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Abstract: A continuous space of auction mechanisms is explored
via a genetic algorithm, with ZIP artificial trading agents oper-
ating in the evolved markets. The space of possible auction-types
includes the Continuous Double Auction and also two purely
one-sided mechanisms, yet hybrids of these auction types can be
found to give the most desirable market dynamics.
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I. INTRODUCTION

ZIP (Zero-Intelligence-Plus) artificial trading agents, intro-
duced in 1997 [1], are software agents (or “robots”) that use
simple machine learning techniques to adapt to operating as
buyers or sellers in open-outcry auction-market environments
similar to those used in the experimental economics work of
Smith (e.g. [2]). ZIP traders were originally developed as a
solution to the pathological failures of Gode & Sunder’s ZI
(Zero-Intelligence) traders [3], but recent work by Das et al.
at IBM [4] has shown that ZIP traders (unlike ZI traders)
consistently out-perform human traders in human-against-
robot experimental economics marketplaces.

The operation of ZIP traders has been successfully demon-
strated in experimental versions of continuous double auction
(CDA) markets similar to those found in the international
markets for commodities, equities, capital, and derivatives;
and in posted-offer auction markets similar to those seen in
domestic high-street retail outlets [1,2]. In any such market,
there are a number of parameters that govern the adaptation
and trading processes of the ZIP traders. In the original for-
mulation [1], the values of these parameters were set by hand,
using “educated guesses”. However, at CIFEr’98, the first
results were presented from using a standard genetic algo-
rithm (GA) to automatically optimise these parameter values
(5], thereby eliminating the need for skilled human input in
deciding the values of the parameters; more details of these
results were subsequently given in [6].

In all previous work using artificial traders, ZIP or otherwise,
the market mechanism (i.e., the type of auction the traders are
interacting within) has been fixed in advance. Well-known
market mechanisms from human economic affairs ~include:
the English auction (where sellers stay silent and buyers
quote increasing bid-prices), the Dutch Flower auction
(where buyers stay silent and sellers quote decreasing offer-
prices); the Vickery or second-price sealed-bid auction
(where sealed bids are submitted by buyers, and the highest
bidder is allowed to buy, but at the price of the second-
highest bid -- game-theoretic analysis demonstrates that this
curious mechanism encourages honesty and is robust to at-
tack by dishonest means); and the CDA (where sellers an-

nounce decreasing offer prices while simultaneously and
asynchronously the buyers announce increasing bid prices,
with the sellers being free to accept any buyer’s bid at any
time and the buyers being free to accept any seller’s offer at
any time).

In this paper, the first results are presented from experiments
where a GA optimises not only the parameter values for the
trading agents, but also the style of market mechanisi in
which the traders operate. To do this, a space of possible
market mechanisms has been created for evolutionary explo-
ration. The space includes the CDA and also one-sided auc-
tions similar (but not actually identical to) the English Auc-
tion (EA) and the Dutch Flower Auction (DFA); but signifi-
cantly this space is continuously variable, allowing for any of
an infinite number of peculiar hybrids of these auction types
to be evolved, which have no known correlate in naturally
occurring market mechanisms. While there is nothing to pre-
vent the GA from settling on solutions that correspond to the
known CDA auction type or the EA-like and DFA-like one-
sided mechanisms, we repeatedly find that hybrid solutions
are found to lead to the most desirable market dynamics. Al-
though the hybrid market mechanisms could easily be im-
plemented in online electronic marketplaces, they have not
been designed by humans: rather they are the product of evo-
lutionary search through a continuous space of possible auc-
tion-types. Thus, the results in this paper are the first demon-
stration that radically new market mechanisms for artificial
traders may be designed by automatic means.

Section II gives an overview of our experimental methods,
including a description of the continuously-variable space of
auction types. In Section III we present our results, which are
discussed in Section IV. Note that, in the descriptions that
follow, we use v=U[x,y] to denote a random real value v gen-
erated from a uniform distribution over the range [x,y].

