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1 Introduction

JPEG2000 [1] is a new image compression standard, developed under the aus-
pices of ISO/IEC JTC1/SC29/WG1 (commonly known as the JPEG com-
mittee). The standard departs radically from its better known predecessor,
JPEG [2]. In place of the DCT (Discrete Cosine Transform), JPEG2000 em-
ploys a DWT (Discrete Wavelet Transform). Whereas arithmetic coding and
successive approximation are options in JPEG, they are central concepts in
JPEG2000. The coding mechanisms themselves are more efficient and support
more flexible, finely embedded representations of the image. The JPEG2000
algorithm also inherently supports good lossless compression, competitive com-
pression of bi-level and low bit-depth imagery, and bit-streams which embed
good lossy representations of the image within a lossless representation.

JPEG2000 places a strong emphasis on scalability, to the extent that vir-
tually all JPEG2000 bit-streams are highly scalable. In order to support the
needs of a wide variety of applications, different progression orders are defined.
The scalability property, in its different forms, pertains to the ordering of infor-
mation within the bit-stream. However, as discussed next, the coding process
plays a key role. In general, dependencies introduced during this process can
destroy one or more degrees of scalability. Thus, while the DWT provides a nat-
ural framework for scalable image compression, the coding methods described
in this paper are key to the realization of the potential derived from this frame-
work. Therefore, one goal of this Introduction is to precisely define the main
notions of scalability involved, discussing their implication in the design of the
coding scheme.

A resolution-scalable bit-stream is one from which a reduced resolution may
be obtained simply by discarding unwanted portions of the compressed data.
The lower resolution representation should be identical to that which would have
been obtained if the lower resolution image were compressed directly. The DWT
is an important tool in the construction of resolution-scalable bit-streams. As
shown in Figure 1, a first DWT stage decomposes the image into four subbands,
denoted LL1, HL; (horizontally high-pass), LH; (vertically high-pass) and HH;.
The next DWT stage decomposes this LL; subband into four more subbands,
denoted LLs, LHo, HLy and HH;. The process continues for some number of
stages, D, producing a total of 3D + 1 subbands whose samples represent the
original image. The total number of samples in all subbands is identical to that
in the original image.

The DWT’s multi-resolution properties arise from the fact that the LLg4 sub-
band is a reasonable low resolution rendition of LL4_1, with half the width and
height. Here, the original image is interpreted as an LLg subband of highest res-
olution, while the lowest resolution is represented directly by the LLp subband.
The LL4 subband, 0 < d < D, may be recovered from the subbands at levels
d + 1 through D by applying only D — d stages of DW'T synthesis. So long as
each subband from DWT stage d, 0 < d < D, is compressed without reference
to information in any of the subbands from DWT stages d’, 0 < d’ < d, we may
convert a compressed image into a lower resolution compressed image, simply by



Figure 1: DWT with D = 3 stages.



discarding those subbands which are not required. The number of resolutions
available in this way is D + 1.

A second type of scalability arises when the compressed bit-stream contains
elements which can be discarded in order to obtain a lower quality (higher dis-
tortion) representation of the subband samples. We refer to this as distortion
scalability. Ideally, the reduced quality representations obtained by discarding
appropriate elements from a distortion scalable bit-stream can be decoded to
reconstruct the original image with a fidelity approaching that of an “optimal”
coder, tailored to produce the same bit-rate as the scaled bit-stream. Most
practical means of achieving this goal involve some form of bit-plane coding,
whereby the magnitude bits of the subband samples are coded one by one from
most significant to least significant. Discarding least significant bits is equivalent
to coarser quantization of the original subband samples. The terms “SNR scal-
ability”, “successive approximation” and “bit-rate scalability” have also been
used in connection with this type of scalability.

Although resolution scalability (the ability to discard high frequency sub-
bands) provides a crude mechanism for decreasing the bit-rate and increasing
distortion, this is not usually an efficient mechanism for trading distortion for
compressed size. It has been observed that discarding subbands from a com-
pressed bit-stream generally produces lower resolution images with such small
distortion (and large bit-rate) as to be inappropriate for applications requir-
ing significant compression. In order to produce a family of successively lower
image resolutions with a consistent level of perceived or objective distortion
(e.g., a consistent mean squared error), the multi-resolution transform should
be combined with distortion scalable coding.

Unfortunately, due to possible dependencies introduced during the coding
process, the combination of a wavelet transform with bit-plane coding does not
guarantee bit-streams that are both resolution-scalable and distortion-scalable.
Furthermore, the order in which information appears within the compressed
bit-stream can have a substantial impact on the resources required to compress
or decompress a large image. The zero-tree coding structure [3] provides us
with a useful example of the adverse consequences of excessive interaction be-
tween coding and ordering. Shapiro’s original EZW algorithm [3] and Said and
Pearlman’s significantly enhanced SPTHT algorithm [4] provide excellent exam-
ples of embedded image compression. These algorithms have rightly received
tremendous attention in the image compression community. However, the cod-
ing dependencies introduced by these algorithms dictate a distortion-progressive
ordering of the compressed bits, as zero-trees involve downward dependencies
between the subbands produced by successive DWT stages. These dependen-
cies interfere with resolution scalability: no subset of the embedded bit-stream
corresponds to the result of compressing a lower resolution image. Moreover,
the encoder and decoder typically require a random access buffer, with storage
for every subband sample in the image. Once compressed in this manner, the
bit-stream cannot be reordered so as to support decompressors with reduced
Memory resources.

The JPEG standard also involves coding dependencies which prohibit some



useful orderings. In its hierarchical refinement mode, multi-resolution image
hierarchies are represented using a Laplacian pyramid structure which requires
lower resolutions to be fully decoded before meaningful decoding of a higher
resolution image can take place. This representation interferes with the distor-
tion scalability offered by JPEG’s successive approximation mode, since it is
not possible to decompress a subset of the bit-planes across all resolution lev-
els. This problem is dual to the one observed for zero-tree coding. In JPEG’s
progressive modes, any scalable bit-stream necessarily involves multiple scans
through the entire image. Moreover, these progressive scans use different coding
techniques to those specified by the sequential mode. As a result, they cannot
generally be collapsed back into a sequential representation without transcoding
the compressed bit-stream.

The arguments advanced above suggest that one should endeavour to decou-
ple the process of efficiently coding subband samples from the ordering of the
compressed bit-stream. The separation of information coding and information
ordering is indeed a key consideration in the design of the JPEG2000 algorithm.
As a result, and in contrast to the above examples, the JPEG2000 standard
supports spatially progressive organizations which allow decompressors to work
through the image from top to bottom. Information may progress in order of
increasing resolution, in order of increasing quality across all resolutions, or in
sequential fashion across all resolutions and qualities. The progression order
is independent of the coding techniques and may be adjusted at will, without
recourse to transcoding. JPEG2000 also allows resource constrained decompres-
sors to recover a reduced resolution version of an image which may be too large
to decompress in its entirety.

Of course, it is not possible to completely decouple the coding and ordering of
information, since efficient coding necessarily introduces dependencies. Sources
of such dependencies include the use of conditional coding contexts, indivisible
codes (e.g., vector, run-length or quad-tree codes) and adaptive probability
models. There is also a limit to the granularity at which we can afford to label
individual elements of the compressed bit-stream for subsequent reordering.

A natural compromise is to partition the subband samples into small blocks
and to code each block independently. The various dependencies described
above may exist within a block but not between different blocks. The size
of the blocks determines the degree to which one is prepared to sacrifice cod-
ing efficiency in exchange for flexibility in the ordering of information within
the final compressed bit-stream. This block coding paradigm is adopted by
JPEG2000, based on the concept of Embedded Block Coding with Optimal Trun-
cation (EBCOT) [5]. Each block generates independent bit-streams, which are
packed into quality layers. In order to generate the quality layers, the indepen-
dent bit-streams are in turn subdivided into a large number of “chunks.” While
preserving the ordering of chunks within a block, the compressor is free to in-
terleave chunks from the various blocks in any desired fashion, thus assigning
incremental contributions from each block to each quality layer. The indepen-
dent bit-streams can be truncated at the end-points of these chunks, which are
referred to as truncation points.



The selection of truncation points raises, again, an ordering problem, since
it affects the rate-distortion properties of the overall image representation. In
a bit-plane coding scheme, bit-plane end-points are natural truncation points
for the embedded bit-stream. However, the availability of a finer embedding,
with many more useful truncation points, is a key element in the success of the
EBCOT paradigm. To achieve a finer embedding, the sequence in which bits
from different samples are coded is data dependent. This sequence tends to
encode the most valuable information (in the sense of reducing the distortion
of the reconstructed image the most) as early as possible. The embedded block
coder uses context modeling to address both the ordering and the arithmetic
coding of the events. The concept of adaptive ordering through context modeling
was introduced independently and in somewhat different forms in [6] and [7]. It
is also closely related to the coding sequence employed in the SPTHT [4] and, to
a lesser extend, EZW [3] algorithms. Rather than pursuing a totally adaptive
approach, as in [7], JPEG2000 imposes reasonable assumptions on the data,
defining context-dependent “fractional bit-planes”, in the spirit of [6].

