vagiéching for the key to lock in key range lock{sge
below). Concurrent query execution plans, traneastiand threads may perform ascending and descend-
ing index scans, which could lead to deadlocksaRélat latches usually rely on developer disciglfor
deadlock avoidance, not on automatic deadlock tieteand resolution.

Fourth, during a B-tree insertion, a child node meagrflow and require an insertion into its parent
node, which may thereupon also overflow and regaiirénsertion into the child’s grandparent nodethin
most extreme case, the B-tree’s old root node toxgrfmust split, and be replaced by a new root node
Going back from the leaf towards the B-tree rootksavell in single-threaded B-tree implementatidng,
it introduces the danger of deadlocks, yet latekbson deadlock avoidance rather than deadlookatien
and resolution.

For the first issue above, database systems enfgiclyes that differ from the simplest implementa-
tions of critical sections and mutual exclusionyoby the distinction between read-only latches eeati-
write latches, i.e., shared or exclusive accesswitls read and write locks protecting database emtst
starvation needs to be avoided if new readersdwetid while a writer already waits for active degs to
release the latch. Update latches (similar to wptiatks) may be used, but the other modes well-knimw
lock management are usually not adopted in datdbhadees.

4.2 Lock coupling

The second issue above requires retaining the taidme parent node until the child node is latched
This technique is traditionally called “lock coupdi” but a better term is “latch coupling” in thentext of
transactional database systems. The lookup operatighe buffer pool requires latches to protea th
buffer manager’s management tables, and propek ‘llexeling” (latch leveling) is required to guaraat
that there can be no deadlock due to latches @npdates and the buffer pool.

If the child node is not readily available in theffler pool and thus requires relatively slow I/@et
latch on the parent node should be released wésddimg the child node from disk. Lock coupling d¢en
realized by holding a latch on the descriptor &f tteeded page in the buffer pool. Otherwise, t@e I/
should be followed by a new root-to-leaf traversaprotect against B-tree changes in the meantiee.
starting the root-to-leaf traversal may seem expensut it is often possible to resume the priarsh by

Page 6

verifying, e.g., based on the log sequence numberagh page, that the parent page has not beefiedodi
while the child page was fetched into the buffeolpo

The third issue above is similar to the secondh wito differences. On the positive side, asynchusno
read-ahead may alleviate the frequency of buffaltsaDeep read-ahead in B-tree indexes usuallpatan
rely on the neighbor pointers but requires prefétabed on child pointers in leaves’ parent nodesven
the grandparent nodes. On the negative side, ddadMpidance among scans in opposite directions re-
quires that latch acquisition code provides an idiate failure mode. A latch acquisition request oan
turn a failure immediately rather than waiting tbe latch to become available. If such a failureurs
during forward or backward index traversal, thensgaust release the leaf page currently latchedttthe
conflicting scan proceed, and reposition itselhigsa new root-to-leaf search.

The fourth issue above is the most complex oreffétts all updates, including insertion, deletiand
even record updates, the latter if length changegariable-length records can lead to nodes smiittr
merging. The most naive approach, latching aneitree with a single exclusive latch, is obvigusdt
practical in multi-threaded servers, and all apphes below latch individual B-tree nodes.

One approach latches all nodes in exclusive modegithe root-to-leaf traversal while searching for
an affected leaf. The obvious problem with thisrapgh is that it can create a concurrency bottlenear-
ticularly at a B-tree’s root page. Another approperforms the root-to-leaf search using sharedhés@nd
attempts an upgrade to an exclusive latch whenssacg When the upgrade can be granted without the
danger of deadlock, this approach works well. Sihcgight fail, however, it cannot be the only medhin
a B-tree implementation. Thus, it might not be iempénted at all in order to minimize code volume and
complexity. A third approach reserves nodes usiate” or “upgrade” latches in addition to traufithl
shared and exclusive latches. Update locks ordsateine compatible with shared locks or latchestlansl
do not impede readers or B-tree searches, butatenot compatible with each other and thus a 8sre
root node can still be a bottleneck for multipleafes.

A refinement of the three earlier approaches retktches on nodes along its root-to-leaf seardty on
until a lower, less-than-full node guarantees Hmdit operations will not propagate up the treedmeythe
lower node. Since most nodes are less than fulst ingertion operations will latch no nodes in &ddito
the current one. On the other hand, variable-leBgtree records and variable-length separator kegsn
to make it difficult or impossible to decide religplihow much free space is required for the desipearan-
tee. Interestingly, this problem can be solved bgiding, before releasing the latch on the panehich
separator key would be posted in the parent itctiilel were to split as part of the current insertitf it is
desirable to release the parent latch before suggection of the child node, a heuristic method @y
sider the lengths of existing separators in themaspecifically their average and standard deviat

A fourth approach splits nodes proactively duringat-to-leaf traversal for an insertion. This maath
avoids both the bottleneck of the first approacth #ne failure point (upgrading from a shared taeaolu-
sive latch) of the second approach. Its disadvantaghat it wastes some space by splitting eatttian
truly required, and more importantly that it may ib@ossible to split proactively in all cases inrBes
with variable-length records and keys.

