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Abstract:

This paper studies the effect of parametric mismatch in minimum mean square error (MM SE) estimation.
In particular, we consider the problem of estimating the input signal from the output of an additive white
Gaussian channel whose gain isfixed, but unknown. The input distribution is known, and the estimation
process consists of two algorithms. First, a channel estimator blindly estimates the channel gain using past
observations. Second, a mismatched MM SE estimator, optimized for the estimated channel gain, estimates
the input signal. We analyze the regret, i.e., the additional mean square error, that israised in this process.
We derive upper-bounds on both absolute and relative regrets. Bounds are expressed in terms of the Fisher
information. We also study regret for unbiased, efficient channel estimators, and derive a simple trade-off
between Fisher information and relative regret. This trade-off shows that the product of a certain function
of relative regret and Fisher information equal s the signal-to-noise ratio, independent of the input
distribution. The trade-off relation implies that higher Fisher information results to smaller expected
relative regret.
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Abstract— This paper studies the effect of parametric mis- to bring performance of input estimation within a desired
match in minimum mean square error (MMSE) estimation. In  range. As a counterpart problem in communication systems,
particular, we consider the problem of estimating the inputsignal = o may think of block fading channels and the trade-off
from the output of an additive white Gaussian channel whose bet f ch | estimati d f f
gain is fixed, but unknown. The input distribution is known, ewegn accuracy or channel es 'ma an "’_m per Orm,ancg 0
and the estimation process consists of two algorithms. Fitsa ~decoding [5]. Note that channel estimation in our case isdbli
channel estimator blindly estimates the channel gain usingast as we have no control of the source.
observations. Second, a mismatched MMSE estimator, optimed  As a first step to address these problems, in this work, we
for the estimated channel gain, estimates the input signaWe  ¢,¢ ;5 on the most basic system in which the unknown channel
analyze theregret, i.e., the additional mean square error, that is . . . . L
raised in this process. We derive upper-bounds on both absate 'S_JUSt a 5'”9'e gain. We expect th?t the results and |ntns_tm]‘
and relative regrets. Bounds are expressed in terms of the this work will generalize to generic FIR channélk treating
Fisher information. We also study regret for unbiased, effieent the problem, we consider an estimation process that censist
channel estimators, and derive a simple trade-off betweenigher  of two algorithms. First, @hannel estimatoblindly estimates
information and relative regret. This trade-off shows that the the channel gain using past output observations. Second, a
product of a certain function of relative regret and Fisher ) S . . ’
information equals the signal-to-noise ratio, independenof the mls_mgtchednlnlmum_mean square err((_MMSE_) estlmator_,
input distribution. The trade-off relation implies that hi gher Optimized for the estimated channel gain, estimates thetinp
Fisher information results to smaller expected relative rgret. signal. Figure 1 illustrates the building blocks of this gees.
Due to estimation error in channel estimation, the MMSE
estimator that is used in recovering the input signal result
in a mean square error that is larger than that of the ideal

Consider an application that you are given the output ofMMSE estimator. We call this additional error esgret, and
system, and you seek to recover the input of the system. Yae derive novel upper-bounds on both absolute and relative
know that the system is noisy, e.g., it adds white Gaussigggrets. The bounds are simple and demonstrate interesting
noise to the output. You know the distribution of the inpuiconnections to the Fisher information. To this end, one migh
but you do not know the system parameters. Problems of thigempt to exploit the results of [6] and [7] to derive other
sort arise in different applications in signal processimgl a alternative bounds.
communication systems. Some examples include blind deconwe also quantify regret for unbiaseefficient channel
volution [1], dereverberation [2], denoising [3], and mesicth estimators. Since these estimators achieve Cramer-Raalbou
decoding [4]. These applications differ in their fundanantthey result in a simple trade-off relation between Fisher in
models, fidelity criteria, and methodologies. However,ytheformation and relative regret. This trade-off relation esgses
have one thing in common: they all suffer from parametrihat the product of a certain function of relative regret and
mismatch in recovering the input signals. Fisher information is equivalent to the signal-to-noistiora