Thus, the block coding concept in JPEG2000 and the embedded coder itself
draw heavily from the EBCOT algorithm [5], which itself builds upon the con-
tributions of other works; however, there are some notable differences as well as
a number of mode variations which can have significant practical implications.
In this paper, our goal is to provide the reader with an appreciation for the
salient features of the algorithm, as well as some of the considerations which
have contributed to its development.

The rest of this paper is organized as follows. In Section 2, we discuss the
EBCOT paradigm and its advantages. In Section 3, we present the primitive
coding operations which form the foundation of the embedded block coding
strategy. In Section 4, we introduce the concept of fractional bit-planes, and
discuss the principles behind it. In Section 5, we provide some indication of the
performance of the algorithm, while in Section 6 we discuss its complexity, both
for software and hardware implementations. Finally, in Section 7, we present
variations on the algorithm, which are supported by Part 1 of the standard.

2 The EBCOT Paradigm

2.1 Independent Code-Blocks

Within the EBCOT paradigm adopted by JPEG2000, each subband is parti-
tioned into relatively small blocks (e.g., 64 x 64 or 32 x 32 samples) which we
call “code-blocks.” This is illustrated in Figure 2. Each code-block, B;, is coded
independently, producing an elementary embedded bit-stream, c;. It is conve-
nient to restrict our attention to a finite number of allowable truncation points,
Z; + 1, for code-block B;, having lengths, LEZ), with
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Code-block:

Figure 2: Division of subbands into code-blocks. Here, code-blocks have the same
dimensions in every subband.

In the present development we are not concerned with the details of the em-
bedded block coding algorithm, or the determination of these truncation points;
these are the subject of Sections 3 and Section 4.

We assume that the overall reconstructed image distortion can be repre-
sented as a sum of distortion contributions from each of the code-blocks and
let Dgz) denote the distortion contributed by block B;, if its elementary embed-
ded bit-stream is truncated to length ng). Calculation or estimation of DZ(Z)
depends upon the subband to which block B; belongs. For most of the ensuing
discussion, however, we may simply consider the image as being composed of a
collection of blocks, B;, without regard for the subbands to which their samples
belong.

Since the code-blocks are compressed independently, we are free to use any
desired policy for truncating their embedded bit-streams. If the overall length
of the final compressed bit-stream is constrained by L. .x, we are free to select
any set of truncation points, {z;}, such that

S TLE) < Linas

Of course, the most attractive choice is that which minimizes the overall distor-
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Figure 3: Simple pack-stream formed by concatenating optimally truncated code-
block bit-streams.
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The selection of truncation points may be deferred until after all of the code-
blocks have been compressed, at which point the available truncation lengths,

ng), and the associated distortions, Dgz), can all be known. For this reason,
we refer to the optimal truncation strategy as one of post-compression rate-
distortion optimization (PCRD-opt). For details of the PCRD-opt algorithm,
the reader is referred to [5].

A chief disadvantage of independent block coding would appear to be that
it is unable to exploit redundancy between different blocks within a subband
or between different subbands. In fact, an important premise of zero-tree algo-
rithms such as EZW and SPIHT is that substantial redundancy exists between
“parent” and “child” samples within the subband hierarchy. Somewhat sur-
prisingly, these disadvantages are more than compensated by the fact that the
contributions of each code-block to the final bit-stream may be independently
optimized by the PCRD-opt algorithm.

2.2 Quality Layers

The overall compressed bit-stream is constructed by packing contributions from
the various code-block bit-streams, c;, together in some fashion. We use the term
“pack-stream,” to distinguish this overall representation from the individual
block bit-streams. The simplest pack-stream organization consistent with the
EBCOT paradigm is illustrated in Figure 3. In this case, the optimally truncated
block bit-streams, cl(.zi), are simply concatenated, with length tags inserted to
identify the contribution from each code-block.

This simple pack-stream is resolution-scalable, since each resolution level
consists of a well-defined collection of code-blocks, each of which is explicitly
identified by means of the length tags. The pack-stream also possesses a degree
of spatial scalability. So long as the subband synthesis filters have finite support,
each code-block influences only a finite region in the reconstructed image. Thus,
given a spatial region of interest, the relevant code-blocks may be identified and
extracted from the pack-stream.

The simple pack-stream of Figure 3 is not distortion-scalable, even though its
individual code-blocks have embedded representations. The problem is that the
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Figure 4: Quality layers in JPEG2000. Numbers indicate the sequence of code-block
contributions required for a quality progressive pack-stream.

pack-stream offers no information to assist in the construction of a smaller pack-
stream whose code-block contributions are optimized in any way. To resolve this
difficulty, the EBCOT algorithm [5] introduces a quality layer abstraction, as
illustrated in Figure 4. Only 6 code-blocks are shown for the sake of illustration.
There are a total of A quality layers, labeled Qy through Qa_;.. The first

0
layer, Qq, contains optimized code-block contributions, having lengths LZ(-Z"),
0
which minimize the distortion, D° = > Dgzi), subject to a length constraint,

0
> ngi) < LY ... Subsequent layers, @y, contain additional contributions from

A A—1
each code-block, having lengths ngi ) _ ng ), which minimize the distortion,
A (=)
D=3 "D,
i
subject to a length constraint,

(=) 7
ZL <L

max *

Although each quality layer conceptually contains a contribution from every
code-block, we emphasize the fact that some or even all of these contributions
may be empty. In the example of Figure 4, code-block B3 makes no contribution
to layer Q7. A distortion-scalable pack-stream may be constructed by including
sufficient information to identify the contribution made by each code-block to
each quality layer. Moreover, quality progressive organizations are clearly sup-
ported by sequencing the information in the manner suggested by the numbering
in Figure 4.

If a quality progressive pack-stream is truncated at an arbitrary point, the
decoder can expect to receive some number of complete quality layers, followed



by some fraction of the blocks from the next layer. In the example of Figure 4,
the third quality layer, Q,, is truncated before code-block By. In this case, the
received prefix will not be strictly optimal in the PCRD-opt sense. However,
this form of sub-optimality may be rendered negligible by employing a large
number of layers. On the other hand, more layers implies a larger overhead to
identify the contributions made by each block to each layer.

When a large number of layers are used, some effort must be invested in
efficiently coding the auxiliary information which identifies the various code-
block contributions. JPEG2000 provides a “second tier” coding strategy for
this type of information. The idea of separating the coding process into two
tiers was introduced in [5] and indeed the second tier coding mechanisms used
by JPEG2000 are essentially those described there. We shall not discuss them
further in the present text.

2.3 EBCOT Advantages

At this point, it is worth summarizing some of the benefits which the EBCOT
paradigm imparts to JPEG2000.

Flexible organization: EBCOT pack-streams possess resolution scalabil-
ity, distortion scalability (so long as multiple quality layers are used) and a
degree of spatial scalability. When multiple image components are compressed
(e.g., colour components), these components form a fourth dimension of scala-
bility. Progressions along all four dimensions are supported by the JPEG2000
standard.

Custom quality interpretations: Since each quality layer may contain ar-
bitrary contributions from each of the code-blocks, the notion of quality may be
adapted to application specific measures of significance. By contrast with EZW,
SPIHT and other embedded compression algorithms, the EBCOT paradigm al-
lows code-blocks to be marginalized or entirely suppressed in lower quality layers
when the corresponding spatial regions or frequency bands are known to be less
significant for some application.

Local processing: Independent coding allows local processing of the sam-
ples in each code-block, which is especially advantageous for hardware imple-
mentations. Independent coding also introduces the possibility of highly parallel
implementations, where multiple code-blocks are encoded or decoded simultane-
ously. For very large images, spatially oriented progressions of the pack-stream
may be used in conjunction with incremental processing of the subband/wavelet
transform to facilitate “streaming”. In this case, it is sufficient to buffer only
a local window into the pack-stream, the image and its subbands. In this way,
implementation memory can be much smaller than the image which is being
compressed or decompressed. This same property allows for efficient rotation
and flipping of the image during decompression.

Efficient compression: As noted above, the use of PCRD optimization can
more than compensate for the small efficiency losses arising from the imposition
of independent block coding. The algorithm is also able to accommodate spa-
tially varying and/or image dependent measures of distortion. One interesting
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example arises in visual perception, where local activity can mask the visibility
of certain types of compression artifacts. A masking-sensitive distortion measure
and promising experimental results are provided in [5].

Compressed domain manipulation: Cropping an image from any bound-
ary affects only those subband samples whose synthesis waveforms intersect
with the cropped image region. Code-blocks containing these samples must be
re-coded, but the remaining (interior) code-blocks are unaffected by cropping.
This, together with the DWT realignment capabilities offered by JPEG2000,
allows images to be repeatedly cropped from any boundary without the build-
up of compression artefacts commonly experienced with other schemes such as
JPEG. It is also possible to flip, transpose and rotate images by multiples of
90°, by performing only local block transcoding operations. Repeated applica-
tion of these transformations can also be free from compression noise build-up.
For further details see [8].

