[LaBs™)

DataSeries: An Efficient, Flexible Data Format for Structured Serial Data

Eric Anderson, Martin Arlitt, Charles B. Morrey 111, Alistair Veitch

HP Laboratories
HPL-2009-323

Keyword(s):
data series, data format, structured seria data, data sets

Abstract:

Structured serial datais used in many scientific fields; such data sets consist of a series of records, and are
typically written once, read many times, chronologically ordered, and read sequentially. In this paper we
introduce DataSeries, an on-disk format, run-time library and set of tools for storing and analyzing
structured serial data. We identify six key properties of a system to store and analyze this type of data, and
describe how DataSeries was designed to provide these properties. We quantify the benefits of DataSeries
through several experiments. In particular, we demonstrate that DataSeries exceeds the performance of
common trace formats by at least a factor of two.

External Posting Date: September 21, 2009 [Fulltext] Approved for External Publication (ﬁa
Internal Posting Date: September 21, 2009 [Fulltext]

Published in Journal- ACM SIGOPS Operating Systems Review (OSR) HPL Special issue, January 2009, volume 43, issue 1.

© Copyright Journal- ACM SIGOPS Operating Systems Review (OSR) 2009, volume 43, issue 1.

DataSeries: An Efficient, Flexible Data Format for
Structured Serial Data

Eric Anderson, Martin Arlitt, Charles B. Morrey lll, Alistair Veitch
HP Labs, 1501 Page Mill Road, Palo Alto, CA

{eric.anderson4, martin.arlitt, brad.morrey, alistair.veitch}@hp.com

ABSTRACT

Structured serial data is used in many scientific fields; such
data sets consist of a series of records, and are typically
written once, read many times, chronologically ordered, and
read sequentially. In this paper we introduce DataSeries, an
on-disk format, run-time library and set of tools for stor-
ing and analyzing structured serial data. We identify six
key properties of a system to store and analyze this type of
data, and describe how DataSeries was designed to provide
these properties. We quantify the benefits of DataSeries
through several experiments. In particular, we demonstrate
that DataSeries exceeds the performance of common trace
formats by at least a factor of two.

Categories and Subject Descriptors
H.3.2 [Information Storage]

General Terms

Design, Performance

Keywords

data format, trace-analysis, compression, performance

1. INTRODUCTION

Traces, recordings and measurements taken from computer
systems, networks and scientific infrastructure are vitally
important for a large variety of tasks. In every area of com-
puter system design, traces from existing systems have been
used to validate hypotheses, test assumptions and estimate
performance. This is true of I/O subsystems [3, 14, 26],
processor systems [19], network systems [15] and memory
systems [24], among others. Traces and logs are also ex-
tremely useful for fault-finding, auditing and debugging pur-
poses [20]. Traces composed of failure data have been used
to determine system reliability [7, 23, 21]. Trend analyses
of performance information is a core operation of various
management tools [11]. Scientific and medical instrumenta-
tion can generate very large amounts of data [4], which also
needs to be stored, filtered and analyzed.

The data stored in each of these diverse cases is structured
serial data, which we define as a series of records, each record
having a specified structure (i.e., containing the same set of
variables or fields). Structured serial data has four defining
characteristics: its structure is record-oriented; it is typi-
cally written only once, and is read many times; it is usu-
ally ordered in some manner, e.g., chronologically; and it

is typically read sequentially. We have designed and built
DataSeries, an on-disk data format, run-time library, and
set of tools that is optimized for storing and analyzing this
type of data. We show that DataSeries outperforms com-
mon trace formats and databases by at least a factor of two,
and in some cases up to an order of magnitude. DataSeries
also requires far less disk space (factors vary from 4x to 8x
in test data sets).

We desire six key properties of a data format and analysis
system for structured serial data:

1. Storage efficiency: the data should be stored in as
few bytes as possible. There are several driving fac-
tors behind this requirement. First, the amount of
data stored can be large (we have I/O traces compris-
ing billions of records), and despite rapidly decreasing
storage prices, the cost to store data can still be con-
siderable, particularly when the data must be kept for
long periods of time. Second, we have learned that one
of the primary factors behind analysis efficiency is the
speed at which data can be retrieved. Regardless of
the storage technology used, more highly compressed
data can substantially speed access times.