The motivation of this work is blind deconvolution andndependent of the input distribution. Trade-off suggekts
dereverberation applications. Linear time-invariant rafeds higher Fisher information results to smaller expectedtinaa
serve as common models in these applications. As the inpegret. Although, intuitively, this may seem expected,dim
signal passes through these channels, it convolves with ityeof the trade-off relation makes it worthwhile.
unknown finite-impulse response (FIR) of the channel, and it
adds with additive white Gaussian noise (of known variance) Il. SETuP
Recovering the input signals from the noisy output could be ~qnsider a linear dynamic system
impossible even with perfect knowledge about the channel
response. This is out of our scope. Instead, we aim to study Y, =aX, +V, (1)

the penalty and performance degradation that is specificall, \nich (17,1 is an independent, identically, distributed (i.i.d.)
caused by the lack of knowledge about the channel respo ussian noise such thal, ~ A(0,02). The inputX,, is

We benchmark performance against that of perfect channe
knovyledge scenario. We _are Con(_:e_me(_j about |ssues_ SU(_:h 88nalogous to the case between the analysis of flat-fadingtzmdnalysis
required sample complexity or training in channel estiorati of frequency-selective channels.

I. INTRODUCTION



an i.i.d. process whose distribution is known to B¢X). lv” A
Parametera € R* is a fixed, unknown channel gain. It X» aXo TN Yo Y, [ MMSE Xn
channel U

results to a derived parametric family of probability measu - Lestimation
P,(X,Y), the joint distribution ofX andY, governing the Ta )
system dynamic (1). The objective is to observe a realinatio m_a

of the output process

Yn:(ylayéf" 7Yn)

estimation process

. . . . . Fig. 1. Figure depicts the building blocks of the system gefithe estima-
and estimate the realization of the underlying input precesion process consists of two individual algorithms: 1) arcie estimation
ie., algorithm that blindly estimate& as an estimate faz, 2) a mismatch MMSE

X" — (Xl, X, ,Xn) estimation algorithm, optimized fai, that recoversX,,.

Let ¥ =R and) = R denote the input and output spaces, -~ ) )
respectively. We consider memoryless input estimatogs, e EQ- (6) quantifies the absolutegret of using ¢, instead of
¢: Y — X where¢(Y,) is an estimate forX,. The mean %a- The following lemma states and proves an upper-bound

square error(MSE) for ¢ is defined on (6). _
Lemma 3.1:For everya, the following holds true
271 2
B[ o)) = [e-swran. @ R@,0) < (3~ a)"B[KY)J (X alY = y)
In Eq. (2) and henceforth we follow the convention that un- +o(a—a)? (7)

subscribed expectations are measured accordidg) (&, Y).

Moreover, we use concise notations lifg, = P,(X,Y) , ,

and P,, = P,(X|Y = y) to denote joint and conditional BY) 2 602 4 4L Y
. . @ f @ . = —+ 4— “+ 4/\—’

distributions, respectively. ¥) e a? a2
One seeks to find an estimator that minimizes MSE (2and

in which the expectation is with respect ¥g

The main challenge, however, is thatand P, are unknown. N 9
Should we had oracle knowledge abaythe MMSE estima- J(X;alY =y) = E [(V In fa(X]Y = y)) } (8)
tor for X is defined is the Fisher information of{ relative toa, conditioned on
ba(y) =E[X|Y =1y]. (3) Y =y. Here, fo(X[Y = y) is the density ofF,,.
Proof: Refer to Appendix A. ]

for an observationt” = y. Any other estimatorp results | emma 3.1 describes a bound (7) that comprises two multi-
to additional error that we call itegret The motivation for pjicative terms. The first termii — a)? measures the channel
this name is that it measures degradation on performance.eafimation error. The second term is the weighted average of
impact caused by imprecise knowledge abeut conditional Fisher information. Intuitively, this term @mures