A fifth approach protects its initial root-to-leaéarch with shared latches, aborts this search wahen
node requires splitting, restarts a new one, armh upaching the node requiring a split, acquires>anu-
sive latch and performs the split. This approaah loanefit from resuming a root-to-leaf traversahea
than restarting it at the root, as discussed earlie

43 B"trees

An entirely different approach relaxes the datacitre constraints of B-trees and divides a nodie sp
into two independent steps, as follows. Each nodg have a high fence key and a pointer to its right
neighbor, thus the namé™-trees [Lehman and Yao 1981]. If a node’s high éand pointer are actually
used, the right neighbor is not yet referenced@rtode’s parent. In other words, a single keyrwateand
its associated child pointer in the parent noddyreafer to two nodes in this case. A root-to-lesafrch,
upon reaching a node, must first compare the sdughivith a node’s high fence and proceed to thktri
neighbor if the sought key is higher than the fekeg. The first step of splitting a node creates lilgh
fence key and a new right neighbor. The seconcgaddent step posts the high fence key in the paren
The second step can be made a side effect of dngefuoot-to-leaf traversal, should happen as smon
possible, yet may be delayed beyond a system refsamten a crash and its recovery without data doss
inconsistency of the on-disk data structures. Tdnaatage of B*-trees is that allocation of a new node

Page 7

and its initial introduction into the B-tree isachl step, affecting only one preexisting node. disadvan-
tages are that search may be a bit less efficeesplution is needed to prevent long linked listsoag
neighbor nodes during periods of high insertioesaand verification of a B-tree’s structural cstesicy is
more complex and perhaps less efficient.

~ Figure 3 illustrates a state that is not possibla standard B-tree but is a correct intermediate $n a
B'"_tree. “Correct” here means that search and upalgteithms must cope with this state and that a-dat
base utility that verifies correct on-disk dataustures must not report an error. In the originates the
parent node has three children. Note that theddrehi might be leaves of interior nodes, and thema
might be the B-tree root or an interior node. Tingt fstep is to split a child, resulting in thednhediate
state shown in Figure 3. The second step lateepladourth child pointer into the parent and abasdhe
neighbor pointer, unless neighbor pointers areiredun a specific implementation of B-trees. Ictfaa
third step might erase the neighbor pointer vataefthe child node.

/

»

Figure 3. Intermediate state in 'Btree.

This process can be reversed in order to enablevanof B-tree nodes [Lomet 2004]. The first step
creates a neighbor pointer, the second erasesilldepointer in the parent node, and the third stepges
the removal victim with its neighbor node.

Long linked list due to multiple splits can be peated by restricting the split operation to nodes
pointed to by the appropriate parent node. Thesefamher details of B*-trees have recently been de-
scribed in a detailed paper [Jaluta et al. 2005].

4.4 L oad balancing and reorganization

In many implementations, removal of nodes, loadgihg among nodes, etc. are omitted in user
transactions and left to asynchronous facilitidseSe may be invoked immediately after a user trdiosa
guided to a specific B-tree node by information lefhind by the user transaction, or they may kekad
occasionally to scan and optimize an entire B-tredex, table, or database. Actually, even nodésspl
could be organized in this way, ensuring that trgersactions can always add one more entry to ainge
node.

All these operations are contents-neutral; thecllgilatabase contents does not change, only its-rep
sentation. Thus, once the affected database pagesesent in the buffer pool, these changes reqain-
currency control merely for the data structuresother words, these operations require latchesnbut
locks. Of course, since subsequent user transacti@y log changes that refer to changes due toBuch
tree optimizations, these optimizations must bkecédd in the recovery log.

As an aside, there are corresponding optimizatiohsgging and recovery. One can avoid logging the
page contents by careful write ordering [Gray aediter 1993], and one can employ “forward recovéoy”
complete a reorganization action after system meiststead of rollback [Zou and Salzberg 1996].

4.5 Summary

In summary, latches coordinate multiple executloeads while they access and modify database con-
tents and its representation. While cached in Hialzhse buffer pool, these data structures retireame
coordination and protection as data structuresesgmiting server state, e.g., the table of contathe
buffer pool, the list of active transactions, og thash table in the lock manager.

The implementation of latches is optimized for tHegdquent use. In particular, modes beyond shared
and exclusive are avoided, and deadlock avoidasmidaviored over deadlock detection. In complex data
structures such as B-trees, careful designs suchabing and B*-trees combine high concurrency and
deadlock avoidance.

Latches should be held only for very short periddisne should be held during disk 1/0O. Thus, all re-
quired data structures should be loaded and pimggk buffer pool before a latched operation begin

Page 8

In the following, we focus on coordination amongnsactions and assume that the required data struc-
tures have the necessary coordination and protebtidatches.

5 Protecting a B-tree’s logical contents

Locks separate transactions reading and modifyatgldise contents. For serializability, read locks a
retained until end-of-transaction. Write locks always retained until end-of-transaction in oraeensure
the ability to roll back all changes if the transaic aborts. Weaker retention schemes exist foh bead
locks and write locks. Shorter read locks lead &akvtransaction isolation levels; shorter writekbbmay
lead to cascading aborts among transactions thdtaied modify the same database item.