2. Access efficiency: accessing, interpreting and en-
coding trace data, whether reading or writing, should
make efficient use of CPU and memory resources. From
experience and experimental analysis, we have learned
that the second major factor determining analysis ef-
ficiency is the CPU overhead of interpreting data once
it has been read off disk.

3. Flexibility: adding additional fields should not affect
users of the trace data. Removing or modifying data
fields should only affect programs that use those fields,
and the system should catch incorrect usage. Further,
the format should not constrain the type of data being
stored, and should allow multiple record types in a
single file. Experience tells us that formats that are
not flexible lead to severe maintenance issues for the
format interpretation code and for analysis systems.

4. Self-description: the data set should contain the
metadata that describes the data. This is another
experience-driven requirement. We have had problems
trying to interpret and use trace data from other orga-
nizations because of missing metadata, and with main-
taining organizational knowledge of our own metadata
over time.

5. Usability: the data format should have an associated
programming interface that is both expressive and easy
to use. The user model of the data and its analysis
should be easy to describe and the interface to it should
easily allow for common operations (e.g., scanning an
entire data set, and processing specific fields only).

6. Integrity: many structured serial data files are in-
tended as archival traces. To protect against media
errors or incorrect software systems, files need to be
self-contained and contain internal checksums that en-
able integrity checking.

There are, inevitably, tradeoffs to be made in satisfying these
properties. For instance, XML is an extremely flexible data
format, but is not very efficient. In the course of our work
(which tends towards the analysis of very large data sets),
and the design of DataSeries, we have chosen to prioritize
efficiency over many of the other properties.

Although numerous tracing and measurement systems have
been developed over the last 20-30 years, we are not aware
of any that meet all of these properties. We analyze some
of these in our description of related work (Section 2).

We provide four primary contributions in this paper. First,
we introduce DataSeries, a data format and associated li-
brary, which was specifically designed to meet the six key
properties discussed above, and relate some of the experi-
ences that led us to make various design decisions. Second,
we discuss how DataSeries can support very large data sets
(e.g., hundreds of billions of records) on modest systems.
Third, we describe how we have used DataSeries in practice
to store a wide variety of data types. Fourth, we demon-
strate the performance and storage efficiency of DataSeries
in a set of controlled experiments, using empirical data sets.
Throughout, we have tried to emphasize the lessons learned
and how they might be applied to other fields.

DataSeries software is publicly available under a BSD license
from http://tesla.hpl.hp.com/opensource/. Given the
benefits of DataSeries that we demonstrate, we argue that
DataSeries should be considered for use by any application
that needs to store large amounts of structured serial data.
Indeed the Storage Networking Industry Association (SNIA)
I/O traces tools and analysis (IOTTA) technical working
group [12] has proposed DataSeries as the basis for a stan-
dard I/O trace data format.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the strengths and weaknesses of existing
storage technologies relative to DataSeries. Section 3 de-
scribes the design of DataSeries, including on-disk and in-
memory formats, and introduces the programming model.
Section 4 presents empirical and benchmark results to il-
lustrate and quantify the benefits of DataSeries. Section 5
concludes the paper with a summary of our work.

2. RELATED WORK

We classify the related work into three categories: those that
use a customized binary format, those that use a text-based
format, and relational database systems. For more complete
and quantitative comparisons, please refer to [5].

Custom binary formats are usually serialized or directly writ-
ten versions of an in-memory data structure. As such, they
usually achieve storage and access efficiency, but do not
achieve flexibility, self-description, usability, and integrity.
However, as we show in Section 4.2, unless the authors are
careful they can also fail to achieve access efficiency.