In this paper, we assess regret for a special class tgk amount of information that an observable random vagiabl
mismatched estimators. Namely, we consider an estimati@n carries about unknown parameter conditioned onY’,
process that is depicted in Figure 1. A channel estimatig@signing more weight to larger valuesXof
works in parallel with an MMSE input estimation as follows. Corollary 3.1: For la —a| << 1, we have
At time instancen, a channel estimator finds an estimate

& = a, of a using the observed valugs”—!. Then, it uses R(a,a) < (a —a)’Ek(Y)J(X;alY =y)]. (9)
the optimal estimator of%; (X, Y) to compute Moreover, if J(X;alY = y) and k(Y) are uncorrelated, we
ba(yn) = Ea [Xu|Y = yn] (4) obtain the simple bound
2
as an estimate foX,,. Function ¢, is a mismatch MMSE R(a,a) < (& — a)?(1402 +8U_;)J(X;a|y) (10)
a

estimator that causes regret when used in placeofIn
the following sections, we study two types of regmsolute in which J(X;a|Y) 2 E[J(X;a|Y = y)].

regretandrelative regret B. Efficient Channel Estimation

[1l. ABSOLUTEREGRET Note that (9) does not depend on the channel estimation
A. Deviation Analysis algorithm that estimates. It simply relates small deviation
betweena and a to absolute regret in estimating. To
incorporate the effect of channel estimation algorithm, we
R(a,a) =E[(X - ¢a(Y))’] ~E[(X - ¢a(¥))*]. (5) proceed as follows.
o ) o As mentioned earlier, at time:, a is obtained through
Application of orthogonality principle results to observation of"~! = (¥;)7!. In formal terms,

R(a,a) =E[(¢a(Y) — da(Y))?]. (6) a= A, (Y"1

The absolute regret correspondingdg is



whereA = (4;, Aa, - -+ ) is a channel estimation algorithm inC. Regret Scalar

which 4,,: Yy»—1 — R+,

The constant value in the RHS of Eq. (16) worths attention.

Lemma 3.2:Let 4 denote the class of all unbiased channg| goes not change with respect tg and asn — oo, it

estimation algorithms. If4 contains arefficient estimatof8,
p. 92], the following holds true

inf B [R(A,("),a)] <
1 Ek(Y)J(X:aY)]

11
n—1 J(Y;a) (11)

for sufficiently large values of.?
Proof: Refer to Appendix B. ]

IV. RELATIVE REGRET
A. Deviation Analysis
Let
a(Y) — 0a(Y))?

RR(.0) - B | @20 — (V) 12)

Ea [X°[Y]+ Ea [X°[Y]

denote the relative regret. The following lemma states a

proves a simple upper-bound ddR(a, a).
Lemma 4.1:For everya, we have
RR(a,a) <(a—a)* J(X;alY) +o(a—a)*  (13)
where
J(X;alY) 2 E {(v In fa(X|Y))2} (14)

is the Fisher information aX relative toa, conditioned orl’.

Proof: See Appendix C. ]

The novelty of Eq. (13) is that it expresses a simple upper-

bound on the relative regret for small deviations betwéen

anda. For small(a — a)?, it simplifies to
RR(a,a) < (@ —a)* J(X;alY). (15)

B. Efficient Channel Estimation

Similar to the case for absolute regret, we now state the

following result.

becomes the sole scalar that determines the level of relativ

regret. We define this quantity as thegret scalarand denote

it by

_J(X;alY)
P9 = ey

Lemma 4.3:For every zero-mean input distributid?( X ),

the following trade-off holds true between regret scalagd an
output fisher information

(17)

2
O.I
(p(a) +1)J(Y;a) = pg (18)
Proof: See Appendix D. [ ]

In Eq. (18), the RHS is the signal-to-noise ratio that is
independent of:. Thus, Eqg. (18) presents a simple product
trade-off relationship betweep(a) and J(Y;a). It suggest
rt%z;\t the higher the fisher information, the smaller the regre
scalar, and vice-versa. The following example explicales t
trade-off.

