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I.  INTRODUCTION 

 
The purpose of this work is to improve the accuracy of predictive performance modeling 

techniques so that they may be more reliably applied in system sizing, capacity planning, and 

systems management exercises. In particular, we focus on the impact of high variability and 

heavy-tail distributions on the accuracy of predictions for system responsiveness. 

The systems we consider are session-based systems, e.g., e-commerce and enterprise application 

systems. A session is defined a sequence of related customer requests that accomplish some 

business purpose. For example, in an e-commerce system, requests may be for a Home page or a 

Buy transaction. The number of requests submitted by a session is defined as the session length. 

We argue that for systems with bursts in the number of concurrent sessions, knowing the mean 

or maximum number of concurrent customer sessions is not generally sufficient to enable 

accurate performance predictions. It is necessary to consider the distribution of concurrent 

customer sessions.  We refer to this distribution as the session population distribution. 

Several studies have indicated that multi-tier session-based systems experience bursty workloads 

and that burstiness can adversely affect performance [18] [19]. Techniques have been proposed 

to reflect the impact with heavy-tail distributions in performance models [3][9], but they are not 

general enough for the problem we consider. Hybrid models that combine Markov-chain birth-

death processes with Queuing Network Models (QNM) have been proposed to reflect load 
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dependent behaviour on mean response times [28]. However, these techniques are not adequate 

for capturing the impact of complex underlying workload parameter distributions that can 

contribute to burstiness in population distribution.   

In this paper we propose and evaluate a new approach to estimate population distribution called 

the Weighted Average Method (WAM). WAM is motivated by the hybrid approach mentioned 

previously but does not rely on a birth-death model. Instead it exploits a fast Monte Carlo 

simulation to estimate population distribution. The primary advantage of the newly proposed 

method is that it is more robust with respect to the distributions that contribute to bursty 

behaviour. For example, it permits the study of arbitrary distribution functions for workload 

parameters such as session inter-arrival time, think time, and session length in a straightforward 

way.  

We demonstrate the WAM technique in a study involving a multi-tier TPC-W [25] benchmark 

system. The system was subjected to controlled workloads to explore its responsiveness when 

subjected to bursty behaviour. We developed both QNMs and extended QNMs called Layered 

Queuing Models (LQM) [7][8] for the system.   The results indicate that modeling approaches 

that only consider the mean number of concurrent sessions produce very poor estimates of mean 

response time for systems with bursty workloads.  The average prediction error for bursty 

workloads is nearly 24% and 21% for the QNM, and the LQM, respectively.  Furthermore, for 

bursty workloads, using the QNM and LQM models in combination with a Markov birth-death 

model does not improve prediction accuracy significantly.  In contrast, the WAM approach 

significantly improves the accuracy of mean response time predictions.  For bursty workloads, 

average prediction errors dropped by 12% and 10% for LQMs and QNMs, respectively, as 

compared to the Markov birth-death approach. Moreover, the LQM-based WAM approach had 

much lower average error and range of errors than the QNM-based WAM approach.  

The remainder of the paper is organized as follows.  Section II describes related work. Section III 

describes the WAM approach in detail.   A measurement study for the multi-tier TPC-W system 

is presented in Section IV.  The section provides insights into the impact of burstiness on 

session-based systems. Section V presents a QNM and a LQM for the multi-tier system.  Section 
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VI investigates the accuracy of WAM in predicting the mean response times for the experiments 

described in Section IV.   Summary and concluding remarks are offered in Section VII. 

II. BACKGROUND AND RELATED WORK 
 
Several studies have indicated that multi-tier session-based systems experience bursty workloads 

and that burstiness can adversely affect performance.  Menasce et al. [19] characterized the 

workloads observed at an e-commerce system and an auction system.  The authors found that 

both systems were characterized by bursty arrivals of requests over several timescales.  They 

invoke the properties of the well-known ON-OFF process [20] to argue that the bursts observed 

at fine timescales, i.e., several dozen seconds, were due to the heavy-tailed nature of the session 

length distributions observed at the systems and the presence of think t imes in sessions.  

Vallamsetty et al. also noticed similar burstiness in the arrival of requests at another real e-

commerce system [18].  The authors attribute this phenomenon to the highly variable service 

times for requests at the backend tiers of the system, i.e., the application servers and the database 

server.  Krishnamurthy et al. [21] showed for a multi-tier system that distributions which cause 

highly variable session lengths, think times, and request resource demands result in high 

variability in the customer population distribution and hence burstiness in request arrivals at fine 

timescales.  This suggests that modeling customer population distribution may be helpful for 

modeling the impact of burstiness.   In addition to such fine timescale burstiness, burstiness has 

also been observed at coarser timescales, e.g., hours, days, in real-session based systems [22].             