Text formats such as Comma-Separated Value (CSV) can
achieve flexibility and self-description. XML achieves flex-
ibility, self-description and usability. However, they fail to
achieve storage efficiency and integrity, and can fail access
efficiency by multiple orders of magnitude. A highly-tuned
CSV implementation only got to within 2-7x the access-
efficiency of DataSeries, and 4-7x the storage efficiency [5].

Relational databases achieve flexibility, self-description, us-
ability, and integrity. RDBMS’s were designed to handle
updates, so do very limited compression drastically hurting
their storage efficiency. Our results show >10x improve-
ment on storage efficiency for DataSeries over MySQL. Sim-
ilarly, the generality of SQL can be detrimental. Even for
fairly simple queries running entirely on in-memory data,
DataSeries runs 2—-7x faster than MySQL. Retrieving the
data for a more complicated calculation on the client fur-
ther slows the relative performance.

3. DESIGN

DataSeries’ data model is conceptually very similar to that
used by relational databases. Logically, a DataSeries file
is composed of an ordered sequence of records, where each
record is composed from a set of fields. Each field has a field-
type (e.g., integer, string, double, boolean) and a name. A
DataSeries record is analogous to a row in a conventional
relational database. For efficiency, we group a set of rows
that have the same fields and field types into an extent.
We call the type of that extent the extent-type. Usually an
analysis runs over a collection of extents, so one or more
extents of the same type is similar to a database table.

3.1 Data format

A single DataSeries file comprises one or more extents (po-
tentially with different extent-types), a header and extent-
type extent at the beginning of the file, and an index extent
and trailer at the end of the file. The header on a DataSeries
file contains the DataSeries file version, and check values
that enable the reader to determine the endianness encod-
ings of the data types. DataSeries files are always written
out using the native formats of the writing system. This
typically minimizes byte-swapping overheads, as the archi-
tecture reading the files is almost always the same as the
architecture writing the files. The library transparently con-
verts in the rare cases this is not true, and DataSeries files
can be explicitly “repacked” if desired.

The extent-type extent contains records with a single string-
valued field, each of which contains an XML specification
that defines the extent-types of all the other extents in the
file. We chose to use XML as we saw no point in creat-
ing a new grammar to represent this information, as it is
flexible (for instance, it easily allows the addition of options
describing fields) and allows embedded comments.

The trailer consists of the offset and size (after compression)
of the index extent. The offset is used to read the index
extent, which has two fields, an extent-type and an offset,
to allow direct access to extents of a single type. Storing
the index and trailer at the end of the file enable efficient
writing, since writing applications will often not know the
final extent sizes a priori, so space for the index cannot be
allocated until after the extents have been written.

Each extent consists of a header, followed by the fixed-sized
fields and separately the variable-sized data. A reference to
the variable-sized data from the fixed-size fields allows for
variable-sized fields. This separation allows for direct access
to fixed-sized fields since they will be at a known offset, and
one indirection to get at the variable-sized data. Both fixed-
and variable-sized data may be compressed, using any one of
a number of standard compression algorithms [2, 10, 17, 18].
The extent header contains metadata about the data in the
extent, such as the compressed sizes of the fixed and variable
data, the number of records in the extent, the uncompressed
size of the variable-length data, the compression mode, the
extent-type of the extent, and checksums of the extent be-
fore and after compression to guard against hardware and
software errors. Programs usually disable checksum valida-
tion during extent reading to improve performance at the
cost of reduced integrity.

The extent format is designed for efficient access. Values are
packed so that once an extent is read into memory, an anal-
ysis can iterate over the rows simply by increasing a single
counter, as if for an array containing structures. Individ-
ual values are accessed by an offset from that counter and a
C++ cast operation.

