

Finding Good Peers in Peer-to-Peer Networks

Murali Krishna Ramanathan1, Vana Kalogeraki, Jim Pruyne
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-271
October 23rd , 2001*

E-mail: rmk@cs.purdue.edu, vana_kalogeraki@hp.com, pruyne@hpl.hp.com

peer-to-peer
networks,
decentralized

As computing and communication capabilities have continued
to increase, more and more activity is taking place at the edges
of the network, typically in homes or on workers desktops. This
trend has been demonstrated by the increasing popularity and
usability of "peer-to-peer" systems such as Napster and
Gnutella. Unfortunately, this popularity has quickly shown the
limitations of these systems, particularly in terms of scale.
Because the networks form in an ad-hoc manner, they typically
make inefficient use of resources. We propose a mechanism,
using only local knowledge, to improve the overall performance
of peer-to-peer networks based on interests. Peers monitor
which other peers frequently respond successfully to their
requests for information. When a peer is discovered to
frequently provide good results, the peer attempts to move
closer to it in the network by creating a new connection with
that peer. This leads to clusters of peers with similar interests,
and in turn allows us to limit the depth of searches required to
find good results. We have implemented our algorithm in the
context of a distributed encyclopedia-style information sharing
application which is built on top of the gnutella network. In our
testing environment, we have shown the ability to greatly
reduce the amount of communication resources required to find
the desired articles in the encyclopedia.

* Internal Accession Date Only Approved for External Publication
1 CS Department, Purdue University, IN, 47906
 Copyright Hewlett-Packard Company 2001

Finding Good Peers in Peer-to-Peer Networks

Murali Krishna Ramanathan, Vana Kalogeraki, Jim Pruyne

Abstract

As computing and communication capabilities have continued to increase, more and more

activity is taking place at the edges of the network, typically in homes or on workers

desktops. This trend has been demonstrated by the increasing popularity and usability

of \peer-to-peer" systems such as Napster and Gnutella. Unfortunately, this popularity

has quickly shown the limitations of these systems, particularly in terms of scale. Because
the networks form in an ad-hoc manner, they typically make ine�cient use of resources.

We propose a mechanism, using only local knowledge, to improve the overall performance

of peer-to-peer networks based on interests. Peers monitor which other peers frequently

respond successfully to their requests for information. When a peer is discovered to fre-

quently provide good results, the peer attempts to move closer to it in the network by

creating a new connection with that peer. This leads to clusters of peers with similar in-

terests, and in turn allows us to limit the depth of searches required to �nd good results.

We have implemented our algorithm in the context of a distributed encyclopedia-style in-

formation sharing application which is built on top of the gnutella network. In our testing

environment, we have shown the ability to greatly reduce the amount of communication

resources required to �nd the desired articles in the encyclopedia.

1 Introduction

As computers become more pervasive and communication technologies advance, a new gener-
ation of communication models will be deployed over the Internet. Peer-to-peer models such
as Napster [11] and Gnutella [10] are increasingly becoming popular for sharing information
and data through direct exchange. These models o�er the important advantages of decentral-
ization by distributing the storage capacity and load across a network of peers and scalability
by enabling direct and real-time communication. In fully decentralized peer-to-peer networks
there is also no need for a central coordinator; communication is handled individually by each
peer. This has the added bene�t of eliminating a possible bottleneck in terms of scalability or
reliability.

In these networks, a node becomes a member by establishing a connection with at least
one peer currently in the network. Each node maintains a small number of connections with
its peers. Messages are sent over multiple hops from one peer to another with each peer

Murali Krishna Ramanathan, CS Department, Purdue University, IN, 47906, rmk@cs.purdue.edu

Vana Kalogeraki, Hewlett-Packard Laboratories, Palo Alto, CA, 94304, vana kalogeraki@hp.com

Jim Pruyne, Hewlett-Packard Laboratories, Palo Alto, CA, 94304, pruyne@hpl.hp.com

responding to queries for information it has stored locally. For example, to search for a �le,
a node broadcasts a search request to its peers, its peers propagate the requests to their own
peers and so on.

Many disadvantages with this approach have been pointed out. Among them is the arbi-
trary nature in which the networks are formed and maintained. Scale becomes limited because
messages are propagated across all nodes in the network, including those with high latencies.
Each hop contributes to an increase in the bandwidth on the communication links and further-
more to the time required to get results for the queries. The bandwidth for a search query is
proportional to the number of messages sent which in turn is proportional to the number of
peers that must process the request before �nding the data.