Burstiness can have a big impact on how predictable or repeatable a system’s behaviour is in 

response to similar workloads. Crovella and Lipsky showed that the steady-state values for 

performance measures from multiple statistically identical simulation runs that use heavy-tailed 

distributions can result in very different measures for each run [24].  Krishnamurthy et al. [21] 

confirmed this for multi-tier software systems. For a TPC-W system servicing bursty workloads, 

the authors found that multiple statistically identical measurement runs with the same mean 

resource demands and same throughput resulted in significantly different mean response time 

measurements.  These results suggest the need for modeling approaches that characterize a range 

of possible system behaviours under bursty workloads.   

There are many examples of predictive performance models for systems. These include Markov 

chains [4] and related models such as Stochastic Activity Networks (SAN) [5] and Petri-Nets [6], 
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QNMs [1][2][3], and extended-QNMs such as LQMs [7][8]. The Markov chain related 

approaches enable very detailed models of systems. But in general, their solution efficiency does 

not scale to support even modestly sized systems of the kind we consider. Mean value analysis 

(MVA) for QNMs [2] offers a more restrictive modeling technique than Markov chains.  Yet, it 

is a much more efficient technique for obtaining exact, and approximate [10][11], solutions for 

QNMs and as a result it can be used to study larger systems.  

MVA and QNMs have been used to study computer system performance since the early 1970’s.  

Several researchers have recently applied them directly to the study of multi-tier systems 

[13][14]. LQMs are based on QNMs, and were developed starting in the 1980’s to consider the 

performance impact of software interactions in multi-tier software systems, e.g., systems that 

have contention for software resources such as threads. Tiwari et al. [15] report that layered 

queuing networks were more appropriate for modeling a J2EE application than a Petri-Net based 

approach [16] because they better addressed issues of scale.  Balsamo et al. [17] conclude that 

extended QNM-based approaches, such as LQMs, are the most appropriate modeling abstraction 

for multi-tiered software environments. 

MVA of QNMs and LQMs only consider the average customer population of a system.  More 

complex techniques exist which could potentially be used for modeling the impact of burstiness.  

Classical queuing theory offers G/G/* queues [4] that can take into account the first and second 

moments of any arbitrary request inter-arrival time distribution. However, exact solution 

methods for mean response times do not exist for networks of such queues and reliable estimates 

from approximate solutions are difficult to obtain [4]. Furthermore, heavy-tail-like distributions 

require more than the first two moments for a proper characterization. Recently, Psounis et al. 

[9] considered a single multi-server queue that is subjected to heavy-tail-like distributions. 

However, the approach has not been extended to queuing networks. 

Menasce and Almeida propose techniques that consider heavy-tailed distributions and bursty 

request arrivals for Web server systems [3].  Specifically, they describe a QNM that reflects the 

impact of a heavy-tailed file size distribution at Web servers serving static HTML pages.   The 

authors argue that a multi-class model where the classes represent requests for files belonging to 

different file size ranges is more suited for capturing the impact of the heavy-tailed distribution 
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than a single class model. This technique is specific to systems that serve static files.  It is not 

intended for transaction-oriented, session-based systems of the kind considered in this work.  

The authors also propose another heuristic technique that uses a QNM to reflect the impact of 

burstiness in request arrivals. The technique splits a given HTTP request log into equal sized 

time periods.  It counts the number of time periods for which the average request arrival rate 

exceeded the request arrival rate observed over the entire log.   This count is used to compute a 

burstiness factor which is in turn used to inflate the service demand of the bottleneck device in a 

QNM [3]. However, the technique was not validated with respect to measurements and was not 

proposed as a constructive technique that permits a performance analyst to assess the impact of 

distributions that contribute to burstiness on mean response time behaviour. 

Menasce and Bennani [26] used a hybrid model that combines a Markov chain birth-death model 

with QNMs to capture the customer population distribution at multi-threaded servers.  However, 

the authors’ use of the population distribution was not for modeling the impact of burstiness.  

Instead they focused on load dependent behaviour. This is an alternative approach to using the 

threaded servers directly supported via residence time expressions in LQMs. The hybrid 

technique has also been used to study the performance of systems that are characterized by both 

open customer arrivals and closed customer circulations [28].    

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Hybrid Markov chain birth-death model for a session-based system 
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We apply the hybrid approach for a session-based system as shown in Figure 1. The hybrid 

approach is treated as a baseline approach for modeling session population distribution in the 

case study of Section VI.   In Figure 1, the birth-death process has multiple states, Sk for k=0...N.  