As we initially built DataSeries prototypes, we realized the
need to add options that control various aspects of the field
and extent descriptions in order to meet the storage and
access efficiency and flexibility properties. While space pre-
cludes a full description (see [5]), we describe some of the
more significant below:

e nullable fields: there are many instances when a field
value may or may not be present, and we found it
useful to be able to indicate that a given value is null.
This option is implemented by generating a hidden
boolean column that determines if the value is null.

e double scale: often, the full 53-bit precision of a dou-
ble is not needed. Hence, it is possible to get much bet-
ter compression by zeroing unimportant lower-order
bits by scaling and rounding. This option lets the user
specify a specific scale factor for the values stored.

e relative packing: specifies that a given field be packed
relative to another, using delta encoding. This option
is useful for timestamps and index values that may be
large, but are small relative to each other. This enables
fewer bits to be used to store a given value.

e unique packing: ensures that every string (arbitrary-
length binary data) field is stored only once. If a data
set contains many repeated values, this option can sig-
nificantly increase the compression ratio, as compres-
sion algorithms only partially remove duplicate data.

e versioning: since our format is archival, we expect
changes in the fields used in a data set over time. To
handle these changes we introduced a version number
associated with a type. A program compatible with
version n.m of the format will operate properly on any
file with version n.m’,m’ >= m. Programs can also
detect the version number and adapt appropriately.

One addition we tried, and later rejected, was that of extend-
ing a double field’s precision by allowing the specification of
a base value. This was introduced when we realized that
storing microsecond precision time values, using the UNIX
epoch (00:00:00 UTC on January 1, 1970), was not possi-
ble with a single double. We added an option to specify a
base value for the double fields, and then stored the actual
value relative to that base value. Unfortunately, experience
showed that this option was less useful than hoped for. It
proved difficult and confusing for those developing analyses
to deal with, particularly in the case where multiple files,
each with different bases, were being used. Arithmetic on
values of this type was complicated and inefficient. Ulti-
mately, we deprecated this option in favor of other time
representations, dependent on the domain.

We have now chosen to explicitly represent the units and
the epoch for time values. The units are chosen based on
the original precision, e.g., nanoseconds for NFS attribute
values, or microseconds for pcap [16] trace files. We then
use a 64-bit integer to store the time value, and have a spe-
cial field that can translate in and out of the raw units from
input formats such as a double, or a (second, nanosecond)
pair. Analyses are written to operate over the “raw” time
format, and then they use the field to convert to more nor-
mal formats for printing. If the analysis needs to calculate
windows, it can convert a normal format to a “raw” format.
For example to calculate mean bytes per 30 second window,
an analysis would first convert 30 seconds into the raw for-
mat, then accumulate values for that interval, output the
mean and reset the statistic. The use of units and epoch
also allows us to print out time values in a nicer human
readable form regardless of the input type. To deal with
older files that are missing units and epoch, we added the
ability to specify units and epochs based on the extent type,
extent version and field names.

If there is no natural unit for a set of traces, for example
because they have cycle counter times, then we recommend
units of 2732 seconds. This choice allows for the maximum
precision possible when providing the same range as a UNIX
time value since the UNIX time value uses 32 bits to repre-
sent the seconds. We expect at some point to need to move
to a 128 bit fixed or floating point representation to deal with
the continually increasing range of times for trace data and
the increasing precision of the clocks measuring the times.
Theoretically, the maximum required bits would be around
200 since that would be sufficient to represent all times for
the age of the universe using the Planck time granularity.

3.2 Programming model

Four general functionalities are supported by DataSeries:
reading a DataSeries file, analyzing the data in a DataSeries
file, writing a DataSeries file, and writing an alternative out-

put format (e.g., CSV). These functionalities meet all of the
typical needs for users of structured serial data, and thus
facilitate the usability (property 5) of DataSeries.

There are two key concepts in the C++4 API provided by
DataSeries. The first is that of an FExtentSeries, which is
an iterator over the rows in at least one extent. Iterators in
DataSeries are similar to iterators in relational databases [8],
but they typically operate in bulk over an entire extent
in a single pass to improve access efficiency. Iterators in
DataSeries are also not required to operate over extents of
identical type, instead an iterator specifies its compatibility
for types. Normally compatibility is exact type compatibil-
ity, but it can also be loose, which means that the types are
compatible if all the fields can be found. The second key
concept is that of a module, which accepts a series of ex-
tents, processes them and passes them to downstream mod-
ules. Similar to River [1], modules can have multiple inputs
if they are joining together two different series. The abil-
ity to add functionality in a modular fashion enhances the
flexibility (property 3) of DataSeries.