In this paper we propose an automatic mechanism for establishing connections between
\good" peers, by taking into consideration the interests of the peers. We capture the interests
of the peers through the number and types of �les maintained and provided by the peers in the
network. We consider that two peers have similar interests if they are able to provide �les to
their each other's requests. Nodes learn about the interests of their peers by monitoring the
replies they receive to their requests. Therefore, nodes decide whom to connect to or when to
add or drop a connection based on this local information. Nodes with high degree of similar
interests are considered \good" peers. By manipulating the connections between the peers, our
mechanism tries to guarantee that nodes with a high degree of similar interests are close to
one another on the network and that as distance between the peers grows the similarity of the
peers' interests decreases.

Our mechanism has the following advantages:

� Reduces the number of messages in the network and also the number of peers that prop-
agate the messages (search requests) to �nd relevant information.

� Allocates resources (networking, processing and storage) e�ciently as each peer keeps
only a small number of connections only to peers with the same interests.

� Scales well with respect to the number of peers.

To illustrate our mechanism, we have built a decentralized online encyclopedia. The ency-
clopedia is organized as a network of peers, each peer maintains a set of �les (articles). There
is no centralized directory that holds all the �les, the �les are kept at the users' machines. The
�les can be updated very frequently as in the case of daily news or can be more static. Also, the
�les are not necessarily unique; the same �les (i.e., popular articles) will be available at many
locations. Our mechanism guarantees that as users search for articles in the encyclopedia, the
search requests are e�ciently propagated only to peers with similar interests.

Our mechanism operates under the following assumptions:

� Each node has a large number of connections with other peers and there exists a path
between any two nodes in the network. Thus, the network remains highly connected, even
if peers disconnect from the network at random.

� Peers have similar interests, therefore, the same �les are available from many peers. This is
a reasonable assumption, because in our encyclopedia application, many users are reading
the same articles of the encyclopedia and therefore download the same �les.

2

I

immediate peer

immediate
peer

immediate
peer

indirect peer

node A

B

C

D

E

F

G

H

Figure 1: The Peer-to-Peer Network.

The paper is organized as follows: Section 2 presents the System Model and Metrics. In
Section 3 we describe our mechanism for �nding good peers. In Section 4 we describe our
experimental results. Section 5 presents the Related Work and Section 6 concludes the paper.

2 System Model and Metrics

We assume a logical network of nodes (peers) in which each node maintains a connection with
a group of other peers. The model is based on common peer-to-peer �le searching networks
such as gnutella [10]. The number of connections is typically limited by resources at the peer.
Two nodes p(i) and p(j) are called immediate peers if there is a direct connection between the
nodes. Two nodes p(i) and p(j) are called indirect peers if there exists a communication path
between these nodes. Note here, that, in some cases two nodes may not be connected at all.
Also, while connections are typically initiated by one peer, they are symmetric in the sense that
either peer can send messages or choose to disconnect at any time.

In Figure 1 we show an example of a peer-to-peer network. In the example, node A has three
immediate peers, nodes B, C and H. The rest of the nodes are indirect peers. For example,
node D is an indirect peer because there is a communication path between nodes A and D

(from A to C to D).
Each peer p(i) is characterized by the capabilities of the processor on which it is located.

The processor is characterized by its CPU speed pcpu(i), the size of its local memory pmem(i)
and the size of its disk space pdisk(i). The node also has a limited amount of bandwidth to
the network as noted by pband(i). The communication link between two nodes p(i) and p(j)
is characterized by the bandwidth available to it as pband(i; j). These lead to the constraint
P

j pband(i; j) � pband(i). Also, to give high priority to the node's request, we can restrict the
bandwidth used for incoming requests (propagated by other peers) to be a small proportion
of the total bandwidth on the communication link. This leads to a limit on the number of
connections a peer can maintain. We denote the number of connections a peer is maintaining
by pconn(i). Each of these resources has a maximum and a current value measured at runtime.
More than one peer can be located on the same processor at the same time. In this case, the
peers have the same IP address but are connected to di�erent ports.

Each peer maintains a local repository of �les. Each �le is characterized by meta-data.
The meta-data includes the title of the �le, the topic, the author, the generation (and possibly

3

expiry) date and keywords. In addition to that, the meta-data also includes a "reputation"
value which rates the article. The reputation metric takes values between one and �ve; one
corresponds to an article of a low value, while �ve corresponds to an article of high value. Note
here that di�erent users have di�erent likes, therefore the ranking mechanism corresponds to
the users' personal interests. Typically users give a high reputation value to the articles they
like best. The meta-data for the �les is stored in a hash table and the keywords of the �les are
used as the hash key.