Example 4.1 (Gaussian Inputhssume X,, ~ N(0,02)
andV,, ~ N(0,02) are i.i.d. implying that/;, ~ N (0, a%02 +
o2) andY, |z, ~ N(az,,o?). With perfect knowledge of,
the ideal estimator foX givenY =y is

a02

Lemma 4.2:Let A denote the class of all unbiased estizng

mation algorithms. IfA contains anefficient estimatqrthe
following holds true

1

n—1

J(X;alY)
J(Y;a)

< (16)

irelfA E [RR(A, (Y™ 1),a)] <

for sufficiently large values of.
Proof: The proof of this lemma is essentially the sam
as the proof of Lemma 3.2. ]

Lemma 4.2 describes a bound on the expected relative regtets. The SNR =

baly) = W@/- (19)
The MMSE error resulting from this estimator is
2 2
_ 2] 0204
E[(X =01 = 550 (20)
A mismatch estimator foé is
~ 2
ao;,
daly) = my- (21)
We have
o
J(¥ialX) = 2% (22)
2020
Thus,
1 [a%c? o2
=5 (S + 7% ) (24)

e
Figure 2 depicts the behavior pfa) and.J(Y; a) with respect

10 dB and ata = .35, the minimum

Ty

o2

should an efficient estimator be used. This bound determinegret scalar coincides with maximum Fisher information.
the smallest upper-bound on average relative regret, when

sufficiently good unbiased channel estimators are used.

2The expectation in the LHS is with respect¥&* 1.

V. RECAP AND CONCLUSION

We considered the problem of estimating the input signal
from the output of an additive white Gaussian noise channel



Regret Scalar Proof: By definition, we have

T T T y 2

= Regret Scalar

= Fisher Information dP& dPa ?
-y (¢a(y) — da(y)” = ( / (5t - y)dQ)

12

dQ dQ
for every probability measur€) such thatP,, < @ and
P, < Q. By Cauchy Schwartz inequality, we obtain

(6a(y) — daly))? < W ly dP“)
(\/ aly dPaIu)
Q  (26)

By inequality (a + b)? < 2(a? + b?), one can show that the
first term in the RHS of the above inequality is smaller than

! . . — or equal to
Fig. 2. Figure illustrates the multiplicative trade-offtiveen regret scalar (K. [X2 E. [ X2
and Fisher information. Smaller Fisher information resutt larger regret ( a [ |y] + KEa [ |7JD
scalar and vice versa. TH&NR = 10 dB and the minimum regret scalar is . . . .
coincident with maximum Fisher information. 9 The second term in the RHS of inequality (26) is known as

Kakutani-Hellingerdistance betweet®, (X |y) and P;(X|y),
denoted by [9, p. 363]
subject to parametric uncertainty. Namely, the channel gai
fixed, but unknown. In treating the problem, we considered P a|y dPa|y
an estimation process that consists of two algorithms: radbli r*(Paly: Paly)
channel estimator and a mismatched MMSE estimator to
estimate the input. We studied the regret that is raised ad/greover, we know of the following inequality between
result of mismatch estimation. Simple upper-bounds on bafkutani-Hellinger distance and Kullback-Leibler distar{9,

absolute and relative regrets were presented. These boua369]

prowde useful tools |_n assessing deV|_at|_on |_n estimatimg t 212 (Pajys Paty) < D(Pajy||Pay)-
input when there exists a small deviation in channel gain _
estimation. The bounds are simple and expressed in termsS§fstituting in (26), we obtain Eq. (25). u

the Fisher information. This makes them more intuitive and
could potentially bridge to other known results in the htierre.
We also quantified regret for unbiased, efficient channel proposition 1.2:For everya andy € Y, the following
estimators. Using Caramer-Rao bound, we derived a simpi@quality holds true
trade-off between Fisher information and relative regféiis 9
trade-off expresses that the product of a certain functibn o E, [X2|y] <302 + 4%_2, (27)
relative regret and the fisher information is equivalenthe t a
signal-to-noise ratio, independent of the input distiitnut The
trade-off suggests that the higher the Fisher informatibe,
smaller the expected relative regret.
This work is our initial attempt to shed light on information Proof: Let f;(y|x) and fz(y) denote the conditional and
theoretic limits of blind deconvolution and dereverbeyati marginal densities foP;(X,Y). Then,
systems. We are currently working on generalization oféhes

results to these applications. Ea [X?y] = /xQ fa(ylz) F(x)da
fa(y)
APPENDIX = / +/
A. Proof of Lemma 3.1 z: fa(ylz)<fa(y) z: fa(ylz)> fa(y)
2