Analysis programs generally have a main program that builds
a sequence of modules to perform multiple analyses in a sin-
gle pass over the data. Each module processes an extent at
a time, and iterates over each of the rows in the extent. For
easier usability, a row analysis module can be used that will
call a processRow() function on each row. The dstypes2cxx
program will automatically generate the boilerplate needed
for a module to be used as a row analysis module. For
efficiency reasons, the transfer of extents between modules
is a transfer of ownership, i.e., the module that returns an
extent must not continue to access it. We are considering
relaxing this constraint in the future to allow multiple mod-
ules to read-share a single extent at the same time so that
we can increase the parallelism for analysis without increas-
ing memory requirements. DataSeries also provides modules
which exploit parallelism in operations, such as decompress-
ing or compressing and writing extents to disk in parallel,
to increase the access efficiency on multi-core systems. This
improvement is very important for compression, which is
usually slow, but can also be important for simple analyses
that run faster than a single core can decompress.

The DataSeries source distribution contains numerous other
built-in general modules, for example, some that convert ex-
tents to text, and others that perform simple versions of the
SQL select/group-by statement. We also have converters
from various input formats (pcap, log file, SRT [25]) into
a DataSeries representation. Last, there are type-specific
analyses for converted NFS, LSF batch jobs [22] and logi-
cal/physical disk volume traces. More detailed information
on these modules and programming examples is available
in [5] and the source distribution.

4. PERFORMANCE RESULTS

In this section we provide examples to illustrate quantita-
tively the effectiveness of DataSeries. Section 4.1 describes
how we have used DataSeries to store and analyze a large
data set on a modest system. Section 4.2 demonstrates the
flexibility provided by DataSeries for selecting between stor-
age and access efficiency needs. Section 4.3 provides a case
study which illustrates both the reusability of DataSeries

and its access efficiency compared to existing work. Addi-
tional examples and comparisons can be found in [5].

4.1 Scalability

The largest data set we have is a trace of NFS traffic to
and from busy enterprise file servers. The primary extent
type in this data is the common records type which stores
information about each of the 200 billion request and reply
messages. We have secondary tables that store information
about each packet captured, as well as information on NFS
operations like read and write requests and mount requests.
The total data set is about 6.3TiB compressed with gzip.

As a demonstration of the real-life performance of DataSeries,
consider the following example. Utilizing our NFS traces, we
calculated a cube [9] over the common data in NFS opera-
tions. Using a machine with two dual-core 2.4 GHz CPUs,
we found the analysis ran at 2.11 Mrows/s for user time, 1.77
Mrows/s for total CPU time, and 3.32 Mrows/s for elapsed
time. Analysis over only the larger data sets (>100 Mrows)
got somewhat better (3.55 Mrows/s) wall clock time because
the startup and shutdown overhead are more amortized and
prefetching had more time to take effect.

4.2 Examining storage and access efficiency
We have performed extensive experiments on the effect of
compression on analysis performance [5]. We summarize
the results on storage efficiency below:

e For archival storage, or preparation for network distri-
bution, bzip2 [2] compression with large extents (16—
64MB) makes the most sense. Keeping the size at most
64MB allows for some parallelism during compression,
and later decompression, but extracts almost all of the
potential compression available. If gzip [10] compres-
sion is enabled then it will automatically be used when
it achieves better compression than bzip2.

e For analyses with sufficient disk bandwidth, lzo [18§]
with small extents (96-128KB) gets the maximum per-
formance. The optimal extent size is somewhat below
the L2 cache size as there needs to be sufficient cache
space to hold the entire uncompressed extent, some of
the compressed data while it is uncompressed, and any
additional program state.

e With more constrained disk bandwidth, gzip with small
extents is better than 1zo as it trades a 10-30% reduc-
tion in decompression rate for a 10-40% improvement
in compression; if disk bandwidth is a bottleneck then
the improved compression is more valuable. The addi-
tional compression from longer extents is minimal, and
bzip2, while compressing much faster, decompresses
so much slower that only a highly imbalanced system
would benefit from bzip2 decompression.

e For online compression of data, lzf [17] with small
to moderate-sized extents is best, as it compresses at
roughly 100MB/s (about 10x faster than gzip at level
1). If the data has many unique strings, the unique
packing option is very fast and improves compression
when combined with moderate-sized extents. Other-
wise, staying within the L2 cache remains a priority.