Each node i is characterized by its horizon(i) that determines how far the messages sent by
node j will be propagated in the network. The node sends messages to search for �les among
its peers. Its peers will in turn forward the messages to their own peers and so on. In general,
a search message will be propagated (pconn)

horizon times where pconn is the mean number of
connections maintained by the peers. This results in a large number of messages propagated
in the network. We therefore desire a method to reduce node's i horizon(i) to reduce both the
number of messages and limit the bandwidth on the communication resources.

Each node i associates the following information with each of its peers j:

� Importance(j): a metric that represents the relative importance that the peer j has for
the node i and captures the interests of the peers. Node i connects to the peers with the
highest importance and furthermore, high degree of interests. The same peer can have
di�erent importance for di�erent nodes.

� percQueryHits(j): the percentage of replies (QueryHits) received from the peer j com-
puted as the number of replies (QueryHits) received from the peer over the total number
of replies (QueryHits) received from all peers as a response to the node's queries.

� averNumHops(j): a metric that represents the distance (average number of hops) of
node i from indirect peers whose replies (QueryHits) are propagated to node i through
its immediate peer j.

� connectionT ime(j): the amount of time the connection with the immediate peer j is
active.

3 Determining Good Peers

The main objective of our algorithm is to establish connections between \good" peers, that is,
peers with high degree of interests. Our aim is to (1) minimize the horizon of each peer and
therefore minimize the number of messages in the network and, (2) maximize the probability
that peers with similar interests are connected together so that the results are obtained faster
from the peers.

3.1 Messages in the Peer-to-Peer Network

The peers in the network communicate by exchanging messages. The format of the message
header (shown in Figure 2) is:

4

payload_lengthUUID descriptor_id payload_descriptor group_id ttl hops

Figure 2: The Message Header.

� unique message id (UUID): which ensures that every query message is distinguishable
from any others.

� descriptor id: a 16-byte string that uniquely identi�es the sender of the message. If the
message has been forwarded more than once, the descriptor id refers to the node that
forwarded the message last.

� payload descriptor: the type of message sent which can be one of the following: Connect,
Accept connection, Query, QueryHit.

� group id: the name of the group where the message should be propagated.

� time to live (ttl): the number of times the message will be forwarded among the peers
before it expires. The initial value given to the TTL parameter is the horizon of the peer.

� hops: the number of hops the message has already been forwarded in the network.

� payload length: the length of the descriptor immediately following the header.

These are the messages exchanged among the peers in the network:

� Connect: used to discover active nodes on the network. The node that receives a connect
message can reply with an Accept connection message.

� Accept connection: used as a response to a Connect message and includes the IP address
of the sender node.

� Query: this is the primary mechanism for searching in the network and includes the
constraint that will carry the search operation. If the node that receives a Query message
has a reply, it responds with a QueryHit message.

� QueryHit: used as a reply to the Query message and includes information so that the
recipient can acquire the corresponding data.

3.2 Connecting to the Group of Peers

Each node p maintains a list of peers PeerListp in the network. These are peers with which
the node had previous connections to and is likely to connect to in the future. The peer list is
updated dynamically based on the user's interests and ordered based on the importance of the
peers. Since the nodes are not always connected to the network, some of these peers may not
be active when the node tries to connect to them. If the node cannot �nd any peer to connect
to, it can contact a centralized server e.g., Napster [11] to get a list of currently active peers in
the network.

5

A node connects itself to the network of peers by establishing a connection with at least
one peer currently on the network. To connect to the network of peers, the node constructs a
Connect() message containing his descriptor id, the Connect payload descriptor, the number
of times (ttl) the message should be propagated in the network and the name of the group
(group id) where the message should be sent. It then uses the connect message to actively
probe the network for peers. In the paper we are not concerned how the node discovers the
group id, we assume that there are speci�c services called name servers and the node obtains
the group name by invoking them. The connection to a group can be considered as an initial
thrust for the node to �nd its peers; this is a group of peers with similar interests.