II. METHODS
A. Zero-Intelligence Plus (ZIP) Traders

ZIP traders are described fully in [1], which includes sample
source-code in the C programming language. For the pur-
poses of this paper a high-level description of the key pa-
rameters is sufficient. Each ZIP trader i is given a private
(secret) limit-price, A;, which for a seller is the price below
which it must not sell and for a buyer is the price above
which it must not buy. If a ZIP trader completes a transaction
at its A, price then it generates zero utility (“profit” for the
sellers or “saving” for the buyers). For this reason, each ZIP
trader i maintains a time-varying margin z4(7) and generates



quote-prices p;(?) at time ¢ according to p;(t)=A; (1+u(t)) for
sellers and p;(1)=A4; (1-u(t)) for buyers. The “aim” of traders
is to maximise their utility over all trades, where utility is the
difference between the accepted quote-price and the trader’s
A; value. Trader i is given an initial value z(0) (i.e., 1(?) for
t=0) which is subsequently adapted over time using a simple
machine learning technique known as the Widrow-Hoff rule
which is also used in back-propagation neural networks. This
rule has a “learning rate” parameter §; that governs the speed
of convergence between trader i’s quoted price p,(2) and the
trader’s idealised “target” price 7(?). When calculating 7(?),
traders introduce a small random absolute perturbation gener-
ated from U[0,c,/, and also a small random relative perturba-
tion generated from Uf1-c, ] (buyers) or U[1,1+c,] (sellers)
here ¢, and c, are system constants. To smooth over noise in
the learning system, there is an additional “momentum” pa-
rameter ¥ for each trader (such momentum terms are also
commonly used in back-propagation neural networks).

Thus, adaptation in each ZIP trader i has the following pa-
rameters: initial margin 24(0); learning rate £3; and momen-
tum term ¥. In an entire market populated by ZIP traders,
these three parameters are assigned to each trader from uni-
form random distributions each of which is defined via “min”
and “delta” values in the following fashion: 14(0)= Ui,
Homin* 118); Bi=U(Bomin, Pmin* Pa); a08 Y =U(Ymin Ymin* V).
Hence, to initialise an entire ZIP-trader market it is necessary
to specify values for the six market-initialisation parameters
Hnin, M4, Pwin, Ba, Ymin, and y4; and also for the two system con-
stants ¢, and ¢,. And so it can be seen that any set of initiali-
sation parameters for a ZIP-trader market exists within an
eight-dimensional real space. Vectors in this 8-space can be
considered as genotypes, and from an initial population of
such genotypes it is possible to allow a GA to find new geno-
type vectors that best satisfy an appropriate evaluation func-
tion. This is exactly the process that was introduced at
CIFEr’98 [5,6], and that is described further below.

When monitoring events in a real auction, as more precision
is used to record the time of events, so the likelihood of any
two events occurring at exactly the same time is diminished.
For example, if two bid-quotes made at five minutes past nine
are both recorded as occurring at 09:05, then they appear in
the record as simultaneous; but a more accurate clock would
have been able to reveal that the first bid was made at
09:05:01.64 and the second at 09:05:01.98. Even if two
events occur absolutely at the same time, very often some
random process (e.g. what direction the auctioneer is looking
in) acts to break the simultaneity.

Thus, we may simulate real marketplaces (and implement
electronic marketplaces) using techniques where each signifi-
cant event always occurs at a unique time. We may choose to
represent these by real high-precision times, or we may ab-
stract away from precise time-keeping by dividing time (pos-
sibly irregularly) into discrete slices, numbered sequentially,
where one significant event is known to occur in each slice.

In the ZIP-trader markets explored here, we use such a time-
slicing approach. In each time-slice, the atomic “significant
event” is one quote being issued by one trader and the other
traders then responding either by ignoring the quote or by one
of the traders accepting the quote. (NB in [4] a continuous-
time formulation of the ZIP-trader algorithm was used).