Access efficiency is more difficult to measure. Our most ex-
tensive analysis of this occurred using the 1998 World Cup
traces [13]. These traces came with a sample analysis pro-
gram that calculated operations/server, minimum and max-
imum object IDs, and other simple statistics. Since the raw
format of the data was a binary structure, we expected that
the DataSeries version would have a faster wall clock time
(because of parallel decompression), but a slower CPU time.
We were surprised to learn that we actually used less CPU
time. The reason was a combination of fread inefficiency
when used one record at a time, and a slow byte-swap rou-
tine used by the sample program. DataSeries avoids the
former by doing bulk processing and the latter by switch-
ing the ordering to the native order when a file is written
or repacked. Further investigation indicated that DataSeries
was also executing unnecessary instructions because our field
accessors supported nullable fields, but this happened to
be unused in this format. We added C++ template-based
fields, but this did not reduce the penalty for access to the
data because the g++-3.3 compiler used with RHELA4 is
fairly poor at optimizing templated code. However, with the
g++-4.3 compiler, the penalty is removed and the analysis
code uses the same number of instructions on both sides.

The following experience highlights the tradeoff between gen-
eral and specific code. Using HP-UX block I/O traces, we
examined the performance difference for fields that handle
nullable and non-nullable data. We compared the same anal-
ysis using special-case fields, templated fields, basic fields,
general fields, and a general-purpose program. We imple-
mented special-cases of the fields to work around the com-
piler difficulties, and found that templated fields were 2%
slower than the special case fields, the basic fields were an-
other 1% slower, and the general fields were yet another
1% slower. The minor performance differences were because
each field was used exactly once, so most of the cost was
in the memory access to the field, which was usually not in
cache as a different thread performed decompression. Con-
versely, the fully general program was substantially slower
(20%) as it determines the expression at runtime, and is ca-
pable of grouping on any field type, while the specific-case
programs can only group by 32-bit integer fields.

We expect that if we added prefetching code to the row
analysis module we would see a larger difference in the per-
formance. We measured a roughly 10x difference in access
time through the basic and the special-case fields when us-
ing a program that repeatedly accessed the same field and
just accumulated the sum. We believe extra branch instruc-
tions are interfering with the CPU’s ability to fully pipeline
the code with the basic fields while the special-case fields
reduce the access down to a single instruction which can be
combined with the add instruction. The general fields on
in-cache data are about 2.5x slower than the basic fields,
showing the overhead of the additional virtual function call.

4.3 A case study

In an effort to experiment with using DataSeries to represent
and analyze traces generated by other people, we converted
the NFS traces used by Ellard et al. [6] into DataSeries.
These “Ellard traces” were originally stored as compressed
text files, one record per line. The first part of each line is a
series of fixed fields, followed by a set of key-value pairs, and

finally some debugging information. A scanning program
read trace files and outputs summary information.

Our evaluation consisted of two parts. First, we wrote a
reversible conversion program to verify that we were prop-
erly preserving all of the information. We found that the
DataSeries files were on average 0.77x the size of the origi-
nal files when both were compressed using gzip. The com-
pression improvements came as a result of the unique string
packing, delta encoding, and the elimination of the key fields
through the use of fixed field names and representing null
fields in a single bit before generic compression.