In addition, serializability requires locking notlg the presence but also the absence of dataeXor
ample, if a range scan finds 10 rows, a secondutioecof the same range scan must again find 16&,row
and an insertion by another transaction must beepted. In B-tree indexes, this is usually enforogdey
range locking, i.e., locks that cover a key valod the gap to the next key value.

Modern designs for key range locking are basedieratthical or multi-granularity locking. Multi-
granularity locking is often explained and illusé@d in terms of pages and files but it can be appin
many other ways. If the granules form a strictdnieny, not a directed acyclic graph, the term haiaal
locking can be used. In modern B-tree implememtatiand their locks on keys, hierarchical lockingsed
to protect individual B-tree entries, the gaps pemintervals between existing B-tree keys, ané-dzén
intervals comprising a B-tree entry and one adfmjropen interval.

A fine granularity of locking is required most aftat hot spots, e.g., “popular” insertion pointstsas
the high end of a time-organized B-tree. Coarskdatich as intention locks on a database, tabiedex
may be retained from one transaction to anothequBsts for conflicting locks may employ an immeeliat
notification or commit processing of the holdingrtsaction may verify that the wait queue for theklo
remains empty. For the latter design, a succeksfllrequest should return a pointer to the lodiaddruc-
ture in order to avoid a subsequent unnecessargtsgathe lock manager’s hash table.

Another useful implementation technique separdtestest” and “set” functions within lock acquisi-
tion, i.e., verification that a certain lock coulé acquired and insertion of a lock into the locknager’s
hash table. Test without set is equivalent to Wizt been called “instant locks,” e.g., by Gray Bedter
[1993]; set without test is useful during lock dss&lation, lock re-acquisition during system recgyvand
other situations in which lock conflicts can beadibut without testing.

5.1 Keyrangelocking

The terms key value locking and key range lockirgaften used interchangeably. Key range locking
is a special form of predicate locking [Eswararaletl976]. Neither pure predicate locking nor theren
practical precision locking [Jordan et al. 1981% eeen adopted in major products. In key rangeingek
the predicates are defined by intervals in the satér of the B-tree. Interval boundaries are the \alues
currently existing in the B-tree. The usual forne dralf-open intervals including the gap between two
neighboring keys and one of the end points, witbxtrkey locking” perhaps more common than “prior-
key locking.” The names describe the key to beddcik order to protect the gap between two neighgor
keys. Next-key locking requires the ability to loak artificial key value “#”. Prior-key locking gets by
with locking the NULL value, assuming this is tlwavest possible value in the B-tree’s sort order.

In the simplest form of key range locking, a keyl dhe gap to the neighbor are locked as a unit. An
exclusive lock is required for any form of updafetids unit, including modifying non-key fields ¢he
record, deletion of the key, insertion of a new k&p the gap, etc. Deletion of a key requires &klon
both the old key and its neighbor; the latter iguieed to ensure the ability to re-insert the keyase of
transaction rollback.

1171 gap 1174 gap 1179

A

“—»

+«——>
«—>
Figure 4. Possible lock scopes.

Page 9

Figure 4 summarizes the possible scopes in keyerboaking in a B-tree leaf containing three records
in the key range 1170 to 1180. A lock on key vdl@i&4 might have any of the ranges indicated byesro
The first arrow illustrates traditional next-keycking. The second arrow indicates prior-key lockifige
third arrow shows a lock limited to the key valtegelf, without coverage of either one of the neiyfiiig
gaps. Thus, this lock cannot guarantee absencekey or a transaction’s duration, e.g., key vallg6,
and it therefore cannot guarantee serializabilitye fourth lock scope complements the key valug;ldc
can guarantee absence of a key without lockingxastieg key. While one transaction holds a lockkey
value 1174 as shown in the fourth arrow, a secoansaction may update the record with key valuet117
except of course the record’s key value. The set@maction must not erase the record or the Hawy:;
ever, until the first transaction releases its Idéigure 4 could show a fifth lock scope that cevére gap
preceding the locked key; it is omitted becausaigtht confuse the discussion below.

High rates of insertion can create a hotspot atright edge” of a B-tree index on an attribute resr
lated with time. With next-key locking, one solutigerifies the ability to acquire a lock om«infinity)
but does not actually retain it. Such “instant lckiolate two-phase locking but work correctlyaifsingle
acquisition of the page latch protects both veatifiun of the lock and creation of the new key anlge.

Latches must be managed carefully in key rangeingcit lockable resources are defined by keys that
may be deleted if not protected. Until the lockuest is inserted into the lock manager’s data sires,
the latch on the data structure in the buffer ppoéquired to ensure the existence of the keyevaln the
other hand, if a lock cannot be granted immediatély thread should not hold a latch while thegeation
waits. Thus, after waiting for a key value lockransaction must repeat its root-to-leaf searclitferkey.