Error resilience: Errors encountered in any code-block’s bit-stream will
clearly have no influence on the other blocks. This, together with the natural
prioritization of information induced by embedded block coding and quality
layers, allows for the construction of powerful unequal protection strategies for
error prone environments.

3 Bit-Plane Coding

The coding of code-blocks in JPEG2000 proceeds by bit-planes. Bit-plane cod-
ing naturally arises in the framework of embedded quantization, as discussed
in Section 3.1 below. In Section 3.2, we show how coding proceeds in order to
derive an embedded bit-stream, and we discuss the importance of data depen-
dent ordering strategies for achieving a fine embedding of the information. The
remainder of the section is devoted to a detailed study of the primitive context
modeling and coding operations which form the foundation of the embedded
block coding strategy.

3.1 Embedded Quantization

Since each code-block is to be represented by an efficient embedded bit-stream,
prefixes of the bit-stream must correspond to successively finer quantization
of the block’s sample values. In fact, the underlying quantizers are inevitably
embedded [9, §4B]. In the ensuing discussion we restrict our attention to the
practically appealing case of embedded deadzone quantization.

A deadzone quantizer with step size A yields quantization indices

2]

q = sign(z) {K + TJ (1)

where = denotes a subband sample from the code-block and 7 is a parameter
controlling the width of the central deadzone. When 7 = %, the quantizer is

11
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Figure 5: Family of embedded deadzone scalar quantizers.

uniform, while 7 = 0 corresponds to the case in which the deadzone width is
2A. The quantization intervals, denoted I(go)y are illustrated in Figure 5.
Let y = sign (z) and v = |q| denote the sign and magnitude of ¢.! Also, let

w_ |
v _{2PJ

denote the value formed by dropping p LSB’s (Least Significant Bits) from
v = v(®. Employing the easily verified identity,

{%JJ :{%J, Va€R and b € N

we see that x and v(®) are the sign and magnitude of the index, ¢(®), obtained
using the coarser quantizer

@) _ g = 7

Figure 5 illustrates the corresponding quantization intervals, Iéﬁ?).

This family of deadzone quantizers has three notable characteristics: 1) the
step sizes are given by AP = 2PA; 2) the deadzone width parameters, ) =
27Pr, rapidly converge to 0 as p increases; and 3) each quantization interval,

Zéf’g), is embedded within a coarser interval, Iéﬁ,tll)). In view of property (2),
it makes sense to restrict our attention to the case 7 = 0. In this case, all
quantizers have the same structure, with a deadzone twice as wide as the other

intervals. It is worth noting, however, that the coding techniques described in

I Strictly speaking, when g = 0 the sign of ¢ is indeterminate; this will be reflected in the
fact that it is not coded. It is convenient here to associate x with the sign of the original
subband sample, y, which is the same as that of ¢ whenever g # 0.

12



this chapter are applicable to the more general case in which 7 # 0. In fact,
Part 2 of the JPEG2000 standard is expected to support such general deadzone
quantizers.

3.2 Coding and Ordering

Let z[j] = x[j1, j2] denote the sequence of subband samples belonging to the
relevant code-block, having height J; and width J5, so that 0 < j; < J; and
0 < jp < Jo. Similarly, let x [j] and v [j] denote the sign and magnitude of the
corresponding embedded quantization indices. Suppose that K is a sufficient
number of bits to represent any of the quantization index magnitudes, meaning
that v(5) [j] = 0 for all j. Finally, let v? [j] € {0,1} be the LSB of v(®) [j], which
is also bit p of v[j]. We say that bits vP [j] from all samples in the code-block
constitute “magnitude bit-plane” p. There are at most K non-trivial magnitude
bit-planes. The value of K is signalled separately for every code-block, when
that code-block first contributes to the JPEG2000 pack-stream. In fact, K
itself is coded in a manner which exploits redundancy between adjacent code-
blocks within the same subband. The particular coding technique is known
as “tag tree coding”. For further details regarding such second tier coding of
code-block summary information, the reader is referred to [5] and [1].

An embedded bit-stream may be formed in the following way. First, code
the most significant magnitude bit-plane, v~ [j], together with the sign, x [j],
of any sample for which v&~1[j] # 0. If the bit-stream is truncated at this
point, the decoder can reconstruct the coarsest quantization indices, (<=1 [i]-
Then code the next most significant magnitude bit-plane, v¥~2[j], including
the sign of any sample for which vX~2[j] = 1 and v* =Y [j] = 0. Proceed in
this way for each magnitude bit-plane, p, including the sign of those samples
for which v? [j] is the most significant non-zero bit. We refer to this process as
bit-plane coding and we use the term “bit-plane” loosely to refer to both the
magnitude and associated sign information. If the bit-stream is truncated at
the end of bit-plane p, the decoder can reconstruct quantization indices, ¢ [i]-

A variety of techniques may be employed to code the magnitude and sign
bits. An efficient bit-plane coder, however, should exploit the substantial re-
dundancy which generally exists between successive bit-planes. This goal may
be achieved using conditional arithmetic coding, which requires the definition
of a scanning order and a context model. Early bit-plane coders [10, 11] pro-
cessed the quantized subband samples following a deterministic scan (line by
line) within each bit-plane?. In principle, the order in which the information
is coded should have no impact on coding efficiency, since the code length as-
signed by any conditional probability model (through arithmetic coding) can be
matched by another model which uses an arbitrary scanning order, by appro-
priate decomposition of the corresponding joint distribution. However, such a
decomposition may involve statistical dependencies between each coded symbol

2 Although not originally described as such, zero-tree algorithms such as SPTHT and EZW
also amount to bit-plane coding algorithms. The statement here concerning early bit-plane
coders is not intended to include such algorithms.
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and all previously coded symbols in the current and previous bit-planes. Thus,
in practice, our adaptive assignment of conditional probabilities may result in
code lengths that do depend on the sequence of coding events. Nevertheless,
we find empirically that the particular probability models used by JPEG2000,
which are described in Section 3.3, yield code lengths for each bit-plane which
are largely insensitive to the order in which information is coded.

In [12], bit-plane coding is formalized as a sequence of steps aimed at pro-
viding the next coded sample (for efficient embedding), and a corresponding
conditional probability distribution (for efficient coding). The empirical obser-
vation above suggests that, as proposed in [6], efficient embedding (rather than
efficient coding) should be the decisive consideration in selecting the scanning
order. In the case of a deterministic scan, bit-plane end-points are the only nat-
ural truncation points for the embedded bit-stream. Truncation at any other
point must yield an expected distortion-rate pair which lies strictly above the
convex distortion-rate curve associated with deadzone scalar quantization. As
explained in Section 2.2, quality layers are constructed by applying a PCRD-
opt algorithm to optimize the code-block truncation points. In order to provide
a larger number of useful truncation points, thereby enhancing the effective-
ness the PCRD-opt algorithm, a finer embedding is required than that offered
by deterministically scanned bit-plane coders. To achieve such an embedding,
information is coded in a data dependent order. This order tends to encode
the most valuable information (in the sense of reducing the distortion of the
reconstructed image the most) as early as possible [7, 6, 13, 5].

Following [6] and [7], the embedded block coder adopted by JPEG2000 uses
context modeling to address both the ordering and coding of information within
each code-block. Moreover, JPEG2000 imposes reasonable assumptions on the
data, defining context-dependent “fractional bit-planes,” in the spirit of [6].
The specific determination of fractional bit-planes is described in Section 4.
The reader should note that the adaptive ordering of information within each
code-block is based on information available to both the encoder and decoder
so that it need not be signalled explicitly. Of course, this also means that the
compressor has no control over the coding order. This is quite different to the
ordering of code-block contributions within the pack-stream, as described in
Section 2.2.

3.3 Conditional Arithmetic Coding of Bit-Planes

In this section we describe the bit-plane coding primitives defined by the JPEG2000
image compression standard. At any given sample location, j, in any given bit-
plane, p, we must code the value of v? [j] and possibly also the sign, x [j]. These
are binary events and we employ an adaptive binary arithmetic coder. The spe-
cific arithmetic coding variant employed by JPEG2000 is the MQ coder, which
is discussed further in Section 6.1. For our present discussion it is sufficient to
understand the arithmetic coder as a “machine”, which efficiently represents a
sequence of binary outcomes subject to the provision of good probability es-
timates. The adaptive probability models evolve within a number of distinct
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contexts, which depend upon information which has already been coded. The
specification of these models is identical to that proposed in [5], being indepen-
dent of the order in which information is actually coded?®. Ordering considera-
tions are deferred until Section 4.

Image subband samples tend to exhibit distributions which are heavily skewed
toward small amplitudes. As a result, when v®+1) [i] = 0, meaning that
z[j] € I(()p+1), we can expect that z[j] is also very likely to be found in the
smaller deadzone, Iép ). Equivalently, the conditional PMF, Jvepv ey (vP]0),
is heavily skewed toward the outcome v? = 0. For this reason, an important
element in the construction of efficient coding contexts is the so-called “signifi-
cance” of a sample, defined by

if 0@ [;
o ) 1T o[>0
7 [J]_{o if (®) [j] = 0.