When a node receives a Connect() message, it decides whether it should accept the connec-
tion from its peer. The decision depends on a number of factors, such as the resource capabilities
of its peer and the bandwidth on its communication links. For example, the node can choose
to establish a connection with a peer with which it had a stable connection in the past over
another peer that was frequently disconnecting. The node decides to accept a connection if the
number of its peers is less than the maximum number of connections MAX CONNECTIONS it can
accept and replies with an Accept connection message.

When the node receives the Accept connection message, it extracts the IP ADDRESS from
the message and connects to the sender peer. Also, for future connections, the node updates
its peer list by adding the peer's address. This is based on our assumption, that these are peers
have similar interests and if a node decides to connect to a "good" peer once, then, it is likely
that it will connect to the same peer later in the future.

A node can choose to disconnect from the network at random. In this case, its peers will
decide whether they should issue a Connect message to �nd another peer or they should keep
the existing number of connections.

3.3 Searching in the Peer-to-Peer Network

A node searches in the network by sending Query messages to its peers. The Query message
contains a constraint which will be evaluated locally in each peer to determine what results to
return. Typically, the constraint includes a set of keywords, such as the topic of the �le.

When the node receives a Query message, it evaluates the constraint against the meta-
data of the documents in its local repository. If the constraint evaluates successfully, the node
generates a QueryHit message that includes the �les corresponding to the constraint, and sends
it to the immediate peer from which it received the Query message. The Query Hit message
follows the query path to reach the node that initiated the search.

In addition, the node decrements the TTL value in the message's header and forwards the
message to each of its immediate peers. To provide a termination condition so that messages
are not propagated inde�nately in the network, a node that receives a message with TTL value
zero, stops forwarding the message.

When the QueryHit messages reach the node who initiated the search, they are stored in a
bu�er until the replies from all the peers are collected. The order with which the replies are
displayed is based on the �les' reputation values; �les with high reputation values are returned
�rst. The node records all the replies it receives (both from the immediate and the indirect
peers) and also the peers who provided the results. It uses the results to determine which are
\good" peers to connect to.

6

3.4 Determining the Peer's Horizon

Each node p in the network has information about its immediate peers. For example, it knows
the logical (one hop) and physical (IP address) distance of the peers. Also, the node discovers
the �les maintained by the immediate peers by sending search requests and recording their
replies.

Information about indirect peers is obtained through p's immediate peers. When p sends a
Query message to its immediate peers, they will propagate the message to their own immediate
peers. Replies from indirect peers are sent through the same path to node p. Node p records
all the replies it receives to its search requests, both from its immediate and indirect peers.
Note though that p's view about indirect peers may not be complete, because only some of
the indirect peers may have replied to p's requests. Furthermore, the topology of the network
changes dynamically, and therefore, it is likely that new peers may have joined the network.

Assume that node p generates a Query message Queryq(p) and sends it to each immediate
peer q. The immediate peer q will in turn propagate the message to each of its own immediate
peers s. Let QueryHitsp;q(s) be the number of QueryHit messages generated as replies from
indirect node s and sent to node p through the immediate peer q. Let numHopsp(s) be the
logical distance between nodes p and s at the time of the request. The distance of the peers
may change (grow or shrink) at the time of later requests. The node p computes the average
number of hops of its immediate peer q as:

averNumHopsp(q) =
QueryHitsp(q) +

P
s;s:indirect(QueryHitsp;q(s) � numHopsp(s))

QueryHitsp(q) +
P

s;s:indirectQueryHitsp(s)
(1)

The averNumHopsp(q) captures the number of hops taken, in average, for replies that come
through the immediate peer q to reach node p. The replies include both the replies generated
from the immediate peer q and the replies generated from indirect peers and propagated to
node p through its peer q. Those replies that originate from indirect peers contribute to the
relative importance of the immediate peer q in inverse proportion to the logical distance from
the immediate peer. An immediate peer q with a large average number of hops indicates that
it receives replies from peers that are located farther from the requesting node.

Note though that, even if an immediate peer does not generate any replies for the search
request, this does not necessarily mean that it is not good a \good" peer any more, because
of two reasons: (1) the peer may give good results for other subsequent queries and, (2) it
propagates the search messages to indirect peers in the network and if the node disconnects
from this immediate peer, it may loose connection to those peers. By calculating the importance
of the immediate peer (Section 3.4) we can decide whether we need to replace this immediate
peer.

Example: The values of the averageNumHops metric are illustrated in the following exam-
ple. Consider a network of four peers A, B, C and D as shown in Figure 3. Let nodes B and
C be immediate peers to node A and let node D be an immediate peer to node B (therefore,
an indirect peer to node A). Assume that nodes B, C and D give 80, 100 and 20 QueryHits,
respectively, as a reply to queries from node A.