5.2 Keyrangelocking and ghost records

In many B-tree implementations, the user transaatimuesting a deletion does not actually erase the
record. Instead, it merely marks the record aslitv&gseudo-deleted,” or a “ghost record.” Forstlgiur-
pose, all records include a “ghost bit” in theicoed headers that must be inspected in every caierh
that ghost records do not contribute to query tesutsertion of a new B-tree key for which a ghresiord
already exists is turned into an update of thatgxisting record. After a valid record has beeméarinto a
ghost record in a user transaction’s deletion, spaclamation happens in an asynchronous clearanp-t
action. Until then, the key of a ghost record pgpttes in concurrency control and key range loglurst
like the key of a valid record. During ghost remiove transaction may hold a lock on the key. Recor
removal including space reclamation does not reqailock as it is merely a change in the physieple-
sentation of the database, not in database contents

1171 valid ... 1174 ghost ... 1179 valid ...

Figure 5. Intermediate state in row deletion.

Figure 5 illustrates three records in a B-tree lddr a user transaction deleting key 1174 from th
logical database contents. Each record carriesoat ddit with the possible values “valid” or “ghdsthe
ghost bit is not part of the key. The user trarisactommits this state, leaving it to later actestto re-
move the record and reclaim the space within thegage.

The advantage of ghost records is that they aymades allocation during transaction rollback andsthu
eliminate a possible rollback failure. Moreovere thser transaction need not log the deleted recmd,
with an appropriate implementation (fusing the hegords for ghost removal and transaction commit),
neither does the clean-up transaction. For B-tva#s large records, e.g., clustered indexes, this loe a
useful advantage. With respect to locking, sineser transaction’s deletion is implemented as mesl
update, it requires a lock until end-of-transactaty on the key but not on the neighboring gaps.

If a root-to-leaf search has directed an insertiparation to a specific leaf, yet the new key her
than the highest existing key (in next-key locking;lower than the lowest existing key in prior-KHegk-
ing), then the key to be locked must be found orighboring leaf node. Chaining leaf pages usingepa
identifiers speeds up this process. Nonethelesdatbh on the current page must be released véiia-
ing the neighbor page, in order to avoid holding litch a long time as well as creating a deadéoukng
multiple page latches. Alternatively, each B-treel@ may include the lowest and highest possible.key
These keys are copies of the separator keys postheé parent page during leaf splits. One of these
“fence” keys, say the highest possible key, is gbva ghost record. The other fence key can be atgho

Page 10

record or it can be a valid record. Fence keysrenthat in any B-tree operation, the key to be éockan
be found on the page affected by the operationsTinuthis design, key range locking never requirag-
gation to neighbor nodes.

Since ghost records are not part of the logicadlulzde contents, only part of the database repeesent
tion, they can be created and removed even inrégepce of locks held by user transactions. Fampie
if a user transaction holds a key range lock orhtiEopen interval [10, 20), a new ghost recorthwialue
15 can be inserted. This new key in the B-treengsfia new interval boundary for key range lockarg] a
range lock on value 10 now covers merely the rgh@e15). Nonetheless, the user transaction mtsinre
its concurrency control privileges. Thus, the saiperation that adds the key value 15 to the B-tisa
structure must also add a lock for the user traisaon the interval [15, 20). Inversely, when agthre-
cord is removed, two intervals are merged and dl&s held on the two intervals must also be merged.
Obviously, the merged lock set must not includ®ak Iconflict. A ghost record should not be removed
while some transaction is still attempting to aceg@ lock on the ghost record’s key.

In addition to deletions, ghost records can alsorowe the performance and concurrency of insertions
Initial creation of a ghost record does not reqaing locks because this operation, invoked by a tuaes-
action but not part of the user transaction, medifinerely the database representation without amgng
the logical database contents. Once the ghostdésadn place, the user transaction merely updatesx-
isting record including its ghost bit. The usemsaction requires a lock only on the key value, ovoits
neighboring gaps. Thus, this two-step insertion aldeviate insertion hotspots for both prior-kegking
and next-key locking. If future key values are pe&ble, e.g., order numbers and time values, ioreaf
multiple ghost records at-a-time may further img@erformance.

1171 valid ... 1172 ghost ... 1173 ghost ... 1174 ghost ...

Figure 6. Insertion of multiple ghost records.

Figure 6 shows the intermediate state during a wmaesaction in need of appending a row with key
value 1172. In preparation of future transactionaltiple ghost records are created. As a singlerkege
lock would cover the key range from 1172 to infinitrior to this insertion, testing for conflictingcks is
very fast. The user transaction triggering thieitien locks merely the first among the new ghesbords,
sets the ghost bit to “valid,” updates the otheldf in the record, and commits. If ghost recoréscacated
proactively but never used, removal and spacemetian apply just as for other ghost records.

5.3 Keyrange locking as hierarchical locking

When a serializable transaction locks the absefi@ekey, e.g., after returning the count of 0 for a
query of the type “select count (*) from ... where=....”, one standard design requires key range lagkin
for the interval containing the key. Alternativelyerely the specific key can be locked, possibtgrah-
sertion as a ghost record into the appropriatexitelsf page or merely into the lock manager’s Hable.