To decouple our description of the coding operations from the order in which
they are applied, we introduce the notion of a binary “significance state,” o [j].
At any point in the coding process, o [j] assumes the value of ¢ [j] where
p is the most recent (least significant) bit for which information concerning
sample z [j] has been coded. Equivalently, we initialize the significance state of
all samples in the code-block to 0 at the beginning of the coding process and
then toggle the state to o [j] = 1 immediately after coding the first non-zero
magnitude bit for sample x [j].

We identify three different types of primitive coding operations as follows.
If o [j] = 0 we refer to the task of coding v? [j] as “significance coding,” since
vP[j] = 1 if and only if the significance state transitions to o [j] = 1 in this
coding step. In the event that the sample does become significant, we must
invoke a “sign coding” primitive to identify  [j]. For samples which are already
significant, the value of v” [j| serves to refine the decoder’s knowledge of the
non-zero sample magnitude. Accordingly, we invoke a “magnitude refinement
coding” primitive.

3.3.1 Significance Coding (Normal Mode)

The significance coding primitive involves a normal mode and a run mode. We
describe the normal mode first. In this mode, one of 9 different contexts is used
to code the significance (i.e., the value of v? [j]) of a sample which is currently
insignificant (i.e., v®*1) [j] = 0). Context selection is based upon the significance
of the sample’s 8 immediate neighbours.

The context label, %8 [j], is formed from three intermediate quantities,

K" [§] = o [j1, o — 1] + o [j1, j2 + 1]
K" [j] =0 [.71 - 1)j2] +U[j1 + 17j2]

—

REl= D D oliitkije+ ke
k

1=%1ko==%1

3The one exception to this rule is given by the run mode specified in Section 3.3.2.
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Samples which lie beyond the boundaries of the relevant code-block are regarded
as insignificant for the purpose of constructing these three quantities. Evidently,
there are 45 possible combinations of the three quantities, «" [j], £V [j] and x4 [j].
A context reduction function is used to map these 45 combinations into 9 distinct
context labels, %8 [j]. Details of the context reduction mapping may be found in
[5] or [1]. Tt suffices here to note that the mapping is sensitive to the orientation
of the subband to which the relevant code-block belongs.

3.3.2 Significance Coding (Run Mode)

At moderate to high compression ratios, most of the subband samples must be
insignificant in all of the bit-planes which are actually included in the final pack-
stream. To see this, observe that whenever a sample becomes significant we must
code the significance event (usually with respect to a conditional PMF skewed
heavily toward insignificance) and also the sign. The combined cost of these
two binary events is unlikely to be less than 2 bits and may be considerably
more. FEven those samples which are eventually coded as significant, may be
insignificant for many of the initial bit-planes.

Since code-block samples are expected to be predominantly insignificant, a
run mode is introduced to dispatch multiple insignificant samples with a single
binary symbol. The run mode serves primarily to reduce complexity, although
very minor improvements in compression performance are also typical. The run
mode is entered if the probability of significance is determined to be sufficiently
small. This determination is based on the stripe-based scan discussed in Sec-
tion 4 and depicted in Figure 6. Specifically, the run mode is entered if and only
if the following three conditions hold simultaneously.

1. Four consecutive samples (following the scan shown in Figure 6) must
currently be insignificant. That is, o [j,] = 0 for 0 < r < 4, where jo = j
and j, is the ' position beyond j in the scan.

2. All four samples must currently have insignificant neighbourhoods. That
is, k" [j,] + &' [jr] + &4 [j,] =0 for 0 <7 < 4.

3. The group of four samples must be aligned on a four sample boundary
within the scan. As we shall see in Section 4, the scanning pattern itself
works column by column on stripes of four rows at a time. This means
that the samples must constitute a single stripe column.

In run mode, a binary “run interruption” symbol is coded to indicate whether
or not all four samples remain insignificant in the current bit-plane, p. Insignif-
icance is identified by the symbol 0, while a value of 1 means that at least one
of the four samples becomes significant. The run interruption symbol is coded
within its own context, denoted ™" = 9.

If one or more of the four samples becomes significant during the current bit-
plane, p, the insignificant run length, r, must also be coded, followed by the sign
of the first significant sample, x [j-]. The remaining samples are then coded in
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normal mode, until the conditions required for run mode are encountered again.
Experience shows that the run length is nearly uniformly distributed, which is
also to be expected if samples transition to significance with very low probability.
For this reason the 2-bit run-length, 7, is coded one bit at a time, starting with
the most significant bit, using a non-adaptive uniform probability model.

3.3.3 Sign Coding

The sign coding primitive is invoked at most once for any sample, z[j], im-
mediately after the significance coding operation in which the sample first be-
comes significant. Most algorithms proposed for coding subband sample values,
whether embedded or otherwise, treat the sign as an independent, uniformly
distributed random variable, devoting 1 bit to coding its outcome. It turns out,
however, that the signs of neighbouring sample values exhibit significant statis-
tical redundancy. Some arguments to suggest that this should be the case are
presented in [14] and [5].

The JPEG2000 sign coding primitive employs 5 contexts. Context design
is based upon the relevant sample’s immediate four neighbours, each of which
may be in one of three states: significant and positive; significant and negative;
or insignificant. There are thus 81 unique neighbourhood configurations. For
details of the symmetry conditions and approximations used to map these 81
configurations to one of 5 context labels, 8" [j], the reader is referred to [5].

3.3.4 Magnitude Refinement Coding

The magnitude refinement primitive is used to code the next magnitude bit,
vP [j], of a sample which is already significant; i.e., ¢+ [j] = 1. This infor-
mation refines the coarser quantization index, ¢»*% [j], to the next finer index,
q® [i]. As already noted, subband samples tend to exhibit symmetric distribu-
tions, fx (x), which are heavily skewed toward = = 0. In fact, the conditional
PMF fypigen (VP | qP+D) typically exhibits the following characteristics: 1)
it is independent of the sign of ¢*+1); 2) Jveigw+n (0| qPt1)) > L for all ¢(P+Y;
and 3) fyigw+n (0| ¢PT) &~ § for large |¢P+Y)].

As a result, it is desirable to condition the coding of v? [j] upon the value of
v®*1 [§] when v®+1) [j] is small. We also find that it can be useful to exploit
redundancy between adjacent sample magnitudes when v®+1) [j] is small. These
observations serve to justify the assignment of one of 3 coding contexts, k™?¢,
as follows.

0 if WPtV =1

Rl =41 i et =1 2
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4 Fractional Bit-Plane Scan

In this section, we specify the order in which samples are visited when a given
bit-plane is scanned. As discussed in Section 3.2, this order is data dependent,
and is aimed at improving the embedding of the code-stream. This goal is
achieved through multiple coding passes. For each bit-plane, p, the coding pro-
ceeds in a number of distinct passes, which we identify as “fractional bit-planes”:
PP, Py and PL. Each coding pass involves a scan through the code-block sam-
ples in stripes of height 4, as shown in Figure 6. This scan has been chosen to
facilitate efficient software and hardware implementations of the standard [15].
Some of the advantages of a stripe-based scan will become apparent in Section 6
(the reader is referred to [15] for a more detailed discussion). Information for
bit-plane p is coded for each sample in only one of the passes; that sample is
skipped in the other two passes. Fractional bit-planes are treated as indivisible
units, and thus determine the candidate truncation points for the code-stream.
Membership of each of the three coding passes is determined dynamically, based
upon the significance state of each sample’s eight immediate neighbours. These
are the same neighbours which are used to determine the conditional coding
contexts described in Section 3.3.

4.1 Significance Propagation Pass

The first coding pass in each bit-plane, PV, includes any sample location, j,
which is itself insignificant, but has a significant neighbourhood; that is, at least
one of its eight neighbours is significant. Membership in P} may be expressed
by the conditions o [j] = 0 and & [j] + " [j] + ¢ [j] > 0. These conditions are
designed to include those samples which are most likely to become significant
in bit-plane p. Moreover, for a broad class of probability models, including
those typically used in image compression, the samples in this coding pass are
likely to yield the largest decrease in distortion relative to the increase in code
length [6, 12].

Each sample in the pass is coded using the significance coding primitive
described in Section 3.3.1. The sign coding primitive is invoked immediately
after any significance coding step in which the sample becomes significant; i.e.,
vP [j] = 1. Tt is worth noting that samples which become significant in this pass
may give rise to waves of significance determination events which propagate
along connected image features such as edges. This is because membership of
the coding pass is assessed incrementally. Once a sample becomes significant,
the four neighbours which have not yet been visited in the scan then also have
significant neighbourhoods, and will be included in P} unless they are already
significant. We call this the “significance propagation pass” to remind the reader
that its members are assessed dynamically.