In the markets described here and in [1,5,6], on each time-
slice a ZIP trader i is chosen at random from those currently
able to quote (i.e. those who hold appropriate stock or cur-
rency), and trader i’s quote price py(?) then becomes the “cur-
rent quote” g(?) for time 7. Next, all traders j on the contraside
(i.e. all buyers j if i is a seller, or all sellers j if i is a buyer)
compare g(?) to their own current quote price p;(?) and if the
quotes cross (i.e. if p;(t)<=q(t) for sellers, or if p;()>=q(t) for
buyers) then the trader j is able to accept the quote. If more
than one trader is able to accept, one is chosen at random to
make the transaction. If no traders are able to accept, the
quote is regarded as “ignored”. Once the trade is either ac-
cepted or ignored, the traders update their (?) values using
the learning algorithm outlined above, and the current time-
slice ends. This process repeats for each time-slice in a trad-
ing period, with occasional injections of fresh currency and
stock, or redistribution of 4; limit prices, until a maximum
number of time-slices have completed.

B. Space of Possible Auctions

Now consider the case where we implement a ZIP-trader con-
tinuous double auction (CDA) market. In any one time-slice
in a CDA ceither a buyer or a seller may quote, and in the defi-
nition of a CDA a quote is equally likely from each side.

One way of implementing a CDA is, at the start of each time-
slice, to generate a random binary variable to determine
whether the quote will come from a buyer or a seller, and
then to randomly choose one individual as the quoter from
whichever side the binary value points to. Here, as in previ-
ous ZIP work [1][5][6] the random binary variable is always
independently and identically distributed over all time-slices.

Let Q=>b denote the event that a buyer quotes on any one
time-slice and let O=s denote the event that a seller quotes,
then for the CDA we can write Pr(Q=s)=0.5 and note that
because Pr(Q=>b)=1.0-Pr(Q=s) it is only necessary to specify
Pr(Q=s), which we will abbreviate to Q, hereafter. Note
additionally that in an English Auction (EA) we have Q,=0.0,
and in the Dutch Flower Auction (DFA) we have 0,=1.0.
Thus, there are at least three values of Q, (0.0, 0.5, and 1.0)
that correspond to three types of auction familiar from centu-
ries of human economic affairs.

However, although the ZIP-trader case of 0,=0.5 is indeed a
good approximation to the CDA, the fact that any ZIP trader j
will accept a quote whenever g(#) and p,(7) cross means that
the one-sided extreme cases Q,=0.0 and Q,=1.0 are not exact
analogues of the EA and DFA. Nevertheless, consider the
implications of considering values of O, of 0.0, 0.5, and 1.0
not as three distinct market mechanisms, but rather as three



points on a continuum. How do we interpret, for example,
Q.=0.1? Certainly there is a straightforward implementation:
on the average, for every nine quotes by buyers, there will be
one quote from a seller. Yet the history of human economic
affairs offers no examples (as far as I am aware) of such mar-
kets: why would anyone suggest such a bizarre way of oper-
ating, and who would go to the trouble of arbitrating (i.c.,
acting as an auctioneer for) such a mechanism? Nevertheless,
there is no a priori reason to argue that the three known
points on this Q, continuum are the only loci of useful auc-
tion types. Maybe there are circumstances in which values
such as Q.=0.712803 (say) are preferred. Given the infinite
nature of a real continuum, it seems appealing to use an
automatic exploration process, such as the GA, to identify
useful values of Q..

Thus, we add a ninth dimension to our search space, and the
genotype in our GA is now the eight real values governing
the ZIP-trader initialisation, plus a real value for Q.

C. The Genetic Algorithm

A simple genetic algorithm was used. In each experiment, we
used a population of size 30 and allowed evolution to pro-
gress for 1000 generations. In each generation, all individuals
were evaluated and assigned a fitness value; and the next
generation’s population was then generated via mutation and
crossover on parents identified using rank-based selection.
Elitism (where an unadulterated version of the fittest individ-
ual from each generation is copied into each successive gen-
eration) was also used.

The genome of each individual was simply a vector of nine
real values. In each experiment, the initial random population
was created by generating random values from U/0, /] for
each locus on each individual’s genotype. Crossover points
were between the real values, and crossover was governed by
a Poisson random process with an average of between one
and two crosses per reproduction event. Mutation was im-
plemented by adding random values from Uf-m(g), +m(g)]
where m(g) is the mutation limit at generation g (starting the
count at g=0). Mutation was applied to each locus in each
genotype on each individual generated from a reproduction
event, but the mutation limit m(g) was gradually reduced via
an exponential-decay annealing function of the form:
logio(m(g)= - ( logio (mJ)~(g/(ng-1)) log o(m,/m.)) where n is
the number of generations (here n,= 1000) and m, is the
“start” mutation limit (i.e., for m(0)) and m, is the “end” mu-
tation limit (i.e., for m(n,-1)). In all the experiments reported
here, m,=0.05 and m,=0.0005.