To derive an upperbound on absolute regret, we first state <E [X ] + /m falule)> £a (o) (28)
and prove the following results. “ ¢

Proposition 1.1:For everya andy € ), we have To simplify the second term, we substitut& by the inequality

that is derived as follows
(#a(y) — Gaw))* < A A
2(Eq [X%]y] +E, [X2y))D(Pay, |1 Payy). (25) falole) >falw) =
(y — ax)* < —20%1n (\/ﬂavfa(y)) .



Taking the square roots, we obtain

ly — az| < \/—203 In (\/ﬂavfa(y)) =
lax| < |y| + \/—203 In (\/ﬁovf&(y)).

As a result, we obtain
: n—l <
Jnf E[R(An(Y"71),a)] <

1 ERY)J(X;alY)]
J(Y;a) '

n—1

C. Proof of Lemma 4.1

Taking the square of both sides of the previous inequality an

using the inequalitya + b)? < 2(a? + b?), we obtain

2 y? ‘712;
Tt < 2§ - 4&2 In (V2mo, fa(y) ) =
2 2 ~ )2
y oy [ (y—ax)

2 92 2
e < 4§ + 207,

By substituting forz2 in the second term of the RHS of Eq.

(28), we conclude Eq. (27). ]

As a result of Propositions 1.1 and 1.2, we obtain

2 2
(6a(y) — u(y))” <2607 + 425 + 425)D(Pay, | Par).

By Proposition 1.1, we have

(9a(y) — da(y))?
Ea [X2]y] + Eq [X2[y]

By Eq. (29), we obtain

< 2D(P{z\y”Pa|y)'

RR(a,0) < (@ — 0)°E [(VIn fu(X]Y))"] + ofa - a)?,

where

J(X;alY) 2 E [(V In fa(XIY))Z}

is the average Fisher information &f relative toa, condi-
tioned onY'.

D. Proof of Lemma 4.3

Moreover, the following equality is known between Kullback Since X does not depend om, J(X;a) = 0, and hence

Leibler distance and Fisher information [10, p.55]

A N2
D(Puy |Puyy) = E s (Ksaly = )
+o(a — a)?, (29)

where
J(X;alY =y) 2 E [(v In fo(X|Y = y)ﬂ
is the Fisher information ofX relative toa, conditioned on
Y = y. Defining
A 2 y2
k(y) = 60y + 8'a—2

and taking expectation with respect ¥6, we conclude the
proof of Lemma 3.1.

B. Proof of Lemma 3.2

We know thata = A, (Y™~ 1). For sufficiently large values
of n, Eq. (9) holds true with arbitrarily high probability. Talg
the expectation of both sides of Eq. (9) with respecyto!,
we obtain

E[R(A4,(Y" 1), a)] <
E[(A.(Y"™) = a)’] E[k(Y)J(X;alY))]
Take the infimum of both sides over and assumel contains

an efficient estimatof8, p. 92]. By definition an efficient
estimator achieves the Cramer-Rao bound. This means

E[(A.(Y" ") —a)?] = m

SinceY,, is i.i.d., by additivity of Fisher information

JY"ta)=(n—-1)J(Y;a).

[10]

(a) = J(X;alY)  J(Y;a|X)

PO= "5 a) — J(Y;a)

Moreover, since the additive noise is Gaussian, the egualit
2

ag

_T
2
v

J(Y;alX) =

holds true for every distributio®(X) with zero mean. As a
result, we obtain Eq. (18).
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