Figure 6 provides an example of the significance propagation pass for one
stripe of the code-block. In the figure, empty circles identify samples which
are insignificant in bit-plane p; shaded circles identify samples which become
significant during the pass, P7; and solid dots indicate samples which were
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Figure 6: Stripe oriented scan. Refer to the discussion of the significance propagation
pass for an explanation of the symbols used in this example.

already significant in bit-plane p — 1. Crosses are used to mark those samples
which do not belong to the significance propagation pass, either because they
were already significant, or because their neighbourhood is entirely insignificant
at the point in the scan when they are visited.

4.2 Magnitude Refinement Pass

In the second pass of each bit-plane, P}, the magnitude refinement primitive
of Section 3.3.4 is used to code magnitude bit v? [j] of any sample which was
already significant in the previous bit-plane; i.e., o®+1) li] = 1. Equivalently, P¥
includes any sample whose significance state is o [j] = 1, which was not already
included in PY.

4.3 Cleanup Pass

The final coding pass, PL, includes all samples for which information has not
already been coded in bit-plane p. From the definitions of P} and PL, we see
that samples coded in this pass must be insignificant. The significance coding
primitives described in Sections 3.3.1 and 3.3.2 are used to code v [j] for all
samples belonging to this pass. We note that the conditions for run mode may
occur only in this coding pass. As explained in Section 3.3.2, run mode is
entered if an entire stripe column contains insignificant samples with entirely
insignificant neighbours. The significance of all of these samples is coded in P¥,
using the run mode to identify the first if any of the samples which becomes
significant in bit-plane p. Coding of any remaining samples in the stripe column
proceeds in normal mode. As always, the sign coding primitive is invoked for any
sample which becomes significant, immediately after its significance is coded.
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4.4 Rate-Distortion Properties

As already mentioned, the available truncation points for the embedded bit-
stream correspond to the coding pass end-points. Thus, the number of non-zero
truncation points for code-block B; is

Z;=3K; —2

where K; is the number of magnitude bit-planes specified for code-block B;
(recall that the number of bit-planes is explicitly signalled for each code-block).

For each truncation point, z € {1,2,..., Z;}, the length, Ll(.z), identifies the
smallest prefix of the embedded bit-stream which is sufficient to correctly decode
all symbols up to the end of coding pass Py, 0 < p < K;, where p, k and z are
related through

z=3(Ki—p)+k—3.

The first available truncation point, z = 0, always corresponds to discarding the
entire bit-stream so that LEO) = 0.

As mentioned in Section 2, the rate-distortion properties of the overall com-
pressed image representation, depend upon the selection of appropriate trun-
cation points for each code-block. In particular, given any s > 0, any set of

truncation points, {z;}, which minimizes the functional,

i

is optimal in the sense that it is not possible to further reduce the distortion
without increasing the overall bit-rate. The value of s is selected so that the
solution which minimizes this functional achieves the desired overall bit-rate or
distortion.

Thus, for any given s, each z; must minimize DZ(Z"') + sLl(.zi). Let H; be
the set of all truncation points for code-block B;, which are solutions to this
optimization problem for some value of the parameter s. That is,

Hi=J {z 1 D® 450 < ) 4 o), Vz'}
s>0

As argued in [5] and explicitly shown in [8], H; describes the vertices of the lower
convex hull of the set of distortion-rate pairs, (DEZ), LEZ)). This is illustrated

in Figure 7. Points in the interior of the convex hull will never be selected by
an optimal assignment algorithm (i.e., a PCRD-opt algorithm).

One way to assess the suitability of a particular set of definitions for the
fractional bit-plane coding passes, is to measure the frequency with which each
of the truncation points, z, belongs to H;. At one extreme, we might find
that H; consists only of the bit-plane end-points (i.e., those truncation points,
corresponding to the end of each cleanup pass, P%). This would mean that
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Figure 7: Convex hull of the distortion-rate pairs, (Dl@,LEz)), for code-block B;.
Solid dots identify the candidate points, H;, for optimal truncation.

de-interleaving the code-block samples into fractional bit-planes is useless. At
the other extreme, we might find that every truncation point belongs to H;,
meaning that every coding pass has a beneficial impact on the rate-distortion
performance of the overall compression system.

In practice, neither of these extremes is observed. The convex hull occu-
pancy (i.e., H; occupancy) results shown in Figure 8 suggest that each of the
three types of coding pass is frequently beneficial. These results are obtained by
applying the JPEG2000 algorithm to the three large ISO/IEC photographic test
images, “Bike”, “Cafe” and “Woman”, using a block size of 64 x 64. Experiments
are run for various quantization step sizes, so as to cover the most interesting
range of overall image bit-rates (measured in bits/sample). Notice that the
bit-plane end-points (equivalently, the cleanup pass end-points) do indeed con-
tribute most frequently to H;. The other two coding passes also contribute to
the convex hull more often than not.

While the significance propagation pass should clearly precede the others,
by virtue of its steeper distorion-length slope (change in distortion, divided by
change in length), the situation is a priori less clear with respect to the order
of the other two passes. The results in Figure 8, however, also provide justifica-
tion for the fact that the magnitude refinement pass is best performed before the
cleanup pass in JPEG2000. To see this, we observe that the distortion-length
slope over coding pass P} is most often steeper than that over P. This is a nec-
essary condition for the end-point of P} to contribute to H;, which occurs much
more often than not (see Figure 8). If the order of the magnitude refinement and
cleanup passes were reversed, P} would most often have a steeper distortion-
length slope than PL, preventing the latter from contributing frequently to H;
and thereby weakening the embedding. This argument relies upon the assump-
tion that the distortion-length slopes associated with magnitude refinement and
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Figure 8: Convex hull occupancy rates for each of the three types of fractional bit-
plane coding passes.

cleanup coding operations are not affected by their order, which is largely the

case?.

4.5 Other Variations

The idea of sequencing bit-plane coding steps in accordance with their antic-
ipated distortion-length slopes was conceived independently by Li and Lei [7]
and Ordentlich et al. [6]. It could be argued that the lists maintained by
the SPTHT [4] algorithm serve a similar purpose, representing one of its most
significant innovations over Shapiro’s EZW algorithm [3]. Also, Li et al. [16]
proposed a reordering of EZW’s coding steps in accordance with their antici-
pated distortion-length slopes.

Li and Lei [7] proposed a more complex algorithm, in which the coding passes
are not confined to bit-plane boundaries. The distortion-length slope is explicitly
estimated for each neighbourhood context configuration, based on distortion
models and probability estimates available from the adaptive arithmetic coder.
Each coding pass incorporates those coefficient bits which have not previously
been coded and whose distortion-length slope is estimated to be at least as steep
as some threshold. The passes are thus implicitly defined by the sequence of
thresholds. If the thresholds are close together, each coding pass represents
coefficient bits which are expected to yield similar distortion-length slopes. In
this way, it can happen that some particularly favourable samples are much

4The magnitude refinement coding context, k™2, does have some dependence upon the
significance of the sample’s neighbours and hence the order in which the refinement and
cleanup passes are performed. It turns out, however, that this effect is usually quite small. In
any event, the effect tends to strengthen the present argument, since delaying the magnitude
refinement pass ensures that more information is available for coding, so that its distortion-rate
slope can be even steeper.
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more finely quantized than others at any given point in the embedding.

Ordentlich et al. [6] explored fractional bit-plane coding passes which even-
tually evolved into the scheme used in JPEG2000, in the context of a simple
bit-plane coding scheme involving Golomb encoded run lengths. They defined
coding passes whose membership is based on information available from previous
bit-planes only. A fourth pass also included information from other subbands.
The ideas in [6] were combined with conditional arithmetic coding of the bit-
planes by Sheng et al. [13].

The above works were based on the coding of subbands as a whole. Indepen-
dent code-blocks and incremental assessment of membership in the “significance
propagation” pass were introduced by Taubman in [5]. That work also investi-
gated other fractional bit-plane assignment rules. A four pass model incorpo-
rating a novel backward scanning pass was found to yield superior embedding
to the three pass approach defined above for JPEG2000. Not only are there
more truncation points, but these truncation points also contribute to the con-
vex hull with greater frequency than that observed in Figure 8. In most cases,
however, the four pass model was found to offer negligible improvement over
the simpler three pass approach described above. A careful study of this and
other refinements leading to the final form of the JPEG2000 algorithm may be
found in [15].

5 Compression Performance

In this section we provide some indication of the performance of the JPEG2000
coder by comparing it with the SPIHT algorithm [4], which has become a
popular benchmark for image compression. A 5 level DWT with the Cohen-
Daubechies-Feauveau 9/7 biorthogonal wavelet kernels [17] is used for these
experiments. Since both algorithms employ exactly the same wavelet transform
and exactly the same quantization strategy, PSNR® results serve as a meaningful
indication of coding efficiency.