Each state k denotes the number of concurrent sessions in the session-based system.  Sessions 

arrive at the system from the outside world.  Each session arrival causes the number of 

concurrent sessions to increase by 1.  The rates at which such transitions occur are given by the 

state dependent session arrival rates •sk.  A session submits L requests on an average, i.e., mean 

number of visits, where L is the mean session length.  Z denotes the mean think time between 

successive requests in a session.  Each session completion causes the number of concurrent 

sessions to decrease by 1.  The rates at which such transitions occur are given by the session 

death rates •sk.  At a given state k, k concurrent sessions are competing for the session-based 

system’s resources.  Consequently, as shown in (1) the death rate •sk can be calculated as the 

session throughput Xsk obtained by solving a closed QNM or LQM with a session population of k 

and mean think time of Z.   
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In (1) Rk is the mean request response time obtained from the predictive model.  Balance 

equations involving the birth and death rates can be solved to obtain the probability Pk of 

residing in each state k as follows: 
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The probabilities Pk, for k=0…N defines the population distribution. Equations (2) and (3) can be 

written in terms of request arrival and completion rates.  The request arrival rate •k is the session 

arrival rate •sk multiplied by the mean session length L.  Similarly, the request throughput Xsk is 

the session throughput Xsk multiplied by the mean session length L.  Using these relationships (2) 

and (3) can be rewritten in terms of request-level rates as follows: 
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The mean request response time for the system is estimated using Little’s law [27] as follows: 
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We note that the hybrid technique’s estimates of the population distribution are accurate only for 

workloads that cause the distributions of time spent at each population level to be exponentially 

distributed [4]. However, this is not expected to be the case for systems affected by burstiness.   

The WAM approach that we present in this paper requires a trace of sessions to reflect the 

distributions under study. We exploit the SWAT method [21][29] to create such traces. SWAT 

permits the specification of a workload mix in terms of the ratio of different request types, e.g., 

Home, Browse, Buy, supported by the system under test.  It also supports the specification of 

arbitrary session inter-arrival time, request think time, and session length distributions. SWAT 

uses a set of pre-existing and semantically correct sessions to create a workload for a test that 

satisfies a desired specification. The workload is modeled as a trace file of sessions S.  We 

employ SWAT in Section IV to submit controlled workloads based on S to a TPC-W multi-tier 

system to obtain measurement results. SWAT also provides traces of sessions for WAM’s 

estimation process for session population distribution. The following section describes the WAM 

approach.  

III. WAM 
 
This section describes WAM which is a method for improving the accuracy of performance 

predictions for systems with bursts in the number of concurrent customer sessions. The method 

is motivated by the approach in Figure 1 but uses a Monte Carlo simulation to quickly estimate 

the population distribution, i.e., per population level probabilities Pk for k=0…N, rather than 

relying on the closed formulae for the birth-death process from (4) and (5). The remainder of the 
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performance prediction method is similar to that shown in Figure 1. We now describe the 

population distribution estimation process. The algorithm for the population distribution 

estimator is summarized in Figure 2. 

The WAM approach relies upon the following: 

• A trace file of sessions S; 

• A sequence R of mean request response time estimates Rk for k=0…N for the system – 

one for each concurrent session population level k as obtained by solving a predictive 

model with a mean customer think time of Z seconds; and, 

• A sequence X of mean request throughputs Xk for k=0…N for the system – one for each 

concurrent session population level k.  

A trace file S can be based on a historical session log from a real system, or it can be 

synthetically generated using a tool such as SWAT. Each session in the trace has an arrival time. 

Each request has a session identifier, a start time and end time such that (end time – start time) is 

the response time of the request, and a flag that indicates whether a request is the last request for 

its session. For all but the last request in a session, we define a request’s think time as the time 

between its end time and the start time of the next request in the session. The first request of a 

session has a start time that is equal to its session’s arrival time. The sequence R of response 

time estimates is obtained from a performance model for the system, e.g., a QNM or an LQM. 

The sequence X of throughput estimates are obtained from the trace S using the method 

described shortly.   

The population distribution estimator operates as follows. When using a historical trace file S, 

per request response times are known so the sequence R of response time estimates is not needed 

to compute the population distribution. The population distribution estimator computes the Pk for 

k=0...N values by traversing the trace of sessions S noting when the first request of each session 

starts and the last completes. In this way it is able to keep track of and report the aggregate time 

that the system has spent at each session population level. When normalized with respect to the 

total simulated time this gives the population distribution Pk, k=0…N. Furthermore, as shown in 

Figure 2 the population distribution estimator also tracks the aggregate number of request 

completions observed at each session population level.  Knowledge of these completions and the 

aggregate time spent at each session population level allows us to compute estimates of Xk for 
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k=0…N. The simulations are very quick, essentially requiring the time to traverse the trace file 

and are robust with respect to arbitrary workload parameter distributions. 

When using a synthetically generated session trace file, the session arrival times, think times, and 

session lengths are known from the trace. However, only the first request’s start time is known. 

The request end times and hence response times are not known. As the population distribution 

estimator traverses the session trace, each time it encounters a new request, it estimates the 

request response time as the mean request response time given by R based on the current 

estimate for the number of concurrent sessions.  That is, if the current session population is k, 

then Rk is used to estimate the end time for the request as start time + Rk. The request’s think 

time is recorded in the trace and could be from any desired distribution. The next request has a 

start time equal to the end time + think time from the previous request. We note that using the 

mean response time from a model is an approximation of the response time for the request. The 

effectiveness of this approximation is evaluated in Section VI. Finally, WAM computes the 

overall estimate for mean response time in the same manner as (6).  