If ever mutation caused the value at a locus to fall outside
[0.0,1.0] it was simply clipped to stay within that range. This
clip-to-fit approach to dealing with out-of-range mutations
has been shown [7] to bias evolution toward extreme values
(i.e. the upper and lower bounds of the clipping), and so Q,
values of 0.0 or 1.0 are, if anything, more likely than values
within those bounds. Moreover, initial and mutated genome

values of u,, f4, and y, were clipped where necessary to sat-
isfy the constraints (L, +tsy)<=1.0, (Buint f<1.0, &
(7min+74)<l'o'

The fitness of genotypes was evaluated using the methods
described in [5,6]. One trial of a particular genome was per-
formed by initialising a ZIP-trader market from the genome,
and then allowing the ZIP traders to operate within the mar-
ket for a fixed number of trading periods, with allocations of
stock and currency being replenished between trading peri-
ods. Each trading period ended either when no more trades
are possible, or a maximum number of time-slices is reached.

During each trading period, Smith’s o measure [2] of devia-
tion of transaction prices from the theoretical market equilib-
rium price was monitored, and a front-weighted average was
calculated across the trading periods in the trial. As the out-
come of any one such trial is influenced by stochasticity in
the system, the final fitness value for an individual was calcu-
lated as the arithmetic mean of 100 such trials. Note that as
minimal deviation of transaction prices from the theoretical
equilibrium price is desirable, lower scores are better: we are
attempting here to minimise the fitness value.

Thus, in any one experiment, there are 30 individuals evalu-
ated over 1000 generations where each evaluation involves
calculating the mean of 100 trials, so a total of 3 million mar-
ket trials would be executed in any one GA experiment (on a
Hewlett-Packard Kayak XU800 workstation this would take
approximately 5 hours). Nevertheless, the progress of each
GA experiment is itself affected by stochasticity (e.g. the GA
may become trapped on local minima) and so to generate
reliable results each experiment was repeated 50 times (i.c.,
150 million market trials, taking approximately 10.5 days).
Results from 8 such 50-repeat experiments are shown below.

III. RESULTS

Figure 1 shows a supply and demand schedule for a market-
place with 11 buyers and 11 sellers, each empowered to
buy/sell one unit of commodity: this market is referred to as
Market 1. Figure 2 shows results from 50 repetitions of an
experiment where the GA explores the 9-dimensional space:
for each experiment, the fitness of the best (elite) member of
the population is recorded. The results are clearly trimodal.
Of the 50 repetitions, in S the elite ends up on fitness minima
of about 3.2, while the other two elite fitness modes are on
less-good minima of around 4.0 and 4.75. For comparison,
Figure 3 shows the results of 50 repeats of the same experi-
ment, where the value of Q, was not evolved, being instead
clamped at 0.5: i.e. the CDA value. The CDA mechanism is
often applauded as an auction mechanism in which equilibra-
tion is rapid and stable, so we could expect the best fitness
from using this market type. With the fixed CDA auction
style, an average elite fitness of around 4.5 is settled on by
the majority of experiments (48 repetitions) while a small
minority (2 repetitions) settle on a less good mode of around



5.1. To ease the comparison, Figure 4 shows the data for the
best elite fitness mode from Figure 2 (evolution of market
mechanism) and the best elite fitness mode from Figure 3
(fixed CDA market mechanism) on the same graph.