Note here that both peers B and C give a relatively high number of QueryHits. Note also
that through peer B, node A receives replies from other peers, such as node D and the total

7

B

100 QueryHits

averNHops(B)=1.2

80 QueryHits

20 QueryHits

A

D

C

averNHops(C)=1

Figure 3: Average Number of Hops for Node's A Immediate Peers B, C.

number of QueryHits that come through node B is equal to the total number of QueryHits that
come through node C (= 100).

Using equation (1) we calculate the average number of hops for node's A immediate peers,
B and C as: averNumHopsA(B) = 1:2 and averNumHopsA(C) = 1. The numbers indicate
that although the total number of QueryHits propagated through both immediate peers B, C
is the same, replies from node B have to travel a larger number of hops. Our objective, is
to reduce the A's horizon (minimize the number of hops) and at the same time maximize the
number of QueryHits that node A.

3.5 Importance of a Peer

We determine \good" peers by evaluating the relative importance of both the immediate and
indirect peers.

Node p computes the importance of an indirect peer s through the percentage of QueryHit
messages generated by s as:

percQueryHitsp(s) =
QueryHitsp(s)

P
i;i:all contributing peersQueryHitsp(i)

To evaluate the importance of an immediate peer q, node p also has to consider how many replies
from indirect peers are being propagated through the immediate peer q. This is important
because, if node p disconnects from its peer q, node p may loose the communication with some
other indirect peer. If an indirect peer is important, then p may choose to connect to that peer
directly. The Importance of an immediate peer q at time t is computed as:

Importancep(q; t) = � �
percQueryHitsp(q)

averNumHopsp(q)
+ (1� �) � Importancep(q; t� 1)

where we are using exponentially weighted averaging to determine the mean Importance value
of peer q. The mean value of Importance is not the average of the previous measured values,
but is determined by a sequence of measurements with greater weight being given to more
recent measurements. If the number of connections is stable, the above calculation gives a good

8

PeerSelection Algorithm(peer p)

for all my peers q

�nd indirect peer s with maximum percQueryHitsp(s;m)

�nd immediate peer q with least Importancep(q)

if percQueryHitsp(s) � percQueryHitsp(q)

make a direct connection from peer p to peer s

if numConnectionp �MAX CONNECTIONS

remove peer q with least Importancep(q)

Figure 4: Pseudocode for the PeerSelection Algorithm.

approximation to the mean value. If the behavior changes dynamically, the calculation tracks
current behavior with a large value of � yielding rapid response to changing conditions, and a
small value of � yielding more smoothing and less noise.

Our algorithm determines \good" peers as peers with high importance. These are peers
that provide a high percentage of QueryHits and are connected over the longest time period.
The advantage is, that, if two immediate peers are connected over a long period of time, this
is a strong indication that the peers have similar interests and should remain connected.

3.6 Peer Selection Algorithm

Periodically, each node p evaluates its immediate and indirect peers. The node decides to
make an indirect peer s an immediate peer, when the percQueryHitsp(s;m) of peer s becomes
greater than the minimum percentage of QueryHit messages of its immediate peers. Then,
node p probes peer s to make a direct connection. If node s accepts the connection, a direct
connection between nodes p and s is established. If node p has excited the maximum number of
connections MAX CONNECTIONS, then it removes the immediate peer with the least Importance.
The pseudocode for the PeerSelection algorithm is illustrated in Figure 4.

3.7 Stability

The stability of the system is a�ected by the rate with which each node executes the peerSe-
lection algorithm. The e�ectiveness of our PeerSelection algorithm can be best evaluated by
considering the frequency with which nodes make connections to new peers and disconnect
from old ones which, in turn, is greatly in
uenced by the user's behavior. For example, if the
user is actively searching for articles in the encyclopedia, the peerSelection algorithm should
run in a high frequency to �nd the best peers. On the other hand, if the user is inactive, the
PeerSelection algorithm is not running at all.

The e�ectiveness of our peerSelection algorithm can be further improved if the characteristics
of the applications are also considered. For example, for our decentralized online encyclopedia,
users usually read articles of the encyclopedia in the morning, so there is high tra�c during
the early hours and less tra�c the rest of the day.

By monitoring the user requests and the replies sent from the peers, our algorithm guarantees
that peers with similar interests are connected together and dynamically adjusts the connections
between \good" peer as the behavior of the users or the peers change.