WAM can also be used to explore the predictability of a system’s behaviour. By using different 

seeds for random number generation, SWAT can be used to generate multiple session trace files 

that match the desired workload parameters. Each trace may provide different estimates for the 

population distribution and may result in a different estimate for mean system request response 

time. As mentioned in Section II, this is expected for systems influenced by heavy-tailed 

distributions. Each execution is an example of how the system may behave. A range of estimated 

mean response times, from multiple simulations, provides information about how variable, i.e., 

un-predictable, we can expect a system’s behaviour to be. 
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1. Create a Future Event List (FEL).  FEL stores events in chronological order. 
2. Current_Population=0 
3. State_Start_Time=0 
4. State_End_Time=0 
5. Initialize elements of Aggregate_State_Time array to 0.  This array has Nmax elements where Nmax is the 

maximum population. 
6. Initialize elements of Aggregate_State_Completions array to 0.  This array has Nmax elements. 
7. Obtain Predictive_Model_Response_Time array by solving a predictive model. This array has Nmax 

elements. 
8. Create request submission events corresponding to first requests of all sessions in trace S.  Store the events 

in the FEL 
9. While FEL is non-empty 

Select earliest event in FEL 
If event is submission of a request 

  If request is first request in a session 
    State_End_Time = start time of request 
   Aggregate_State_Time[Current_Population]+=(State_End_Time-State_Start_Time) 
   Completions=Request completions in the period (State_Start_Time, State_End_Time) 
   Aggregate_State_Completions[Current_Population]+=Completions 

State_Start_Time=State_End_Time 
   Current_Population+=1 
  End If 
  If S is a historical trace 
   Response_Time = Get actual response time of request 
  End If 
  If S is a synthetic trace 
   Response_Time = Predictive_Model_Response_Time[Current_Population] 
  End If 
  Create a request completion event at (State_Start_Time+Response_Time) 
  Update FEL with the event 
  Continue 

If event is completion of a request 
  If request is last request in a session 
   State_End_Time = end time of request 
   Aggregate_State_Time[Current_Population]+=(State_End_Time-State_Start_Time) 
   Completions=Request completions in the period (State_Start_Time, State_End_Time) 
   Aggregate_State_Completions[Current_Population]+=Completions 

State_Start_Time=State_End_Time 
   Current_Population-=1 
   Continue 
  End If 
  Think_Time = Get think time of request 
  Create a request submission event at (State_Start_Time+Think_Time) 

   Update FEL with the event 
  Continue 

 End While 
10. Compute Total_Time as sum of elements of Aggregate_State_Time 
11. Compute Pk values by dividing each element of Aggregate_State_Time by Total_Time 
12. Compute Xk by dividing each element of Aggregate_State_Completions with the corresponding element of 

Aggregate_State_Time 
13. Use equation (6) to compute mean response time 
 

Figure 2: Algorithm for the population distribution estimator and WAM 
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We note that the WAM algorithm of Figure 2 does not take into account embedded requests for 

objects such as images and multimedia files. Such content is often hosted on external servers or 

content delivery networks as was the case with the real systems studied in [23] and [18]. We 

consider support for embedded requests as future work. 

IV. MEASUREMENTS FOR A MULTI-TIER SYSTEM 
 
This section applies the SWAT tool to perform controlled experiments on a multi-tier e-

commerce system executing the TPC-W bookstore application. We consider a subset of the 

results of our earlier work [21] that was aimed at demonstrating the SWAT workload generator.  

We augment those results with additional measurement scenarios. In particular, we consider 

cases that cause greater disk demands and that have larger numbers of items in the TPC-W 

database, respectively. The additional cases explore a greater range of system behaviours. The 

measurements provide insights into the impact of burstiness on measured mean demands and 

mean response times for the session based system. The measurements are also used to obtain 

parameters for the predictive models in Section V and to assess the accuracy of WAM with 

QNMs and LQMs in Section VI. 

A.  Experiment Setup 
 
The experimental setup consists of a client node, a Web and application server node and a 

database node connected together by a non-blocking Fast Ethernet switch, which provides 

dedicated 100 Mbps connectivity to each node.  The client node is dedicated exclusively to 

execute an httperf Web request generator [30] that submits the synthetic workloads used in this 

study. The Web/application server node executes the Web and application server tiers. It 

implements the TPC-W application's business logic and communicates with the TPC-W 

database. The database node executes the database server which manages the TPC-W database.  

Finally, a performance monitoring utility is employed that collects a user-specifiable set of 

performance measures from both server nodes at regular specified sampling intervals.   

The TPC-W application is deployed on Web, application, and database servers that are part of a 

commercial off-the-shelf software product. The name of the product has been withheld due to a 

non-disclosure agreement with the vendor.  The system is configured to not serve images. Image 

requests were not submitted in any of our experiments.  We note that that the experiments 



 

12  

presented in this study are not TPC-W benchmark runs.  The TPC-W bookstore system merely 

serves as an example system for the study.  