Another specific example benefiting from locks adividual key values is key deletion using a ghost
record. The user transaction turning a valid redotal a ghost record merely needs to lock a keye/ahot
the neighboring gaps to the neighboring keys. tverd recovery is available for ghost removal, even
space reclamation requires only key value locki¢ey range locking is required for key removal otdy
guarantee successful rollback, i.e., re-insertioihe key.

These and other cases benefit from the abilityptk & key value without locking an entire half-open
interval. There are also cases in which it is édsé to lock the open interval without locking aykelue.

In the example above, two transactions might lbekkey value [10] and the open interval (10, 2Qhouit
conflict, e.g., the query “select count (*) from where ... between 16 and 19”.

Some operations such as scans, however, needktomacor more half-open intervals in order to lock
a key range much larger than a single interval betwneighboring keys in a B-tree index. This cdagd
accomplished by locking the key value and the gatpvéen keys separately, but a single lock would be
much more efficient.

Hierarchical or multi-granularity locking answetdst need, even if it was not originally invented fo
key range locking. Figure 7 shows the traditiomakl compatibility matrix for intention lock modeS and
IX and absolute locks S and X.

Page 11

Any read or write operation requires a shared aiusive lock at the appropriate granularity of leck
ing. Before any S or IS lock is taken on any itam S lock is required on the larger item contagriin For
example, before a page can be locked the file eaontathe page must be locked. X and IX locks work
similarly. An IX lock also permits acquiring an &k. An SIX lock is the combination of an S lockdean
IX lock, useful when scanning a data collectionreeimg individual items to update. The SIX lock imig
also be used within the lock manager to indicas time transaction holds an S lock and anothesdian
tion holds an IX lock.

IS IX S X 39X
IS ok ok ok ok

IX | ok ok

S ok ok
X

SIX | ok

Figure 7. Lock table with intention locks.

In key range locking based on hierarchical lockihg, large granularity of locking is the half-ogan
terval; the small granularities of locking are eitlthe key value or the open interval. This sintpéarchy
permits very precise locks appropriate for the @dwand. The disadvantage of this design is twkimg a
key (or an open interval) requires two invocati@fighe lock manager, one for the intention locktba
half-open interval and one for the absolute locklankey value.

Given that all three locks are identified by the k@lue, a tradeoff is possible between the nurober
lock modes and the number of lock manager invonatié\dditional, artificial lock modes can describe
combinations of locks on the half-open intervak #ey value, and the open interval. Thus, a syshan
employs hierarchical locking for half-open intervkey value, and open interval requires no moré loc
management effort than one that locks only halfrojmervals. Without additional effort, such a syst
permit additional concurrency between transactitias lock a key value and an open interval seplgrate
e.g., to ensure absence of key values in the apterval and to update a record’s non-key attribufes
record’s non-key attributes include the propertyethler the record is a valid record or a ghost kdbius,
even logical insertion and deletion are possibldendmother transaction locks a neighboring opéerial.

Specifically, the half-open interval can be locked, X, IS, IX modes. The SIX mode is not required
because with precisely two resources, more exat taodes are easily possible. The key value and the
open interval each can be locked in S or X modés. flew lock modes must cover all possible combina-
tions of S, X, or N (no lock) modes of preciselyotwesources, the key value and the open interdad. T
intention locks IS and IX can remain implied. Feample, if the key value is locked in X mode, ttadfh
open interval is implicitly locked in IX mode; ihé key value is locked in S mode and the openvatén
X mode, the implied lock on the half-open intereahtaining both is the IX mode. Locks can readity b
identified using two lock modes, one for the keyueaand one for the open interval. Assuming presiou
key locking, a SN lock protects a key value in Sdmand leaves the following open interval unlockéd.
NS lock leaves the key unlocked but locks the dpterval. This lock mode can be used for phantoai pr
tection as required for true serializability.

NS NX SN S SX XN XS X
NS | ok ok ok ok ok
NX ok ok
SN | ok ok ok ok ok
S | ok ok ok
SX ok
XN [ok ok
XS | ok
X

Figure 8. Lock table with combined lock modes.

Figure 8 shows the lock compatibility matrix. Itncke derived very simply by checking for compati-
bility of both the first and the second componefis: example, XS is compatible with NS because X is
compatible with N and S is compatible with S. Safgtter locks are equivalent to using the santerlet
twice, but there is no benefit in introducing mémek modes than absolutely necessary.

Page 12

5.4 Locking in non-unique indexes

If entries in a non-clustered index are not uniqualtiple row identifiers may be associated witlclea
value of the search key. Even thousands of rectandtifiers per key value are possible due to alsifrg-
guent key value or due to attributes with few distivalues. In non-unique indexes, key value logkimay
lock each value (and its entire cluster of row tifears) or it may lock each unique pair of valusdarow
identifier. The former saves lock requests in seaueeries, while the latter may permit higher canency
during updates. For high concurrency in the forghesign, intention locks may be applied to values: D
pending on the details of the design, it may notdmpuired to lock individual row identifiers if tke are
already locked in the table to which the non-clkesiandex belongs.