Figure 5 shows a different supply and demand schedule, for
the same number of traders (cf. Fig.1), referred to as Market
2. Figure 6 shows comparison of the mean scores from the
best modes of S0 repetitions of an evolving-market (EM) ex-
periment and 50 repetitions of a CDA fixed-market (FM)
experiment (cf. Fig. 4) for Market 2. Similarly, Figure 7
shows a third supply and demand schedule, again for the
same number of traders (cf. Figs 1 & 5), this being Market 3.
Figure 8 shows comparison of the mean scores from the best
modes of 50 repetitions of an EM experiment and 50 repeti-

tions of a CDA-FM experiment for Market 3 (cf. Figs 4 & 6).

It is clear from Figures 4, 6, & 8, that in each case the evolv-
ing-market experiments are significantly better than the CDA
fixed-market experiments. Figures 9, 10, & 11 show the evo-
lutionary trajectory of the mean evolved value of Q; in each
of these three experiments.
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Figure 2: Elite fitness values from 50 repetitions of the 1000-generation
evolving-market (EM) experiment operating with Market 1. Lower values
are better solutions (less deviation from equilibrium). Results are trimodal,
with five of the repetitions (10% ) settling to values around 3.2.

Figure 3: Elite fitness values from 50 repetitions of a 1000-generation ex-
periment operating with Market 1, but with a fixed-market (FM) CDA
mechanism with Q,=0.5: bimodal results, with 96% of the repetitions settling
to fitness values around 4.5 and the remaining 4% at around 5.2.
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Figure 4: Comparison of mean elite fitnesses in the best solution modes from
Figs. 2 and 3. For both sets of experiments, data is plotted for mean elite
fitness, plus and minus one standard deviation (s.d.). EM fitnesses settle to a
mean of approx. 3.2 with a s.d. of approx 0.02 (n=5); FM fitnesses settle to a
mean of just under 4.5 with a s.d. of approx. 0.15 (n=48).
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Figure 5: Supply and demand schedules for Market 2.
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Figure 6: Average elite fitnesses from 50 EM and 50 FM(Q,=0.5) experi-
ments for Market 2; data is plotted for mean fitness, plus and minus one s.d..
Best EM fitness mode settles to a mean of just over 2.15 with a s.d. of
approx 0.11 (n=45); FM values settle to a mean of around 3.14 with a s.d. of

approx. 0.16 (n=50).
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Figure 7: Supply and demand schedules for Market 3.
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Figure 8: Comparison of mean fitnesses in the best solution modes from 50
EM and 50 FM (Q.=0.5) experiments with Market 3; data is piotted for mean
elite fitness, plus and minus one s.d.. EM elite fitnesses settle to a mean of
just over 5.18 with a s.d. of approx 0.12 (n=50); FM elite fitnesses settle to a

mean of around 5.55 with a s.d. of approx. 0.15 (n=50).
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Figure 9: Evolutionary trajectory of mean (plus and minus one standard
deviation) value of Q, in the Market 1 EM experiments settling on the best
fitness mode (n=5): mean settles to Q, values around 0.0001 (the average

value of the mean over generations 900 to 1000 is 0.0000894).
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Figure 10: Evolutionary trajectory of mean (plus and minus one s.d.) value of
Q; in the Market 2 EM experiments settling on the best fitness mode (n=45):

mean value of Q. is approx 0.07.
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Figure 11: Evolutionary trajectory of mean (plus and minus one s.d.) value of
Q; in the Market 3 EM experiments settling on the best fitness mode (n=50):

mean value of Q; is a little under 0.16.



Notably, in only one of the three experiments does the value
of Q, settle at a clear value such as 0.0, 0.5, or 1.0: the Mar-
ket 1 results are sufficiently close to zero that we can con-
sider the outcome in Market 1 to be O,=0.0. However, in the
two other markets, the O, values settled on do not correspond
to values known from any existing market mechanisms.

Finally, Figure 12 contrasts the average S, values (i.c., the
lower bound on the traders’ learning rates) in the two sets of
Market 3 experiments. As can be seen, the values of £,;, ap-
propriate for the fixed CDA market are significantly higher
than the values found to give most fitness in the evolving-
market case. Such variations in final evolved ZIP parameter
values between the evolving-market and fixed-market cases
are common. Significant differences in evolved parameter
values can also occur between the outcomes of fixed-market
experiments where evolution adapts the ZIP parameters to the
specific market supply and demand schedules used.