All our experiments employ HTTP 1.1 over SSL.  Configuration parameters related to HTTP 1.1, 

e.g., persistent connection timeout, are chosen to force a single connection per session 

irrespective of session duration or the load on the system. This ensures that two workloads with 

the same number of sessions, mean session length, and mean think time impose the same 

connection establishment and connection shutdown overheads on the Web server.  Consequently, 

any difference in performance between them is solely due to differences in the higher-level 

workload characteristics, i.e., session length distribution, think time distribution, and workload 

mix.   

The number of server processes and the threading levels are set as follows.  The number of Web 

server threads is set to be 1000.  This was much greater than the maximum number of concurrent 

connections encountered in the experiments.  The number of application server processes is fixed 

at 16, an upper limit imposed by the application.  The number of database server threads for the 

database server was set to the upper limit of 32. 

The primary performance metric of interest for the study is the user-perceived mean response 

time (Rmean) for the requests at the TPC-W system.  This metric is of interest for system sizing, 

capacity planning, and service level management exercises.  We define response time as the time 

between initiating a TCP connection for a HTTP request and receiving the last byte of the 

corresponding HTTP response.  The measured response time is a good indicator of the delay 

suffered by the request at the TPC-W system, provided the network and the client workload 

generator node are not saturated. 

B.  Experiment Design 
 
The following factors are considered for the experiments: a) session inter-arrival time 

distribution; b) session length distribution; c) think time distribution; d) workload mix; and, e) 

application settings. 

For the session inter-arrival time distribution, we assume session arrivals are uncorrelated, which 

is consistent with several previous studies, e.g., [31].  Consequently, an exponential distribution 
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is used to generate session inter-arrival times for all experiments.  The mean session inter-arrival 

time is chosen to achieve desired utilizations at the bottleneck resources.  We note that a Poisson 

arrival process for sessions does not imply a non-bursty arrival of requests.  As mentioned in 

Section II, the burstiness of the request arrival pattern depends on various attributes such as the 

distributions of session length and think time.   

For the session lengths and think times, we consider two different distributions: empirical and 

bounded Pareto. We use these to represent the expected and worst cases for variability, 

respectively.  The empirical distributions are obtained from workload data collected from a large 

e-commerce system [23].  Since that system did not serve requests for images embedded in Web 

pages, we use the request inter-arrival times within a session as measured at the system as an 

approximation of the think times within sessions.  The bounded Pareto distribution [32], a 

“heavy-tail-like” distribution, is used to study the impact of distributions that have a slightly 

heavier tail relative to the empirical distribution. The distribution is characterized by three 

parameters: •, the tail index, which governs the rate at which the tail of the distribution decays, k 

the smallest possible observation and p the largest possible observation. These parameters are 

deduced as follows.  The parameter p is set to the maximum observation obtained from the 

empirical distribution.  We then choose k and • such that mean of the empirical distribution is 

matched. The • values chosen in this manner are 1.16 for the session length distribution and 1.10 

for the think time distribution. Table 1 shows the minimum, maximum, and mean of 

observations obtained with the distributions for the synthetic workloads used in the study.  

Table 1: Session length and think time statistics 
 Empirical Bounded Pareto 

Minimum 3 3 
Maximum 120 120 

 
Session length (Requests/session) 

Mean 9.44 9.44 
Minimum 0 12 
Maximum 900 900 

 
Think time (s) 

Mean 46.54 46.54 

 

We consider three workload mixes with different levels of variability in request resource 

demands. Table 2 shows these mixes along with the mean “no-load” mean response times (Rmean) 

measured for each of the 14 TPC-W request types.  The Rmean values are obtained when the 

number of concurrent sessions is set to one.  Consequently, they reflect the end-to-end resource 

demands across all resources for request types for the TPC-W system.  The TPC-W Shopping 
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mix [25] is used as a high demand variation mix (Hi-Mix) in this study.   We also define a 

slightly different mix with slightly lower variation in demand (Med-Mix). To construct such a 

mix, we reduce the proportions of requests belonging to the top two resource intensive request 

types Buy request and Buy confirm and the non-resource intensive Home request type 

and cause a corresponding increase to the proportion of requests belonging to the Product 
detail request type, relative to the Hi-Mix. Finally, we also construct the Lo-Mix to reflect a 

mix that has a slightly lower mean demand and lower variation in demand than both the Hi-Mix 

and the Med-Mix. As shown in Table 2, this is achieved by eliminating certain resource intensive 

request types such as Buy request followed by a concomitant increase to the less resource 

intensive Home request type.   
Table 2: Mean no-load response times of request types and workload mixes 