9

B

A

Figure 5: Scenario 1: Initial Topology

B

A

Figure 6: Scenario 1: Final Topology

4 Experimental Results

We used two scenarios to observe the working of our algorithm in the peer-to-peer network. In
the �rst scenario, we determine how accurately and quickly a peer is able to �nd other peers
with similar interests. In the second, we see how the algorithm adapts a peer's connections as
the interests are changed.

4.1 Scenario 1

A real time experiment was conducted with 12 peers with each of them generating queries
based on assigned interests. The initial topology is shown in �gure 5. We monitored the state
of peer A and restricted it to a maximum of three connections. We also set the initial TTL of
its query messages to three. Peers with �lled circles represent those with interests similar to
our test peer, A. That is, they are more likely to be able to return results for a given query. The
darker the circle the more similar the interests. Each peer also maintained a set of \content"
�les that other peers may �nd. Each content �le has meta-data associated with it containing a
title, topic, keywords and rank. Five hundred queries were generated during the test, and the
results were compared to a standard gnutella protocol. A query hit occurs only when the query
matches completely either with one of the keywords or the title of the �le.

The �nal state is shown in �gure 6. We see that A broke one connection from its initial

10

allocation, and made three new connections to peers with similar interests. We also observed
that our test peer made only 6 to 7 "reconnection" decisions before coming to a stable state
and these decisions are made near the beginning of the experiment. The large number of
reconnection decisions during initialization can be attributed to the near \zero knowledge" of
the peer connections. Over time, the peer learns about good connections based on the algorithm
and gets connected to more stable and important peers. This lead to decrease in the number of
reconnection decisions later. Once the peer got a good set of immediate peers, the reconnections
decisions are made rarely and are mostly related to change in the kind of queries being sent.
This observation is vital to show the overall stability of a system using our algorithm.

By comparison, we observed in a pure gnutella network without our peer selection algorithm
that only query hits from peer B are received because of the TTL limit of 3 even though other
peers with relevant information are in the network. This demonstrates the \so near, yet so far"
nature of the gnutella protocol. Four peers were contacted only to get the results from one of
them. This resulted not only in poor query hits for A, but also wasted resources (bandwidth
and query processing time) of the \just" forwarding nodes. In our model A found B to be a
good peer and made it an immediate peer. This resulted in the useful nodes just 2 or 3 hops
away from A. In course of time, they connected to A directly. This had two advantages:

� More query hits received by A. This is show in Figure 7. Notice how the number of
hits grows dramatically and continues to outpace the pure gnutella implementation. This
is directly due to our algorithms ability to �nd and connect to peers with a history of
providing results.

� Fewer messages were propagated in the network. Figure 8 shows the mean number of
hops a query hit must traverse before returning to the search peer. We see that after a
brief instability when the test peer is searching for good peers, the number dramatically
decreases. This reduces bandwidth used by query response messages, and could be used
as an indication that horizon can be reduced which reduces the propagating of query
messages as well.

4.2 Scenario 2

In this scenario we show how the algorithm adapts as the interests of a peer change over time.
Six nodes were used for this experiment with 1500 queries being sent from the testing peer
(Figure ??). We assumed 3 peers containing documents related to di�erent topics, A, B, C
respectively. The test peer sends out a query stream of the form:

5A's, 50B's, 100C's, 150A's, 150B's, 500C's, 300A's,100B's

where we assume that peer A has the data requested by the A queries, peer B has the results
of the B queries and so forth.

We set the initial TTL on the query messages to two, and also restricted the peer to two
simultaneous connections. When the 50 B's were sent, B became the immediate peer of the
testing peer much as we showed in Scenario 1. However, we observed that disconnection deci-
sions were not made immediately after a change in the type of query message being generated.

11

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30 35

N
um

 o
f

Q
ue

ry
H

it
M

es
sa

ge
s

Num of Decision Points

Gnutella
Our Model

Figure 7: Cumulative number of query hits received

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

N
um

 o
f

H
op

s

Num of Decision Points

Gnutella
Our Model

Figure 8: Mean number of hops required for a query-response message to return to the searcher.

Instead, some time, showing consistent new behavior is required before changes are made. Fig-
ure 10 depicts the number of message hops required to reach one of the type-C peers from
the test peer. We see that the distance changes (both nearer and further) as the test peer's
interest changes, but is not in lock-step with the change in query type being generated. The
gradual movement of the peers is an important feature of our algorithm, as it tries to reduce
the instability factor.