8.00E-01 1
7.00E-01 - -
6.00E-01 -
5.00E-01 -
4.00E-01 -
3.00E-01 -
2.00E-01 -
1.00E-01 -
0.00E+00

1 10 100 1000

Figure 12: Evolutionary trajectory of mean (plus and minus one s.d.) values
of Bwin in the Market 3 experiments. FM (Q,=0.5) values settle on a mean of
around 0.62 while EM values settle on a mean of approx 0.4.

IV. DISCUSSION

For Market 1, the value of Q; is so close to zero that we can
consider the evolved mechanism as a one-sided auction with
rules similar to those of the English auction, except that there
are multiple sellers simultaneously active, each with different
reservation prices, and any of which can “intervene” to ac-
cept a bid at any time (rather than waiting until only one bid-
der remains).

For Markets 2 and 3, let us approximate the final mean Q,
value in Market 2 (Fig. 10) as 0.0714 and the final mean Q;
for Market 3 (Fig. 11) as 0.1666. Taking reciprocals of these
two values, we find that, despite their being an equal number
of buyers and sellers in both of these markets, the evolved
mechanism for Market 2 dictates that on average only one
quote in 14 should come from a seller; and the evolved mech-
anism for Market 3 requires that on average only one quote in
6 should come from a seller.

As far as we are aware, no human-designed markets follow
such rules, so these two mechanisms can reasonably be de-
scribed as unlike any market mechanism previously devised
by humans. Yet the fitness data for these two evolved market
mechanisms clearly demonstrate that they give less deviation
of transaction prices from the equilibrium price than the fixed
CDA design does.

However, the Q; trajectory for Market 1 (shown in Figure 9)
raises the possibility that the final evolved O, values for Mar-
kets 2 and 3 are misleading. That is: perhaps in Markets 2 and
3 a value of Q,=0.0 would give even better fitness values;
and maybe evolution never reaches this extreme value be-
cause, once the value of Q; falls below a certain threshold,
the selective pressure for further reductions is sufficiently
diminished (or masked by noise) that the value of Q, simply
drifts on a random walk in the sub-threshold zone until the
end of the experiment. If the nonzero evolved values of Q; in
Markets 2 and 3 are to be taken seriously, the possibility that
better fitness results might be obtained by fixing Q; at zero
needs to be explored.

Thus, two further sets of 50 fixed-market (FM) experiments
were conducted: one for Market 2 and one for Market 3. In
each, the value of Q; was fixed at zero for the duration of the
experiment, and all other ZIP-trader parameters were subject
to evolution as before. Individual fitness results for Market 2
are shown in Fig.13 and for Market 3 in Fig.14. The mean
values from these experiments are shown in Figs 15 and 16.

The mean fitnesses in the best solution modes from these two
sets of FM (Q,=0.0) experiments are very close to the mean
values of the best modes in the corresponding evolving-
market (EM) experiments. In Market 2 (Fig.15) the mean
final best-mode fitness value in the FM (Q,=0.0) experiments
is approximately one standard deviation lower (i.c., better)
than in the corresponding EM market (Fig.6, lower trace),
and hence we conclude that for Market 2 the EM experiments
failed to find a solution that yields statistically lower results
(i.e., better fitness) than the FM case for the fixed one-sided
mechanism of Q,=0.0. That is, the final evolved value of
Q,=~0.0714 is not significantly better than if Q,=0.0 had
been chosen a priori.

However, in Market 3, there is a more intriguing result. Here,
the mean final best-mode fitness value in the FM (Q,=0.0)
experiments is approximately one standard deviation higher
than in the corresponding EM market (Fig.8, lower trace).
Given that we have a large number of samples (i.e. around 50
repetitions in each case), it is very plausible that this is an
indication that the evolved market is significantly better than
the fixed one-sided case. To rigorously test this possibility,
we used the Wilcoxon form of the Wilcoxon-Mann-Whitney
Test [8, p.128fY.], which is preferred to Student’s ¢ test as it is
nonparametric (i.e., makes no assumption about the underly-
ing sample distributions). The null hypothesis H, is that the
final mean best-mode fitnesses in the EM and FM(Q,=0.0)
experiments are drawn from the same population, and the



alternative hypothesis /), is that the FM values are stochasti-
cally larger than the EM values (i.e., that the evolved market
gave lower fitness values, and hence better market dynam-
ics). The directional nature of H, requires a one-tailed test,
and the large N of 98 (=48+50) makes the normal approxima-
tion appropriate. The z-value for the samples is 2.8746, which
is significant at the 0.005 level, and hence we safely reject H,
and accept H; (see Appendix)