 Rmean(s) Hi-Mix Med-Mix  Lo-Mix 
Home 0.09 16.00% 9.00% 23.46% 
New products 0.18 5.00% 5.00% 5.00% 
Best sellers 0.18 5.00% 5.00% 5.00% 
Product detail 0.23 17.00% 27.80% 17.00% 
Search request 0.07 20.00% 20.00% 20.00% 
Search results 0.13 17.00% 17.00% 17.00% 
Shopping cart 0.24 11.60% 11.60% 11.60% 
Customer registration 0.21 3.00% 3.00% 0.00% 
Buy request 0.63 2.60% 0.00% 0.00% 
Buy confirm 0.25 1.20% 0.00% 0.00% 
Order display 0.18 0.66% 0.66% 0.00% 
Order inquiry 0.05 0.75% 0.75% 0.75% 
Admin request 0.09 0.10% 0.10% 0.10% 
Admin confirm 0.14 0.09% 0.09% 0.09% 
Mean Rmean (s) 0.16 0.16 0.14 
COV of request response time 0.62 0.41 0.39 

 
Table 2 also shows the mean no-load response time and the coefficient of variation of no-load 

request response time computed for the three mixes. These correspond closely to aggregate 

resource demand usage. It can be seen that our design causes the Med-Mix to have a lower 

coefficient of variation (COV) of request response time than the Hi-Mix while maintaining the 

same no-load Rmean for both mixes. Finally, both the no-load Rmean and the COV of request 

response time for the Lo-Mix are slightly lower than that for the other mixes.       

To establish the robustness of our modeling technique, we conducted experiments with three 

different application settings Base, HighDiskU and BigDB.  The Base setting corresponded to 

a TPC-W application configured with 1000 books in the database.  For the workloads we studied 

with this setting, the Web server node CPUs were found to be the bottleneck.  The HighDiskU 

setting differs from the Base setting in terms of database server configuration.  Specifically, the 
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database server’s main memory cache settings were modified to cause more database node disk 

I/Os for a given workload when compared to the Base setting.  However, in spite of the 

increased I/Os, the Web server node CPUs were still the bottleneck for all the workloads 

explored for the HighDiskU setting.  Finally, the BigDB setting corresponded to a TPC-W 

application with 100,000 books in the database.  This configuration allowed us to verify the 

effectiveness of our approach when the bottleneck shifts from the Web server node CPUs to the 

database server node CPU. The HighDiskU and BigDB cases did not appear in our earlier work 

[21]. 

C. Experiment Methodology       
 
Due to time constraints, we did not conduct a full-factorial investigation of the workload and 

application factors discussed in the previous section.  Instead we used SWAT to create carefully 

controlled workloads designed to exhibit the performance impact of combinations of the factors 

considered.  Table 3 lists the workloads that were created by SWAT.  Each workload is 

described by four hyphen-separated tokens.  The first token describes the session length and 

think time distribution of the workload.  For each workload, the choice of distribution type, i.e., 

empirical or bounded Pareto, is always chosen to be the same for session length and think time 

distribution. BPSLZ indicates the use of the bounded Pareto distributions of Table 1 while 

EMPSLZ indicates the use of the empirical distributions of Table 1.  The subsequent tokens 

describe the workload mix, the mean utilization of each processor in the Web/application server 

node (UWebCPU) observed over the experiment duration, and the application settings, in that order. 

From Table 3, eleven experiments are conducted for this study.  Each experiment is designed to 

study the impact of a given workload.  As shown in Table 3, several statistically independent 

replications are conducted for each experiment.  To achieve this, SWAT is used with different 

random number generator seeds to create several session traces that are statistically identical 

with respect to the workload characteristics described in Section III.B.  In each experiment 

replication 10,000 sessions are submitted to the TPC-W system.  The duration of a replication 

varied from approximately 3 hours to 5 hours depending on the mean session inter-arrival time 

used.  Each replication yielded around 95,000 response time observations. From Table 3, in total 

38 experiment replications were conducted for this study. 
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Table 3: Response time and resource demand measurements from the case study 
Workload Rmean (s) Mean  Rmean (s) DWeb,CPU (ms) DWeb,Disk (ms) DDB,CPU (ms) DDB,Disk (ms) 

1.10 191.64 8.44 46.54 19.04 
0.93 190.65 8.49 46.80 18.94 

 
BPSLZ-HiMix-77-HighDiskU 

1.30 

 
1.11 

194.33 8.25 46.51 17.65 
2.02 189.53 8.95 110.76 6.67 
2.06 190.35 8.85 110.88 6.66 
1.63 189.54 9.38 111.42 7.08 

 
BPSLZ-HiMix-71-BigDB 

2.65 

 
2.09 
 

195.86 9.04 112.31 6.76 
1.03 191.02 8.27 39.11 5.48 
0.93 190.45 8.54 38.83 5.37 

 
BPSLZ-HiMix-77-Base 

1.22 

 
1.06 

193.57 8.13 38.95 5.36 
0.85 189.45 8.42 39.57 5.86 
0.90 191.58 8.71 39.47 5.39 
0.97 191.15 8.43 39.60 5.76 

 
EMPSLZ-HiMix-77-Base 

1.02 

 
0.94 

190.45 9.07 39.49 5.44 
0.75 188.39 9.24 34.08 5.49 
0.75 191.57 8.52 36.80 5.60 
0.76 188.79 8.43 34.18 5.47 