Figure 11 further demonstrates the adaptability of the algorithm. We can clearly see that as
interests change, the number of successful queries drops dramatically. But, as the peer creates
new connections to replace old one, the success rate increases. Again, there is lag in the time
until the rate increases, but this is an intentional result so as to increase stability in the case
where interest changes are brief.

12

Querying Peer

A

B C

Figure 9: Scenario 2: Initial Topology.

Other Observations:

� Our algorithm can result in a disconnected graph. If a node does not provide information
of interest, all of its peers will disconnect from it because it is not contributing to the
success of their searches. This may be considered an advantage or disadvantage of the
algorithm. Disconnection seems to be a bad situation, but as noted in [1], we are threat-
ened by a \digital tragedy of the commons" in which people are inclined to take from
the network but provide nothing. In this case, only by providing useful information will
a peer be able to remain an active participant. So, it is unclear whether disconnection is
a problem that needs a solution.

� We observe a phenomenon of a \local maximum." That is, after running the algorithm
the peer becomes content with its situation, even if better situations may be possible.
This is, in part, due to our calculation of Importance favorably weighting long running
connections. We make this decision to improve the overall stability of the system, but it
is a potential problem. More experiments with the weighting factor may help to �nd a
good compromise.

5 Related Work

The current distributed searching mechanisms in the peer-to-peer network [10] use a brute force
algorithm and broadcast the search request to all the peers. The problem with this approach
is that there is no mechanism to determine which peers are likely to have results to propagate
the requests to these peers only, and therefore send a large number of messages and consume
many processing and communication resources. Among these search mechanisms, Limewire
[13] de�nes interest groups, called Channels. This is similar to our approach, however, once the
connection between the peers are established, there is no automatic way to change the topology
of the network as the interests of the peers change over time.

The behavior and performance of hybrid peer-to-peer networks have also been studied in the
literature. In hybrid peer-to-peer networks such as Napster [11] and Morpheus [14] centralized

13

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 10 20 30 40 50 60 70

N
um

 o
f

H
op

s

Num of Decision Points

Number of Hops

Figure 10: Distance of type-C peer from test peer

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

N
um

 o
f

Pe
rc

Q
ue

ry
H

it
M

es
sa

ge
s

Num of Decision Points

Figure 11: Percentage of queries returning hits

servers maintain a global index of the peers and the �les in the network. Nodes search for �les
by sending search requests to the centralized servers and obtain the list of �les and the corre-
sponding peers. The problem of this scheme is that it is a bottleneck in terms of scalability and
reliability. Furthermore, there is no mechanism to ensure that di�erent servers have an always
updated view of the �les of their peers. Yang et al [2] have proved that chained architectures
are the best strategy for today's �le sharing systems, but have poor performance when the user
interests are diverse.

Recent work [6] has studied location and routing mechanisms in large-scale peer-to-peer
systems. Stoica et al [3] use a consistent hashing scheme to distribute the objects in the peer-
to-peer network, so that an e�cient location algorithm can be implemented. Tewati et al [9]
propose a scalable, high-performance architecture for �nding data. Similar to our approach,

14

their objective is to minimize the number of hops to locate and access data in the network.
Zhuang et al [5] have built an application level multicast system that incurs minimal delay
and bandwith penalties. Their primary focus is on handling faults in links and routing nodes.
Rowstron et al [4] propose a scalable, distributed object location and routing algorithm for
wide-area peer-to-peer applications to minimize the distance that the messages travel. The
di�erence of the above approaches with our work is that they assume that the topology of the
network is known in order to distribute the objects and route the messages to their destination.

Other work has exploited power-law link distributions in communication and social net-
works. Adamic et al [1] have shown that they can employ local search strategies that take
advantage of the structure of power-law networks to e�ciently search in a peer-to-peer model.
The algorithm explores nodes with high connectivity. In a similar approach, Adjih et al [15]
have examined multicast trees and power law networks and discuss the number of nodes that
receive any message sent through multicast. Their goal is to measure and potentially reduce
the total network tra�c required to perform a multicast. Both of these approaches, however,
assume a �xed network topology based on the physical layout of the network. Our model
has the advantage of an easily recon�gurable network which permits us to change topology to
improve performance.