A hierarchical design might permit locks for bothique values of the user-defined index key and for
individual entries made unique by including theorecidentifier. Key range locking seems approprfate
both levels in the hierarchy, and therefore it sesansible to use the lock modes of Figure 8 fon bey-
els. This is a special case of the hierarchicadlitagin B-tree keys [Graefe 2007].

Shoes: 1147, 4117, 7114, 7. Toys: 1174, 4171, 4711

Figure 9. Records in a non-unique non-clusteredxnd

Figure 9 shows an example with two distinct keyueal and seven record identifiers. The key values
are sorted in a B-tree; moreover, each list of mbadentifiers is also sorted. Key range locking ¢e& ap-
plied both the key values (e.g,. “shoes”) and tospaf key value and record identifier (e.g., “Toyal1").

A lock might thus protect all records with a keyuea(e.g., “shoes”), the gap between two key va(ess,

between “shoes” and “toys”), a pair of key valuel aacord identifier (e.g., “shoes 4117”), or a d&p

tween two record identifiers (e.g., between “to3§ ¥’ and “toys 4711"). There are really two hiefdes

here: the hierarchy of key ranges and a hierarétgeyp value, gap, and their combination. Each ekth
lock levels may be optimal depending on the opemnate.g., “insertion” or “select”) and the level lotk

contention in the database.

The choice whether to lock unique values (and tbleisters of row identifiers) or each pair of value
and row identifier is independent of the choiceegfresentation on disk or in memory. For exampkysa
tem may store each key value only once in ordesat@ disk space yet lock individual pairs of kejuga
and row identifier. Conversely, another system msi@ye pairs of key value and record identifier lpek
all such pairs with the same value with a singt&Javhether any form of compression is applieduchsa
redundant storage format or not.

Even in bitmap indexes, which employ particularbmpressed representations for large sets of row
identifiers, locks may protect row identifiers oaka-time. The same is true for index formats that
uncompressed bitmaps, compressed bitmaps, traalifists of record identifiers, and lists of recadénti-
fiers compressed by storing distances between bits’ in bitmaps. Note that bitmaps compressed with
run-length encoding are quite similar to lists @fard identifiers compressed by storing differences

Another variety of bitmap indexes employs segmelistg, i.e., the domain represented by the bitmap
is divided into segments and a bitmap is storeck&mh non-empty segment. For example, if a rected-i
tifier consists of a device identifier, page idéati and slot number, then the device identifikrspsome
bytes of the page identifier may be interpreted asgment identifier. Bitmaps then capture the neimg
bytes of the page identifier and the slot numbée $earch key in the B-tree appends the segmentifide
to the search key desired by the user. With redpexbncurrency control, a single lock may covéisal-
ments for a search key value or a separate lockbmagquired for each segment. In the latter daser-
tion and deletion of empty segments is quite sinmdarecord insertion and deletion in the simpfesin of
B-trees, both with respect to concurrency contnal gecovery.

All these variations on locking in non-unique indexare special cases of the general orthogonaity b
tween the representation (including compressionjaté in a data structure and the required conacyre
control among user transactions (including lockingiich is due, of course, to the separation afhlas to
protect data structures and locks to protect the#b database contents.

5.5 Increment lock modes

In addition to the traditional read and write lock&s shared and exclusive locks, other lock modagh
been investigated. Most notable among those isittteement” lock. Increment locks enable concurrent
transactions to increment and decrement sums antt<drhis is rarely required in detail tables tan be
a concurrency bottleneck in materialized and indesxanmary views, also known as “group by” views.

Page 13

Increment locks are compatible with each other,thay are not compatible with read or write locks.
Moreover, increment locks do not imply read perroisgor the lock holder. In other words, a trangact
holding an increment lock cannot determine a cuirvafue without also acquiring a read lock. The bem
nation of read lock and increment lock is equivalena write lock, because it excludes all othansac-
tions from holding any kind of lock at the samedim

S X E
S| ok
X
E ok

Figure 10. Lock compatibility with increment locks.

Figure 10 shows the compatibility matrix. The imoent lock is indicated with the latter E in referen
to O'Neil's escrow locks [O’Neil 1986], althoughei have more semantics than merely incrementing a
sum or count. Here, we assume that any additiosubtraction is permitted, with no concern for valid
value ranges. The original escrow locks have sueotigions, e.g., to prevent a negative accountrizala

Increment locks in B-tree indexes are particuladgful for materialized and indexed summary views.
Exclusive locks may be sufficient for updates ie thase tables but, due to fewer rows in the summary
view, may lead to unacceptable contention durirywmaintenance. Very much like reference counts in
traditional memory management, records in such siewst include a count field. This field servesaas
generalization of the ghost bit; when the courtamo, the record is a ghost record not to be ireruich
query results. Holding an increment lock, a usangaction may increment counts and sums thus tyain
ghost record into a valid summary row and vice aers

In grouped summary views, ghost records enableiefii creation and removal of groups [Graefe and
Zwilling 2004]. Upon deletion of the last relevaotv in the detail table, the reference count indbere-
sponding summary row reaches zero and thus tuensettord into a ghost. Ghost clean-up can be deferr
past end-of-transaction, e.g., until the spacedsired. When a new group must be created duenewa
detail item with a unique group key, a ghost rectad be created outside of the user transactiorcand
turn into a valid record when the user transacati@mmits an increment in the reference count. Nudé o
lock is required to insert or remove a new ghosoreé and key, only a latch for the data structure et
al. [2005] developed an alternative solution farsth issues based on special “value-based” latches.