The PSNR results reported in Table 1 are obtained using the JPEG2000 Ver-
ification Model (VMS8.0) and the public domain implementations of SPTHT, both
with and without arithmetic coding, which are available from “www.rpi.edu”.
The experiments are performed with distortion progressive representations of
each image. In the JPEG2000 case, a single pack-stream is generated, having
a quality progressive order. This single pack-stream is truncated to each of the
indicated test bit-rates and decompressed. In addition to distortion scalability,
the JPEG2000 pack-stream is also resolution-scalable and supports a degree of
spatial random access. Moreover, it may be reordered to support spatially pro-
gressive organizations, for applications which cannot afford to keep the entire
compressed representation in memory. The SPTHT bit-stream supports none of
these additional features.

The first set of results reported in the table identifies average performance
over the three most popular natural images from the JPEG2000 test set, “Bike”,

For 8-bit images, PSNR (measured in dB) is defined as 10log;,(255%/MSE).
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Table 1: PSNR (dB) obtained by decompressing a single file, truncated to different
bit-rates. SPIHT results are quoted relative to the PSNR observed with JPEG2000.
|Categ0ry || 125 bps|.25 bps|.5 bps| 1.0 bps|
Natural |JPEG2000 24.83| 27.58| 31.32| 36.19
(2560 SPIHT-AC -0.20 0.21] -0.29| -0.27
X 2048)[SPIHT-NC -0.67| -0.77( -0.94] -0.99
Chart [JPEG2000 28.80| 32.50| 37.48| 43.74
(2347 SPIHT-AC -1.15 -1.29] -1.23| -1.18
X 1688)[SPIHT-NC -6.64| -4.82( -4.34 -3.73
Lenna |JPEG2000 31.04| 34.14] 37.30| 40.40
(512 SPIHT-AC +0.07| -0.00( -0.05| +0.06
X 512) [SPIHT-NC -0.31| -0.42( -0.43| -0.37
Barbara | JPEG2000 25.43| 28.40| 32.22| 37.16
(512 SPIHT-AC -0.57] -0.82| -0.82| -0.74
X 512)|SPIHT-NC -0.97 -1.18] -1.28( -1.22

“Cafe” and “Woman”, each of size 2560 x 2048. The other results correspond
to the 2347 x 1688 JPEG2000 test image, “Chart”, and the more widely known
512x512 images, “Lenna” and “Barbara”. We have selected this small set of test
images primarily to emphasize key features of the coder. More comprehensive
experimental results may be found in [18].

Evidently, the JPEG2000 coder exhibits somewhat higher compression effi-
ciency, while offering substantially more flexibility than SPTHT. We draw the
reader’s attention to the fact that the compression performance of JPEG2000 is
more robust to variations in image content than that of SPTHT (especially the
version without arithmetic coding), as evidenced by the image “chart.” This
robustness follows from imposing fewer assumptions a priori on the structure of
the wavelet coeflicients being coded.

6 Complexity Considerations

Our purpose in this section is to suggest that the JPEG2000 coder is able to
meet the demands of high performance applications. We begin with a brief
discussion of the MQ arithmetic coder. Contrary to popular belief, arithmetic
coding need not be a highly complex operation. We then provide evidence
from our experience in working with software implementations of the standard.
Finally, Sections 6.3 and 6.4 provide some useful statistics which may be used
to predict throughput and buffering requirements for hardware implementations
of the standard.

6.1 The MQ Coder

The binary-valued symbols produced by the bit-plane coding primitives dis-
cussed in Section 3.3 are coded using the MQ coder. The MQ coder is a
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multiplier-free adaptive, binary arithmetic coder with renormalization-driven
probability estimation. It includes the multiplier-free approximation and bit-
stuffing policies introduced by the Q-coder [19], enhanced by conditional ex-
change and Bayesian learning in the probability estimation state machine®.

At any given point in the coding process, the string of symbols which have
been seen so far is mapped to a unique sub-interval, [c¢,c +a) C [0, 1), repre-
sented by

c=C-271"Nandg=A.2710N (3)

where C' and A are integers and NV is the number of normalization shifts which
have been employed to ensure that 2'° < A < 2. Upon completion, the
compressed bit-stream is the most significant &~ N bits of C'; encoder and de-
coder termination policies establish the actual number of MSB’s which must
be retained from C. This type of representation is common to virtually all
realizations of the arithmetic coding principle.

Each coding context, k, is represented by 7 bits of state information. One bit
holds the identity, s,;, of the MPS (Most Probable Symbol) for context . The
remaining 6 bits identify the state, Y., of a machine, which estimates the LPS
(Least Probable Symbol) probability for context ; the machine has 47 different
states. Since the JPEG2000 coder uses only 18 contexts, and each requires a
7-bit representation, a high performance hardware implementation may choose
to maintain the context states in high speed registers.

Suppose the next symbol, x, occurs in context k, for which the Least Prob-
able Symbol (LPS) is currently estimated to occur with probability px, €
(0,1/2). Ideally, the interval length shrinks according to a < apy, if x = 1— s,
(the LPS) and a <« a — apy,, if © = s, (the MPS). These are approximated by
A« py, and A «+— A—py,_, respectively, where py, is an integer approximation
to py, a2'® and o ~ 0.71 is an empirically observed mean of 2716 A. The LPS is
mapped to the lower sub-interval so that C' is unchanged; when an MPS occurs,
we map C' «— C + pyx,..

If this process leaves A < 25 a renormalization operation is applied to re-
store A to its legal range. During renormalization, both A and C' are multiplied
by 2 (i.e. left-shifted), incrementing N to preserve the validity of equation (3),
until A is restored to the range 2! < A < 2'6. The state variables, s, and
3, are updated only when a symbol which is coded in context x generates a
renormalization event (A < 219).

Since renormalization adds at least one bit to the length of the arithmetic
codeword (i.e., N) significant compression means that renormalization occurs
rarely. Indeed, the majority of symbols are coded as MPS’s and do not induce
renormalization. For these symbols, the MQ coder performs only three simple
steps: i) A — A—pyx, ;i) C — C+px,; and iii) a single bit test for the renormal-
ization condition, A < 2'5. The more expensive operations occur only during

6These enhancements were introduced with the QM-coder, adopted by the JBIG and JPEG
standards; probability estimation in the MQ-coder proceeds according to the state transition
table known as JPEG-FA in [20].
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renormalization; these include state transitions in the adaptive probability es-
timator, the renormalization shifts themselves, and the assembly of completed
code-bytes.

In dedicated hardware implementations, it is even possible to achieve through-
puts in excess of one symbol per clock cycle, by encoding or decoding consecutive
symbols concurrently. This is possible so long as the concurrently coded sym-
bols are not separated by a renormalization event. This possibility is described
in [20, Chapter 13.7] as a “speedup mode” for the QM-coder defined by the
JPEG standard. It is discussed further in [21]. Notice that the speedup mode
has a similar goal as the run mode described in Section 3.3.2. However, while
the run mode affects the bit-stream (and is thus mandatory), the speedup mode
is a matter of implementation.

The normalization policy described above ensures that A may be represented
using a 16-bit unsigned integer. At any point in the coding process, however,
C has a 16 + N bit representation. Since C' represents the lower bound of an
interval whose length is represented by A < 26, the value C’ represented by
these same 16 + N bit positions at any subsequent point in the coding process
must satisfy C < C' < C + 2'6. All arithmetic operations take place in the
16 LSB’s of C, but we are prevented from immediately dispatching the more
significant bits of C' to an output buffer by the possibility that a carry bit
generated by the arithmetic might propagate into these bits.

The QM-coder used by the JPEG and JBIG standards [20] stacks consecutive
FFy, bytes from the more significant bits of C' indefinitely, until carries can be
resolved. The MQ-coder, however, follows the Q-coder [19] in adopting a “bit-
stuffing” approach, which allows code bytes to be dispatched in a more regular
manner with lower implementation cost. Bytes are dispatched through a single
byte buffer; whenever this buffer assumes the value FFy,, an extra bit is inserted
into the representation of C' so as to ensure that the effect of future coding steps
may not propagate beyond the single byte stored in this buffer. Bit-stuffing adds
approximately 0.05% to the code length, but has the desirable effect of bounding
the number of operations which must be performed during renormalization.

The specific realization of bit-stuffing in the MQ-coder has the property
that any consecutive pair of bytes dispatched to the compressed bit-stream is
guaranteed to lie in the range 0000y, through FF8F,. JPEG2000 exploits this
property by defining unique marker codes in the range FF90;,, through FFFF},
which may be used to enhance error resilience and facilitate parsing and reor-
ganization of the code-stream. The reader is referred to [1] and [8] for further
details regarding error resilience, the MQ coder and associated implementation
techniques.