That is to say, for Market 3, the evolved value Q,=~0.1666,
which results in a hybrid CDA/one-sided market where on
average one quote in six comes from a seller, does indeed
give statistically better values than either the CDA or the pure
one-sided Q,=0.0 market mechanism. Thus, it can be con-
cluded that the evolved hybrid market mechanism is best
suited (among those considered) to giving the desired market
dynamics (i.e., minimal deviation between transaction-price
and equilibrium price) in Market 3.
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Figure 13: Elite fitness values from 50 repetitions of the 1000-generation FM
(Q:=0.0) experiment operating with Market 2. Results are bimodal, with
three of the repetitions (6% ) settling to values around 6.8, and the remaining
47 repetitions settling on a mode of approximately 2.1.
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Figure 14: Elite fitness values from 50 repetitions of the 1000-generation FM
(Q:=0.0) experiment operating with Market 3. Results are bimodal, with two
of the repetitions (4% ) settling to values around 6.4 and the remaining 48
(96%) settling on a mode of approximately 5.2.
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Figure 15: Mean elite fitnesses in the best solution mode from 50 FM
(Q:=0.0) experiments with Market 2 (cf. Fig. 13); data is plotted for mean
fitness, plus and minus one s.d.. FM fitnesses settle to a mean of around 2.08
with a s.d. of approx. 0.08 (n=47).
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Figure 16: Mean elite fitnesses in the best solution mode from 50 FM
(Q,=0.0) experiments with Market 3 (cf. Fig. 14); data is plotted for mean
fitness, plus and minus one s.d.. FM fitnesses settle to a mean of around 5.27
with a s.d. of approx. 0.12 (n=48).

V. CONCLUSION

In this paper we have demonstrated the use of an evolution-
ary search through an infinite space of possible market de-
signs that includes the CDA of Q,=0.5 and also the two pure
one-sided solutions of 0,=0.0 and Q,=1.0. A new “hybrid”
market mechanism was found to give the most desirable mar-
ket dynamics in one of the three experiments. While such
evolved market mechanisms are unlike any human-designed
mechanism, they could nevertheless readily be implemented
as online electronic marketplaces.

Future work will be directed toward formulating more so-
phisticated “genetic encodings” for richer spaces of possible
market mechanism, and in developing a firm understanding
of why and under what conditions the evolved hybrid markets
give better market dynamics than existing human-designed
mechanisms. Variations in the evolved market mechanisms
resulting from altering the fitness function will also be ex-



plored. In particular, attempting to maximise buyer utility (or
seller utility) is likely to result in the evolution of mechanism
designs significantly different to those presented here.

Acknowledgements

Thanks to Andrew Byde for a discussion that clarified the nature of the
©,=0.0 and Q,=1.0 one-sided auction mechanisms, and to Rycharde Hawkes
for his co-operation with my intensive use of an ad-hoc compute-farm.

References

[1] D. Cliff, “Minimal-intelligence agents for bargaining behaviours in mar-
ket environments” Technical Report HPL-97-91, Hewlett-Packard Labs.
(http://www.hpl.hp.com/techreports/97/HPL-97-91.html)

{2] V. Smith, “Experimental study of competitive market behavior” Journal
of Political Economy 70:111-137, 1962.

[3]1 D. Gode & S. Sunder, “Allocative efficiency of markets with zero-
intelligence traders” Journal of Political Economy 101:119-137, 1993.

[4] R. Das, J. Hanson, J. Kephart, & G. Tesauro ,“Agent-human interactions
in the continuous double auction” Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-01), 2001.
(http://www.research.ibm.comVinfoecon/researchpapers.htmt)

[5] D. Cliff, “Genetic optimization of adaptive trading agents for double-
auction markets™ in Proceedings of Computational Intelligence in Financial
Engineering (CIFEr) {998, IEEE/NAFE/ Informs (preprint proceedings),
pp.252-258, 1998.