Increment locks on key values immediately perngtémenting counts and sums in the record whose
key is locked. Increment locks on large key rangastaining many keys and records permit increment
operations in all records in the key range. Increintecks for an open interval between two neighigri
key values can be defined, with perhaps surprisergantics and effects. They apply to any new gtesst
cord inserted into the key range, i.e., the trat@acstarting with an increment lock on an opereiinal
ends up holding increment locks on the newly irezbitey as well as the two resulting open intervals.
Based on the increment lock, the transaction may tioe ghost into a valid record by incrementirgy it
counts and sums. Thus, an increment lock on an operval permits insertion of new summary records
and it prevents all other transactions from obtajra shared or exclusive lock on the interval.

NS NX NE SN S SX SE XN XS X XE EN ES EX E
NS | ok ok ok ok ok ok ok
NX ok ok ok
NE ok ok ok ok ok ok ok
SN [ok ok ok ok ok ok ok
S ok ok ok
SX ok
SE ok ok ok
XN | ok ok ok
XS | ok
X
XE ok
EN | ok ok ok ok ok ok ok
ES | ok ok ok
EX ok
E ok ok ok

Figure 11. Lock table key range locking and incretiecks.

Page 14

Figure 11 shows the lock compatibility matrix farkrange locking with increment locks. The matrix
is becoming a bit large, but it can be derived frigigure 10 just like Figure 8 from Figure 7. Theida-
tion could be done by software either during depmient or start-up of the database management code.
Alternatively, the large lock matrix of Figure 1laynnot be stored at all and lock requests testdwn-
patibilities as appropriate. The savings due to lwoad lock modes are in the number of lock manager
invocations including latching and searching theklonanager’s hash table; once a lockable resosrce i
found in the hash table, two tests instead of sa@aninor overhead.

This latter argument becomes even stronger if i lnodes are considered. As pointed out by Korth
[1983], there can be many “upgrade” locks from omede to another. For example, when some set of
transactions holds a record in increment mode, goamsaction might request an upgrade to a shad |
In the traditional system based on only sharedexwiusive locks, only one upgrade lock mode is ulsef
and is commonly called the “update” lock; if addlital basic lock modes are introduced such as tire-in
ment lock, the name “update” lock is no longer hdlpr appropriate.

5.6 Summary

In summary, key range locking is the techniquetafice for concurrency control among transactions.
It is well understood, enables high concurrencymits ghost records to minimize effort and “loclofo
print” in user transactions, adapts to any key tgpé key distribution, and prevents phantoms ioe geri-
alizability. By strict separation of locks and laés, of abstract database contents and in-memaay da
structures including cached database representatimh of transactions and threads, previously aliffi
techniques become clear. This clarity enables iefficimplementations, correct tuning, and innovatio
with advanced lock modes and scopes, exemplifieshdrgment locks and key range locking for separato
keys in upper B-tree nodes.

6 Future directions

Perhaps the most urgently needed future directi@miplification. Functionality and code for concur
rency control and recovery are too complex to desigpplement, test, debug, tune, explain, and raaint
Elimination of special cases without a severe droperformance or scalability would be welcome o a
database development and test teams.

At the same time, B-trees and variants of B-treectires are employed in new areas, e.g., Z-order
UB-trees for spatial and temporal information, @as indexes for unstructured data and XML documents
in-memory and on-disk indexes for data streamsaandaches of reusable intermediate query restits. |
unclear whether these application areas requirecoemepts or techniques in B-tree concurrency oantr

Some implementation techniques need to be revimedptimal use of modern many-core processors.
For example, will traditional B-tree primitives lblévided into concurrent operations? Could the ojpena
discussed earlier for"B-trees and for ghost records serve as the basisufdr highly concurrent primi-
tives? Will those processors offer new hardwarepstipfor concurrency control, to be used for catic
sections instead of latches? Is transactional mgmauitable replacement for latches? Can the imgte
tation of database management systems benefit lfrangware transactions with automatic rollback and
restart? Depending on the answers to these qusstigh concurrency in B-tree operations may become
possible with fairly simple and compact code.

7 Summary and conclusions

In summary, concurrency control for B-tree indekedatabases can be separated into two levels: con-
current threads accessing in-memory data struceamdsconcurrent transactions accessing database con
tents. These two levels are implemented with legcrel locks.

Latches support a limited set of modes such agdlard exclusive, they do not provide advanced ser-
vices such as deadlock detection or escalationfladcan often be embedded in the data structbess
protect. Therefore, their acquisition and release be very fast, which is important as they impleme
short critical sections in the database system.code

Locks support many more modes than latches anddeonultiple advanced services. Management of
locks is separate from the protected information,eixample, keys and gaps between keys in thepkegd

Page 15

of a B-tree index. The hash table in the lock manag in fact protected itself by latches such tiany
threads can inspect or modify the lock table as@pyate.