Second, we wrote an analysis program that implemented the
first three examples in the README that came with the
Ellard tools. These examples were all variants of a “select
count(*) group by field” query. Table 1 presents our exper-
imental results (using machines with two 2.4GHz dual-core
CPUs, details in [5]). The first two rows of Table 1 show
that the compression algorithm has little effect on the per-
formance of the Ellard tool. With gzip, our analysis program
ran about 76x faster on those data files (row 5). With lzo
compression, which decompresses more quickly than gzip,
our analysis program ran about 107x faster (row 6), in ex-
change for slightly larger (1.14x) data files. This also illus-
trates how DataSeries can be optimized for a given purpose
(e.g., greater compression for archival storage versus faster
decompression for more-efficient analysis).

The least speedup with our tool occurred with the bzip2
compression algorithm and large extent size (row 9). Al-
though this configuration was still 20x faster than the Ellard
tool, it is noticeably slower than our other configurations.
The substantial increase in system time for bzip2 (11.82s
with 16MB extents versus 1.14s for 1zo with 64KB extents)
occurs because glibe calls mmap/munmap for all extent allo-
cations. This results in a substantial amount of page zeroing
in the kernel, and hence a large increase in the system time.

4.4 Other results

We have performed a number of other experiments that
demonstrate DataSeries’ benefits. Due to space considera-
tions, we will describe them only briefly. One study of data
compression showed that for a relatively large disk I/O trace,
DataSeries provides superior disk space utilization; stored
in DataSeries, the trace consumed 1.9GB of disk space, but
14GB in CSV format and 8.5GB as a MySQL database.
Using the same trace in a series of analyses showed that
DataSeries delivers results 6-7x faster than both formats.

Our results and experience with DataSeries have also illus-
trated some of the tradeoffs between generality and perfor-
mance. We have found that by adding various type-specific
functionality, we can significantly improve performance. For
instance, for the analysis of the World Cup traces, we added
new accessors that did not check for nullable fields, and
found that we decreased CPU time by 8%. Similarly, we
found that we could “group” multiple analyses into a single
routine (therefore needing to pass over the data only once),
which can decrease the overall time taken by the same fac-
tor. This is especially effective when compared to the time
taken in a more general solution (e.g., SQL queries) which
cannot be combined in this manner. The primary tradeoff

Table 1: Detailed performance comparison for Ellard and DataSeries analysis programs.

compression | extent mean CPU time (s) CPU mean wall | wall time

row tool algorithm size user | system total | speedup | time (s) speedup
1 Ellard gzip 537.58 7.80 | 545.38 1.000x 545.71 1.000x
2 Ellard bzip2 638.48 12.68 | 651.16 0.836x 571.49 0.955x
3 || DataSeries gzip | 64KB | 21.45 1.14 | 2259 | 24.147x 5.81 93.945x
4 || DataSeries gzip | 128KB 23.30 1.19 24.49 | 22.268x 6.30 86.604x
5 || DataSeries gzip | 512KB | 22.91 3.62 | 26.53 | 20.557x 7.16 76.186x
6 || DataSeries lzo | 64KB | 18.71 1.14 | 19.85 | 27.472x 5.10 | 106.897x
7 || DataSeries Izo | 128KB 21.15 1.10 22.25 | 24.514x 5.74 95.022x
8 || DataSeries lzo | 512KB | 24.07 4.07 | 28.14 | 19.382x 7.40 73.762x
9 || DataSeries bzip2 | 16MB | 94.38 11.82 | 106.20 5.136x 27.66 19.732x

is the added complexity, effort and time involved in writing
and using such type-specific accessors, which may not be
worthwhile for one-shot analyses.

5. CONCLUSIONS

We have described DataSeries, a data format that enables
the efficient and flexible storage and analysis of structured
serial data. This type of data is used in numerous applica-
tions in all areas of computing and science. We have iden-
tified the properties required for a system that processes
such data, and shown through a series of experiments and
comparisons to other systems that DataSeries satisfies these
properties. In particular, DataSeries offers significant per-
formance and storage efficiency benefits.