6.2 Software Experience

Table 2 provides timing figures for software implementations of the SPIHT and
JPEG2000 algorithms. The conditions and implementations used to obtain
these results are identical to those used to obtain the PSNR results in Table 1.
The image category identified as “popular” refers to the popular test images,
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Table 2: CPU time (us/pel) obtained by decompressing a single file, truncated to
different bit-rates, using a 400 MHz Pentium II processor.
|Categ0ry || 125 bps|.25 bps| .5 bps|1.0 bps|

Natural |JPEG2000 || .041us|.081us|.157us| .301us
(2560 [SPIHT-AC|| .363us| 1.29us|3.60us| 8.62us
X 2048) |SPIHT-NC|| .292us]|.9281s(2.84us| 8.63us
Chart [JPEG2000 || .053us|.081us|.153us| .301us
(2347  [SPIHT-AC|| .293us|.974us|2.84us| 5.94us
X 1688) [SPIHT-NC|| .033us| .308us|1.20us| 5.64 s
Popular | JPEG2000 || .043us| .067us|.154us| .290us
(512 SPIHT-AC|| .084us|.114us|.336us| .728us
X 512)[SPIHT-NC|| .044us| .054us|.112us| .338us

Lenna and Barbara. Only the decoding process is considered (not including the
DWT). This is due, in part, to the fact that the encoding time for JPEG2000
depends upon the policy used to determine the number of bit-planes which
should actually be encoded for each code-block. Ideally, one would estimate
this quantity with sufficient accuracy to avoid discarding most of the encoded
data during PCRD optimization, when the optimal set of code-block truncation
points is determined. Our motivation for not including DWT execution times in
the results reported in Table 2 is that both SPTHT and JPEG2000 are employing
exactly the same transform here. It is worth noting that the execution time
required for block encoding or decoding tends to dominate that associated with
a carefully optimized implementation of the DWT, except at very low bit-rates.

SPIHT has the advantage that the encoding process may be terminated
as soon as the desired bit-rate has been achieved. The price paid for this,
however, is that the encoding and decoding processes require non-local access
to the image transform coefficients. This, in turn, causes a dramatic reduction
in throughput as the image dimensions grow, since the machine spends most of
its time performing non-local memory accesses. Table 2 clearly demonstrates
this sensitivity to image size. Interestingly, the throughput of the JPEG2000
algorithm is competitive with the uncoded version of SPTHT, even when working
with small images.

6.3 Hardware Implementation

The JPEG2000 block coder has been designed with hardware implementation
in mind. As part of the process which led to the selection and refinement of
this algorithm by the JPEG committee, some of the expected properties of such
an implementation were investigated. Some discussion of these matters may
be found in [22] and [15]. In this section, we outline one possible high level
architecture for the block coder, along with measured statistics which may be
used to predict some aspects of its performance.

Figure 9 provides a high level overview of a possible implementation of the
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Figure 9: Bit-plane oriented block coding architecture. Decoder is similar with rever-
sal of some data flows.

block coder, which exploits the regular stripe oriented coding scan shown in
Figure 6. Interestingly, there is no need to buffer the samples of an entire
code-block in internal memory. Instead, we shall assume here that the relevant
quantized subband samples are available in an external memory and that they
are already separated into bit-planes: a sign bit-plane and K magnitude bit-
planes. As discussed in Section 6.4, such a memory organization leads naturally
to a scheme for controlling the external memory bandwidth associated with
intermediate buffering of subband samples. The block coder imports the sign
bits and the most significant magnitude bit-plane into an internal memory. It
then processes the most significant magnitude bits, while loading the next most
significant bit-plane and so forth.

All internal memories are organized into words which represent a single stripe
column. Each stripe column contains 4 samples and JPEG2000 limits the num-
ber of stripe columns in any code-block to at most 2'°. Thus, sign and magni-
tude bit-planes require 1K x4-bit memories. We consider an implementation in
which the magnitude bit-plane memory is double buffered, as indicated in the
figure.

A separate internal memory maintains a set of four binary state variables for
each location in the code-block. The significance state variable, o [j], is central
to the bit-plane coding operations described in Section 3.3. The sign state
variable, X [j], contains the sign bit of any sample which has become significant.
This is transferred from the sign bit memory at the appropriate point during
the coding process. 7 [j] is a coding pass membership state variable. It holds 1 if
location j has been included in the significance propagation pass of the current
bit-plane. Finally, T [j] is a delayed version of o [j]; it is initialized to 0 and
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Table 3: Useful statistics for estimating the throughput of block encoding and
decoding hardware.

| Bit-rate | Zavg | Ry | Renpty |
0.25 bps | 2.5 0.50 0.33
0.5 bps 4.5 0.93 0.59
1.0 bps 7.3 1.66 0.94
2.0 bps | 11.1 | 2.89 1.40
lossless | 18.4 | 5.77 2.24

toggled to 1 after the first magnitude refinement operation for sample location
j. The value of & [j] tells us whether or not v+ [j] > 1, when determining
the magnitude refinement context in accordance with equation (2).

The contents of the state memory are initialized to 0 and updated as the
coding proceeds. In order to determine coding pass membership and form coding
contexts for the locations in any given stripe column, we must have access to
state variables within a 6 x 3 window. This window consists of three consecutive
columns from the current stripe, from the last row of the preceding stripe and
from the first row of the following stripe. The window is managed by a type
of shift register, which reduces the number of internal memory accesses. The
structure of the shift register should be clear from Figure 9. As the coding
proceeds, the elements in this shift register which represent state variables for
the current stripe column may be modified.

Although we discuss only the encoder here, a decoder may be implemented
in almost identical fashion. In particular, the state variables assume identi-
cal values in the encoder and decoder at each coding step. To estimate the
throughput of an encoder or decoder implementation, we shall assume that the
MQ coder is able to process one symbol per clock cycle. This is not an unrea-
sonable assumption, considering the simplicity of the coding steps described in
Section 6.1. This suggests that the average throughput is upper bounded by
1/Rsym samples per clock cycle, where Rgy,, is the average number of binary
events coded by the MQ coder per image sample. We shall presently consider
factors which may prevent us from achieving such a throughput.

Table 3 provides observed values for the symbol rate, Ry, taken over the
three large photographic test images, “Bike”, “Cafe” and “Woman” (see Sec-
tion 5). These results are obtained using a reversible 5/3 DWT so that lossless
compression is achieved when the code-block bit-streams are not truncated.
Strictly speaking, the non-lossless results are directly applicable only for de-
coding, since the encoder must generally process more coding passes than are
usually included in the final bit-stream. These results suggest a maximum av-
erage throughput for lossless encoding or decoding of 1/5.8 samples per clock
cycle.

To achieve this maximum throughput, the M(Q coder must be kept continu-
ously active. In particular, clock cycles cannot be wasted in processing sample
locations which do not belong to the current coding pass. For example, if each
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sample location of each stripe column required a single clock cycle per coding
pass, the average throughput would be limited to 1/Z,,, samples per clock cy-
cle, where Z,,, is the average number of coding passes per code-block. The
observed statistics reported in Table 3 suggest that in such an implementation
approximately 75% of the clock cycles would be wasted. The run mode de-
scribed in Section 3.3.2 also commonly dispatches an entire stripe column with
a single symbol.

A more efficient implementation is possible, e.g., by performing multiple
tests concurrently to identify the next member location within a single stripe
column. In this case, each clock cycle would process the next unprocessed
sample location which actually belongs to the current coding pass, so long as
the stripe column contains such a location. A clock cycle need only be wasted
when a stripe column is “empty,” meaning that none of its sample locations
belong to the current coding pass. The last column in Table 3 provides observed
statistics for the average number of empty stripe columns, Reppiy, expressed as
a fraction of the number of image samples. An enhanced implementation of
the form described above should be able to achieve an average throughput of
1/ (Rsym + Rempty) samples per clock cycle. Thus, for truly lossless compression
or decompression, an average throughput of 1/8 samples/clock appears to be
quite realistic, while much higher throughputs can be achieved at lower bit-
rates. A reduction of Rempty by processing multiple stripe columns together
would cause an increase in the peak access bandwidths that internal memories
would need to support.

It is instructive to consider the importance of the stripe oriented scanning
pattern in Figure 6 to the block coding architecture outlined above. In general,
larger stripe heights allow for reduced internal memory access bandwidth. This
is because access to the rows above and below each stripe (for context forma-
tion) may be amortized over a larger stripe height. On the other hand, larger
stripe heights also imply larger registers and more complex coding logic. The
JPEG committee adopted stripes of height 4 as a compromise between these
extremes. This particular stripe height also has subtle advantages for at least
some efficient software implementations, such as that used by the JPEG2000
verification model software. For a detailed discussion of these issues, as well as
a number of interesting enhancements to the hardware architecture suggested
above, the reader is referred to [8].

6.4 Buffering Resources

The main elements in an implementation of the JPEG2000 standard are the
DWT and block coder. Figure 10 illustrates a possible interaction between
these elements and the application. The compressor and decompressor have
similar properties, with the data flows reversed. We assume that the images
involved are large enough to rule out buffering of a single line of image samples
in internal memory. Thus, we will consider architectures in which the required
internal memory size is independent of the image dimensions. We also assume
that the application supplies (or consumes) image samples line by line.
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Figure 10: Interaction between DWT and coding sub-systems in a JPEG2000 com-
pressor. Decompressor is similar, with data flow directions reversed.

Each DWT stage is essentially a type of filtering operation and may be
implemented incrementally as image lines appear (or are consumed), using well
established hardware implementation techniques. Successive DWT stages may
be pipelined in various ways so that there is never any need to buffer the entire
image or any comparable quantity. For details and analyses of various DWT
implementation strategies, the reader is referred to [15, 8]. For our present
purposes, it is sufficient to make the following summary observations.