[6] D. Cliff, “Evolutionary optimization of parameter sets for adaptive soft-
ware-agent traders in continuous double-auction markets”, Technical Report
HPL-2001-99, Hewlett-Packard Laboratories.
(http://www.hpl.hp.com/techreports/2001/HPL-2001-99.html)

[7] S. Bullock, “Are artificial mutation biases unnatural?” in: Floreano, D,
Nicoud, J-D & Mondada, F (eds) Advances in Artificial Life - Fifth European
Conference (ECAL99), pp. 64-73 Springer-Verlag. 1999.
(http://www.comp.leeds.ac.uk/seth/papers/ecal99_mutation.ps.gz)

[8] S. Siegel & N. J. Castellan, Nonparametric Statistics for the Behavioural
Sciences. McGraw Hill. 1988.

Appendix

The table below shows data for the Wilcoxon version of the Wilcoxon-
Mann-Whitney Test used on the Market 3 EM and FM(Q,=0.0) results. The
m=48 final best-mode fitness scores from the FM(Q,=0.0) experiment
(Fig.16) and the n=50 final best-mode fitness scores from the EM experi-
ment were grouped together, with the EM values marked as Type 1 and the
FM values marked as Type 2. Fitness values were then assigned a rank-order
based on their position following sorting into ascending order. There were no
tied ranks.

Summing the rank values for Type | (EM) gave a value #; and summing the
rank values for Type 2 (FM) gave a value .. Reading the columns from left
to right, the table shows: the rank value; the fitness value; the source type of
the fitness value; the cumulative value of W;; and the cumulative value of
W,. The final rank sums are W,;=2071 and W,=2780.

Let N=m-+n; then using z=(W+0.5-m(N+1)/2)/SQRT(mn(N+1)12) gives
2=2.874656, while the 0.005 one-tailed significance level is 2.576.

n=50 m=48

Wi W,

Rank Fitness Type O 0
1 4.89669 1 10
2 493447 1 30
3 494673 1 6 0
4 496113 2 6 4
5 496787 2 6 9
6 50027 1 12 9
7501772 1 19 9
8 502246 2 19 17
9 502557 1 28 17
10 5045711 1 38 17
11 505407 1 49 17
12 506159 1 61 17
13 507337 1 74 17
14 508056 1 88 17
15 508379 1 103 17
16 510063 1 119 17
17 510252 1 136 17
18 5.10713 2 136 35
19 510831 1 155 35
20 511039 1 175 35
21 511301 1 196 35
22 511844 2 196 57
23 512229 2 196 80
24 513012 1 220 80
25 513117 2 220 105
26 513120 2 220 131
27 513856 1 247 131
28 514950 2 247 159
29 515147 1 276 159
30 515318 1 306 159
31 515435 1 337 159
32 515529 2 337 191
33 516116 1 370 191
34 516402 1 404 191
35 517092 2 404 226
36 517579 1 440 226
37 519243 2 440 263
38 519408 2 440 301
39 519648 1 479 301
40 519665 1 519 301
41 520168 2 519 342
42 521755 2 519 384
43 521976 1  S62 384
44 522043 1 606 384
45 522983 1 651 384
46 523013 2 651 430
47 523031 2 651 477
48 523191 1 699 477



5.23263
5.23558
5.23821
5.23971
5.23972
5.24590
5.24766
5.25612
5.26601
5.26639
527560
5.27719
5.28281
5.28322
5.28602
5.28603
5.28636
5.28672
5.29027
5.29339
5.29341
5.29580
5.30351
5.31535
5.31539
5.31819
5.32491
5.32529
5.32746
5.32755
5.32992
5.33327
5.33441
5.34111
5.34298
5.34990
5.36183
5.36402
5.36493
5.37816
5.39061
5.39237
5.40863
5.43686
5.43876
5.44567
5.46467
5.47440
5.48235
5.49331
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576
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628
681
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