We have also described the various lessons learned while de-
signing and implementing DataSeries. A general theme from
this has been that, when dealing with very large quantities
of structured serial data, there are significant performance,
efficiency and reliability gains to be made by giving up a rel-
atively small amount of generality and flexibility. Overall,
we believe that DataSeries should be considered for use in
any application that processes structured serial data.

6. REFERENCES
[1] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E.

Culler, J. M. Hellerstein, D. Patterson, and K. Yelick.

Cluster I/O with River: Making the fast case common. In

Proceedings of the Sizth Workshop on Input/Output in

Parallel and Distributed Systems, pages 10-22, Atlanta,

GA, 1999. ACM Press.

bzip2 compression library, http://www.bzip.org/, accessed

September 2007.

[3] Z. Chen, Y. Zhang, H. Scott, and B. Schiefer. Empirical
evaluation of multi-level buffer cache collaboration for
storage systems. In ACM SIGMETRICS, pages 145-156,
June 2005.

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and

S. Tuecke. The data grid: Towards an architecture for the

distributed management and analysis of large scientific

datasets. Journal of Network and Computer Applications,

23(3):187-200, July 2000.

http://tesla.hpl.hp.com/opensource/DataSeries-tr-

snapshot.pdf.

D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive

NF'S tracing of email and research workloads. In

Proceedings of the 2nd USENIX Conference on File and

Storage Technologies (FAST 2003), pages 203-216, San

Francisco, CA, 2003. USENIX.

[7] A. Ganapathi and D. Patterson. Crash data collection: a
windows case study. In Dependable Systems and Networks,

2

5

6

pages 280-285, July 2005.

G. Graefe. Query evaluation techniques for large databases.

ACM Comput. Surv., 25(2):73-169, 1993.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,

D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.

Data cube: A relational aggregation operator generalizing

group-by, cross-tab, and sub-totals. In Data Mining and

Knowledge Discover, volume 1, pages 29-53, 1997.

[10] gzip compression library, http://www.gzip.org/, accessed
September 2007.

[11] E. Hoke, J. Sun, and C. Faloutsos. Intemon: Intelligent
system monitoring on large clusters. In VLDB, pages
1239-1242, September 2006.

[12] http://iotta.snia.org/, accesed July 2008.

[13] http://ita.ee.lbl.gov/html/contrib/WorldCup.html,
accessed July 2008.

[14] M. Ji, A. Veitch, and J. Wilkes. Seneca: remote mirroring
done write. In USENIX Technical Conference, pages
253-268, June 2003.

[15] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On
the self-similar nature of ethernet traffic. IEEE/ACM
Transactions on Networking, 2(1):1-15, February 1994.

[16] http://www.tcpdump.org/, accessed September 2007.

[17] lzf compression library,
http://www.goof.com/pcg/marc/liblzf.html, accessed
September 2007.

[18] lzo compression library,
http://www.oberhumer.com/opensource/lzo/, accessed
September 2007.

[19] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and
B. Calder. Automatic logging of operating system effects to
guide application-level architecture simulation. In ACM
SIGMETRICS, pages 216—227, June 2006.

[20] R. Netzer. Optimal tracing and replay for debugging
shared-memory parallel programs. SIGPLAN Notices,
28(12):1-11, 1993.

[21] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
trends in a large disk drive population. In FAST, pages
17-28, February 2007.

[22] Platform Load Sharing Facility,
http://www.platform.com/Products/Platform.
LSF.Family/, accessed September 2007.

[23] B. Schroeder and G. A. Gibson. Disk failures in the real
world: what does an MTTF of 1,000,000 hours mean to
you. In FAST, pages 1-16, February 2007.

[24] S. Sohoni, R. Min, Z. Xu, and Y. Hu. A study of memory
system performance of multimedia applications. In ACM
SIGMETRICS, pages 206-215, June 2001.

[25] http://tesla.hpl.hp.com/public_software/; SRT and trace
data sections; accessed September 2007.

[26] M. Uysal, A. Merchant, and G. Alvarez. Using
MEMS-based storage in disk arrays. In Conference on File
and Storage Technologies (FAST), pages 89-102, April
2003.

8

9