In general, memory size may be traded for memory bandwidth (between
on-chip and external memory) by adjusting the number of image sample lines
which are processed together. As an example, it is possible to implement the
DWT with the CDF 9/7 wavelet kernels using approximately 20 to 80 image
lines of working memory. Assuming 8-bit image samples, the upper end of this
range allows for external memory bandwidths as low as 2.4 byte transactions
per image sample, including the cost of 2 bytes/sample associated with writing
each original image sample to memory and subsequently retrieving it”.

The memory and bandwidth figures quoted above do not include the cost of
buffering quantized subband samples in memory prior to coding (or buffering
decoded quantization indices in memory prior to the inverse DWT). In some
designs it might be possible to avoid such intermediate buffering of quantized
subband samples. In the present discussion, however, we shall assume that the
system must support the costs associated with such buffering and we endeavour
to provide useful estimates for the average values of these costs.

The block coder architecture suggested in Section 6.3 expects to read or
write quantized subband samples bit-plane by bit-plane. To make this possible,
the subband samples produced by the DWT may be immediately quantized,
assembled on-chip into chunks (e.g., 64 samples at a time) and then written
out bit-plane by bit-plane to external memory for later coding. This is identi-
fied as “bit-plane resequencing” in Figure 10. A dual process may be used for
decompression.

"In some cases, the application may be prepared to supply or consume image samples in
exactly the same order as that required by the DWT implementation, in which case the 2
byte/sample transaction cost might be eliminated.
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Table 4: Average buffered bits per subband sample and corresponding buffer memory
bandwidth, expressed in byte transactions per sample.

|bit-rate: |O.25 bps 0.5 bps 1.0 bps 2.0 bps lossless
bits/sample: [0.79 1.43 2.46 3.79 5.99
Beoder: 0.20 0.36 0.61 0.95 1.50

Bit-plane resequencing has a positive impact on external memory bandwidth.
Without such a device, the buffering cost of a similar algorithm is estimated
n [22], based on the assumption that each subband sample can be accurately
represented with at most twice as many bits as the original image samples.
Noting that there are 3 subbands in almost all DWT levels and the width of
subbands at level d is 27¢ times the width of the original image lines, the above
assumption on the precision of the subband samples implies a bound of

Seoder S 21y 3+27% = 6.J; image lines
d=1

on the subband buffering memory size, where J; is the code-block height. As-
suming 2 bytes per subband sample, the external memory bandwidth associated
with this buffering is 4 byte transactions/sample. In a practical system, the
buffer memory size might need to be further increased (e.g., double buffering)
to further decouple the DWT and coding sub-systems.

Fortunately, much lower memory bandwidths (and somewhat smaller buffer
sizes) may be realized by exploiting the fact that subband samples are buffered
bit-plane by bit-plane. The bit-plane resequencer can determine the actual num-
ber of bit-planes which must be buffered for each chunk. In most chunks, most
of the more significant magnitude bit-planes are entirely zero (insignificant) and
need not be explicitly buffered. Further advantages are available during decom-
pression, since many of the least significant bit-planes may not be decoded, due
to truncation of the embedded block bit-streams.

Table 4 indicates the average number of bits per subband sample (including
significant magnitude bits and the sign bits of non-zero chunks) which must
be written to and retrieved from the bit-plane buffer, assuming a chunk size
of 64 samples. These results are obtained under the same conditions as those
in Tables 1 and 2. The table also reports the corresponding average memory
bandwidth, B.oger, €xpressed in byte transactions per sample. Evidently, the
average memory bandwidth associated with bit-plane buffering can be quite
modest.

7 Mode Variations

The JPEG2000 standard allows for a number of variations on the algorithm
described thus far. The mode variations are sufficiently minor that the need to
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support all modes may not impose a significant burden on decoder implemen-
tations.

7.1 Parallel Execution of Coding Passes

The JPEG2000 block coder lends itself to parallel implementation techniques at
a “macroscopic” level, since any number of blocks may be encoded or decoded
concurrently. The standard also defines modes which enable the parallel pro-
cessing of individual coding passes within a code-block. Some of the relevant
considerations are discussed in [23].

The key steps which must be taken to enable parallel implementation of the
coding passes are:

1. Terminate the MQ codeword at the end of each coding pass®.

2. Initialize the MQ coder and all 18 probability models at the beginning of
each coding pass.

Parallel coding pass implementations are greatly facilitated by the addition
of a third modification:

3) Eliminate the dependence of coding steps within any given stripe on the
significance or sign of samples in the next stripe.

We refer to this third modification as “stripe-causal” coding. Stripe-causal
coding affects context formation only for samples in the last row of a stripe
column. The JPEG2000 block coder provides mode switches to achieve each of
the three modifications described above, either individually or together. The
cost of parallelism is surprisingly low, as little as 0.1dB on the average (with
the largest code-blocks).

In order to take advantage of the opportunities for additional parallelism en-
abled by this mode, an implementation may perform a number of coding passes
in parallel, for a number of code-blocks. In the extreme case, an implementation
might perform all coding passes in parallel for each and every code-block. It
should be noted, however, that based on the statistics shown in Table 3, most of
the coding pass processors are likely to be idle most of the time. Alternatively, a
smaller number of coding pass processors, say 8, might be implemented. These
processors might need to be invoked multiple times in order to process some
code-blocks. The need to synchronize parallel coding pass processors may be
the cause of additional idle clock cycles for any given processor.

8The reader may wonder why this is not required in the sequential mode described hitherto,
since the embedded bit-stream may be truncated at the end of any coding pass. The encoder
actually records the length of a prefix of the embedded bit-stream, which is sufficient to decode
all included coding passes. The decoder is expected to append FF’s to the prefix which it
actually receives and the encoder typically exploits this fact to determine a suitable (possibly
minimal) prefix length.

In sequential mode, lengths are recorded for each quality layer to which the block makes a
non-empty contribution. In the parallel mode, length information is recorded for every coding
pass. For a thorough discussion of these matters, the reader is referred to [8].
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In addition to the opportunities for parallelism, this mode variation enables
the reduction of buffering resources in cases where the application supplies or
consumes the image in a line-by-line fashion, by decoupling the number of lines
jointly processed by the DWT from the block height. Notice that the savings
enabled by bit-plane resequencing in Section 6.4 are based on the statistics
presented in Table 3. In systems with limited buffering resources, a design may
need to assume a worst case scenario. In the parallel mode described in this
section, the coder can process and discard a block-stripe, moving to the next
code-block and saving the state of the system (context and MQ-coder states, as
well as boundary conditions for determining future contexts). The saved state
is then retrieved to be used for processing the next stripe in the code-block, as
soon as this stripe is supplied by the transform.

In this way, there is no need to buffer entire code-blocks of quantized subband
samples in external memory. In fact, by tightly coupling the implementations of
the block coder and DWT, intermediate buffering of quantized subband samples
may be eliminated altogether [15]. Moreover, this may be achieved without
imposing unreasonable constraints on number of lines processed together by the
DWT?. Of course, saving the coder state information itself imposes a penalty
in terms of memory size and memory bandwidth. The possibility of eliminating
intermediate buffering of subband samples may be of interest in applications
where peak (rather than average) memory bandwidth is an important resource.
While the parallel mode is not necessarily advocated as an improvement on
memory bandwidth (unless the storage of coder states can be done in internal
memory), it clearly provides more flexibility in managing the trade-offs between
memory size, memory bandwidth and internal complexity.

7.2 Lazy Coding

As one might expect, symbol probabilities tend to be substantially less skewed in
the less significant bit-planes. As a result, little benefit is generally derived from
the use of arithmetic coding in the significance propagation, P}, and magnitude
refinement, PF, coding passes for p < K — 4. The coder provides a mode for
bypassing the MQ coder altogether in these coding passes, which can result in
significant speedup for software implementations at very bit-rates; it can also
reduce the complexity of a parallel coding pass implementation, as discussed
above. For most natural images, this mode appears to have negligible effect on
compression efficiency. On the other hand, artificial imagery, including text,
graphics and compound documents tend to suffer more significantly.

8 Summary

JPEG2000 is an advanced image compression standard which incorporates and
emphasizes many features not found in earlier compression standards. Many

91t is sufficient for the DWT to produce or consume subband sample lines in multiples of
4, the stripe height.
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of these features are imparted by independent, embedded coding of individual
blocks of subband samples. In this paper, we have described the embedded block
coding algorithm, its various advantages, indicative compression performance
and some of its implications for implementation complexity.

There is no doubt that the JPEG2000 standard is substantially more complex
than the baseline sequential JPEG algorithm, both from a conceptual and an
implementation standpoint. On the other hand, efficient implementations of the
algorithm in hardware and software are not beyond reach. JPEG2000 combines
state-of-the-art compression performance, with a very rich set of features, which
may help to usher in a new generation of imaging applications.
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