 
EMPSLZ-MedMix-77-Base 

0.74 

 
0.75 

186.59 8.41 34.20 5.49 
0.92 189.99 8.32 32.94 5.35 
0.86 190.17 8.14 33.97 5.52 

 
BPSLZ-MedMix-77-Base 

1.02 

 
0.93 

191.45 9.96 33.82 5.57 
0.67 176.89 6.27 26.04 4.57 
0.79 179.09 6.61 25.95 4.84 
0.69 177.40 6.23 25.98 4.56 

 
EMPSLZ-LoMix-77-Base 

0.71 

 
0.72 

177.18 6.41 25.96 4.91 
0.67 184.45 8.88 38.91 5.46 
0.70 185.72 9.10 39.07 5.57 
0.60 183.67 9.14 38.97 5.46 

 
BPSLZ-HiMix-71-Base 

0.78 

 
0.69 

186.19 9.35 39.05 5.55 
0.56 183.09 9.33 36.26 5.32 
0.55 183.38 9.88 33.18 5.52 
0.57 183.89 8.97 33.99 5.44 

 
 
EMPSLZ-MedMix-71-Base 

0.53 

 
0.55 

183.20 9.31 34.04 5.52 
0.49 171.55 6.70 25.98 4.79 
0.52 172.11 6.84 25.94 4.96 
0.54 174.75 7.15 25.96 4.75 

 
EMPSLZ-LoMix-71-Base 

0.52 

 
0.52 

173.59 8.10 26.06 4.72 
0.43 178.09 10.97 34.06 5.70 EMPSLZ-MedMix-65-Base 
0.44 

0.44 

178.75 10.36 34.06 5.69 

 
The following observations were consistent across all experiments.  httperf provided highly 

reproducible results.  When expected, multiple repetitions of an experiment replication yielded 

almost the same mean response time measures. Furthermore, there was very little difference 

between the achieved workload characteristics, as measured from httperf logs collected from 

experiment replications, and the specified workload characteristics. This verifies that the client 

node was not saturated in our study. The worst-case mean and peak network traffic during the 

experiments was only 0.40 Mbps and 0.83 Mbps, respectively.  This is because the CPU 

intensive nature of HTTPS and application server processing limited request throughputs.  The 

low network traffic indicates that the response time measured by httperf is likely to be dominated 
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by the delay encountered at the TPC-W system. The disks at both server nodes were very lightly 

utilized.  Virtually no memory paging activity was observed at either server node. Finally, job 

flow balance was achieved for all experiments with the number of request completions equaling 

the number of request arrivals. 

D. Overview of Results  
 
Table 3 provides several sanity checks with regards to our experimentation.  The table presents 

the average per-request demands in milliseconds placed on the CPUs and disk of the 

Web/Application server node, DWeb,CPU and DWeb,Disk, respectively, and the database server node, 

DDB,CPU and DDB,Disk, respectively.  It also provides the mean response time of requests that were 

submitted in an experiment replication, Rmean, and the mean Rmean over all replications in an 

experiment.  The following observations can be made from Table 3. 

The demand values for an experiment’s replications are always nearly identical.  This confirms 

that statistically identical replications place similar demands on the system and that burstiness 

does not affect average demands.   

For a given application setting, workloads with the same mix cause similar demands on system 

resources.  This can for example be verified by comparing the demand measurements for the 

BPSLZ-HiMix-77-Base, EMPSLZ-HiMix-77-Base, and BPSLZ-HiMix-71-Base workloads.  

The measurements show that the mixes chosen for the study behaved as intended.  From Table 3, 

for a given application setting the MedMix workloads impose almost the same average demands 

on the system as the HiMix workloads (compare for example EMPSLZ-HiMix-77-Base and 

EMPSLZ-MedMix-77-Base).  As expected, the LoMix workloads place slightly lower demands 

on the system than the HiMix and MedMix workloads.   

The application settings explored also exhibited the intended behaviour.  For example, the 

BPSLZ-HiMix-77-HighDiskU workload exerts more demand on the database server’s CPU and 

disk when compared to the BPSLZ-HiMix-77-Base workload.  Similarly, the database server 

CPU demand for the HTSLZ-HiMix-71-BigDB workload is significantly more than that of the 

HTSLZ-HiMix-71-Base workload.  

Results pertaining to the Base application setting along with a detailed discussion can be found 

in our earlier publication [21].  We now briefly describe some of the salient findings of the 

results from a performance modeling perspective.  As mentioned previously, we also present 

additional results pertaining to the other two new application settings.     
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Distributions that cause highly variable session lengths and think times can adversely 

impact system performance – This observation can be made by comparing the BPSLZ-HiMix-

77-Base and EMPSLZ-HiMix-77-Base workloads in Table 3.  These workloads only differ 

with respect to their session length and think time distributions.  From Table 3, they place almost 

identical demands on the TPC-W system’s resources.  The CPUs and disks in the systems have 

similar utilizations for both workloads.  However, from Table 3, the mean Rmean for the BPSLZ-

HiMix-77-Base workload is about 13% higher than that of the EMPSLZ-HiMix-77-Base 

workload.  Similarly, from Table 3, the mean Rmean for BPSLZ-MedMix-77-Base workload is 

about 24% higher than that of the EMPSLZ-MedMix-77-Base workload. These results suggest 

that the bounded Pareto session length and think time distributions are responsible for the 

performance degradation. 