The principal technique for concurrency control agndransactions accessing B-tree contents is key
range locking. Various forms of key range lockirgvé been designed. The most recent design permits
separate locks on individual key values and orgtyes between key values, applies strict multi-geaity
locking to each pair of a key and a neighboring, gaguces lock manager invocations by using adwitio
lock modes that can be derived automatically, essbicrement locks in grouped summary views, and
exploits ghost records not only for deletions fat &lso for insertions.

Acknowledgements

Helpful feedback and encouragement by Theo Hatdaerumi Kuno, Gary Smith, the anonymous
ACM TODS reviewers, and last not least the asse@ditor Hank Korth are gratefully acknowledged.

Page 16

References

Bayer, R., 1997: The universal B-Tree for multidms®nal indexing: general concepts. WWCA: 198-209.

Bayer, B., McCreight, E. M., 1972: Organization amndintenance of large ordered indices. Acta Inf. 1:
173-189.

Bayer, R., Schkolnick, M., 1977: Concurrency of @gpens on B-trees. Acta Inf. 9: 1-21.

Bayer, R., Unterauer, K., 1977: Prefix B-trees. ACRDS 2(1): 11-26.

Bernstein, P. A., Hadzilacos, V., Goodman, N., 198@ncurrency control and recovery in database sys-
tems. Addison-Wesley.

Comer, D., 1979: The ubiquitous B-tree. ACM Com@urv. 11(2): 121-137.

Eswaran, K. P., Gray, J., Lorie, R. A., Traigel.|.1976: The notions of consistency and preditatks in
a database system. Comm. ACM 19(11): 624-633.

Gawlick, D., Kinkade, D., 1985: Varieties of conamcy control in IMS/VS Fast Path. IEEE Database
Eng. Bull. 8(2): 3-10.

Graefe, G., 2007: Hierarchical locking in B-tredémes. BTW Conf.: 18-42.

Graefe, G., Zwilling, M. J., 2004: Transaction saggdor indexed views. ACM SIGMOD: 323-334.

Gray, J., Reuter, A., 1993: Transaction processingcepts and techniques. Morgan Kaufmann.

Jaluta, 1., Sippu, S., Soisalon-Soininen, E., 2008ncurrency control and recovery for balancednR-li
trees. VLDB J. 14(2): 257-277.

Jordan, J. R., Banerjee, J., Batman, R. B., 19&8%i$ton locks. ACM SIGMOD: 143-147.

Korth, H. F., 1983: Locking primitives in a databasstem. J. ACM 30(1): 55-79.

Kung, H. T., Robinson, J. T., 1981: On optimistiethods for concurrency control. ACM TODS 6(2): 213-
226.

Larus, J. R., Rajwar, R., 2006: Transactional mgm®ynthesis lectures on computer architecture.gslior
& Claypool Publishers.

Lehman, P. L., Yao, S. B., 1981 Efficient lockifog concurrent operations on B-trees. ACM TODS 6(4)
650-670.

Lomet, D. B., 1993: Key range locking strategiesifaproved concurrency. VLDB: 655-664.

Lomet, D. B., 2004: Simple, robust and highly cament B-trees with node deletion. ICDE: 18-28.

Luo, G., Naughton, J. F., Ellmann, C. J., Watzke, 2005: Locking protocols for materialized aggtega
join views. IEEE TKDE 17(6): 796-807.

Mohan, C., 1990: ARIES/KVL: A key-value locking nheid for concurrency control of multiaction trans-
actions operating on B-tree indexes. VLDB: 392-405.

Mohan, C., Levine, F., 1992: ARIES/IM: An efficieahd high concurrency index management method
using write-ahead logging. ACM SIGMOD: 371-380.

Moss, J. E. B., 2006: Open nested transactionsastes and support. Workshop on memory performance
issues (WMPI), Austin, TX.

Ni, Y., Menon, V., Adl-Tabatabai, A.-R., Hosking, A., Hudson, R. L., Moss, J. E. B., Saha, B., $ipe
man, T., 2007: Open nesting in software transaatioremory. PPoPP: 68-78.

O'Neil, P. E., 1986: The Escrow transactional mét#CM TODS 11(4): 405-430.

Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhgr&., Bayer, R., 2000: Integrating the UB-treeoirat
database system kernel. VLDB: 263-272.

Srinivasan, V., Carey, M. J., 1991: Performanc®-dfee concurrency algorithms. ACM SIGMOD: 416-
425,

Weikum, G., 1991: Principles and realization sgyae of multilevel transaction management. ACM TODS
16(1): 132-180.

Weikum, G., Schek, H.-J., 1992: Concepts and agipdins of multilevel transactions and open nested
transactions. Database transaction models for agdampplications: 515-553.

Weikum, G., Vossen, G., 2002: Transactional infdiomasystems: theory, algorithms, and the praatice
concurrency control and recovery. Morgan Kaufmann.

Zou, C., Salzberg, B., 1996: On-line reorganizatidrsparsely-populated ‘Brees. ACM SIGMOD: 115-
124,

Page 17