In the area of distributing storage, Akamai [12] is building an intelligent global distributed
network of servers located at the edges of the Internet. Their aim is to improve content delivery
and provide content personalization based on the user's line speed, geographic location and
device type. Rost et al [8] propose a new technique for e�ciently delivering popular content
from information repositories with bounded �le caches. Their technique uses fast erasure codes
to generate encodings of popular �les, of which only a small sliding window is cached at any
time instant. Their approach maximizes sharing of state across di�erent request threads and
minimizing cache memory utilization. Doyle et al [7] explore the e�ects of caches on the
properties of the request tra�c. They focus on Web requests that follow a Zipf-like object
popularity distribution and examine the impact on load distribution strategies and content
cache e�ectiveness for servers.

6 Conclusions

Decentralized peer-to-peer networks appear to be an attractive means for distributing informa-
tion on the Internet. The advantages in terms of reliability and scale are compelling. Unfortu-
nately, naive schemes for organizing such a network quickly break down, making these seeming
advantages into weaknesses. We have attempted to overcome some of these by introducing
the notion of interests into the network, and to organize the network based on interest. This
permits us to alter the topology of the network to form clusters with similar interests. This,
in turn, permits us to improve the overall performance of the system by limiting the resources
required for searching in the network. The algorithm has been de�ned and tested in the con-
text of a speci�c application, the decentralized on-line newspaper, which is built on a standard
peer-to-peer sharing system. In our limited testing environment, the algorithm has shown itself
to be both e�ective and stable in creating the clusters we desire.

We need to further validate the work through improved testing. Testing of these sorts of
systems turns out to be problematic, however. In particular, we are concerned with scale, but

15

running a controlled test to validate scalability is di�cult. We see two approaches to solving
this. First is simulation. We are beginning to investigate the alternatives for simulating a
network of this sort, but must still �nd relevant parameters to run the simulation. The second
is a deployment. Because we have built our system in the context of an existing peer-to-peer
network, and have live implementations of the algorithm, we expect that the most valuable
results could come from making the system available. In doing so, we intend to instrument the
system so that large scale measurements can be made of the e�ectiveness of the system. The
challenge then becomes to make the application compelling enough to encourage a large number
of users to participate. We hope that the newspaper-style information sharing application will
be.

References

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani, B. A. Huberman, \Search in power-law
networks", http://www.parc.xerox.com/istl/groups/iea/papers/plsearch/

[2] B. Yang and H. Garcia-Molina, \Comparing Hybrid Peer-to-Peer Systems", Proceedings
of Very Large Databases, Rome, Italy (September 2001).

[3] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek and H. Balakrishnan, \Chord: A scal-
able peer-to-peer lookup service for Internet applications", ACM SIGCOMM, San Diego,
CA (August 2001).

[4] A. Rowstron and P. Druschel, \Pastry: Scalable, decentralized object location and routing
for large-scale peer-to-peer systems", Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms, Heidelberg, Germany (November 2001).

[5] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz and J. Kubiatowicz \Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination", Proceedings
of the Eleventh International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV 2001), Port Je�erson (June 2001), pp. 11-20.

[6] Y. D. Chawathe, \Scattercast: An architecture for Internet broadcast distribution as an
infrastructure service", Ph.D. Dissertation, http://yatin.chawathe.com/thesis/.

[7] Ronald P. Doyle, Je�rey S. Chase, Syam Gadde and Amin M. Vahdat, \The Trickle-Down
E�ect: Web caching and server request distribution", Proceedings of the Sixth International
Workshop on Web Caching and Content Distribution, Boston, MA (June 2001).

[8] S. Rost, J. Byers and A. Bestavros, \The Cyclone server architecture: streamlining delivery
of popular content," Proceedings of the Sixth International Workshop on Web Caching and
Content Delivery, Boston, MA (June 2001).

[9] R. Tewari, M. Dahlin, H. Vin, and J. Kay, "Design Considerations for Distributed Caching
on the Internet" Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems, Austin, TX (May 1999), pp. 273-284.

16

[10] The Gnutella Homepage, http://www.gnutella.wego.com/

[11] The Napster Homepage, http://www.napster.com/

[12] The Akamai Homepage, http://www.akamai.com

[13] The Limewire Homepage, http://www.limewire.com

[14] The Morpheus Homepage, http://www.musiccity.com

[15] C. Adjih, P. Jacquet, L. Georgiadis, W. Szpankowski \Multicast tree structure and the
Power Law", http://www.cs.purdue.edu/homes/spa/papers/multicast.ps

17