As mentioned in Section II, high variability in session lengths and think times impact 

performance since they can cause bursty request arrivals.  Specifically, such distributions yield 

large numbers of very small and very large session length and think time values.  Consequently, 

BPSLZ-like workloads will have larger numbers of very long duration and very short duration 

sessions than EMPSLZ-like workloads.  As a result, for any given mean session inter-arrival 

time, the likelihood of observing very large and very small number of concurrent sessions is 

more with a BPSLZ workload than with a EMPSLZ workload.  This is illustrated in Figure 3 

which shows the cumulative distribution function (CDF) of number of concurrent sessions for 

BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base workloads 1 . Since the number of 

requests that can arrive at the system is positively correlated with the number of concurrent 

sessions, this phenomenon causes a more uneven or bursty arrival of requests.  This increase in 

burstiness can sometimes, as in our experiments, be significant enough to cause periods of 

heightened contention for system resources during which requests incur very long response 

times.      

Mixes characterized by higher variability in request demands cause poorer performance – 

This conclusion can be verified from Table 3 by comparing the EMPSLZ-HiMix-77-Base and 

EMPSLZ-MedMix-77-Base  workloads.   Recalling  from  the  previous  sections,  both  these  

                                                             

1 The CDF for a workload was obtained by combining data from all its experiment replications. 
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Figure 3: CDFs of number of concurrent sessions for BPSLZ-
HiMix-77-Base and EMPSLZ-HiMix-77-Base 

Figure 4: CDFs of number of concurrent sessions for EMPSLZ-HiMix-
77-Base and EMPSLZ-MedMix-77-Base 

workloads are similar in all respects except their workload mix.  From Table 2, both workloads 

place the same mean aggregate demands on the system’s resources.   However, the HiMix 

workload is characterized by a slightly higher variability in request demands.  Both workloads 

cause nearly identical utilizations of the CPUs and disks in the system.  However, the mean Rmean 

for the EMPSLZ-HiMix-77-Base workload is about 25% higher than that of the EMPSLZ-

MedMix-77 workload. Figure 4 plots the CDFs of number of concurrent sessions for the 

workloads.  From Figure 4, it can be seen that the HiMix workload exhibits a slightly longer tail 

than the MedMix workload.  The reason for this behaviour is again due to the increased 

variability of session durations; the larger proportions of resource intensive, e.g., Buy request, 

and non resource intensive, e.g., Home, requests within sessions of the HiMix workload increases 

the likelihood of very long duration and very short duration sessions. This leads to periods of 

increased contention among sessions leading to a higher mean Rmean.     

Bursty workloads exhibit high variability in Rmean – As mentioned in Section II, workloads 

characterized by heavy-tailed distributions lead to unpredictability in system behaviour. This 

phenomenon  can  be observed for the BPSLZ-HiMix-71-BigDB workload.  Recalling from the 

previous section, this workload caused the database server node CPU to be the bottleneck.  The 

mean database server node CPU utilization over the duration of each replication was 84%.  From 

Table 3, the highest Rmean value of 2.65 seconds for this workload is 64% higher than the lowest 

Rmean value of 1.63 seconds.  This is in spite of the fact that the experiment replications are 

statistically identical, cause near identical demands and utilizations on the system’s resources, 
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and lasted for nearly 5 hours.  Similar trends can be observed for the BPSLZ-HiMix-77-Base 

and BPSLZ-MedMix-77-Base workloads.   

 
The reason for the variation in Rmean can again be explained in terms of the population 

distribution.  Figure 5 plots the CDF of number of concurrent sessions for the four replications of 

the BPSLZ-HiMix-71-BigDB workload.  Figure 6 plots the Rmean values for these replications.  

Figure 5 shows that the CDF is different for the different replications.  In particular, replication 

4’s CDF exhibits the longest tail and results in the highest Rmean while replication 3’s CDF has 

the shortest tail and causes the lowest Rmean.  WAM can help performance analysts estimate the 

extent of variability in Rmean for bursty workloads by repeating the analysis multiple times with 

different session traces. 

 

 

 

 
Figure 5: CDFs of number of concurrent sessions for BPSLZ-HiMix-71-
BigDB 

 
Figure 6: Measured Rmean values for BPSLZ-HiMix-71-BigDB 
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Figure 7: Predictive performance models for the TPC-W system 

 

V. PREDICTIVE PERFORMANCE MODELS FOR THE MULTI-TIER SYSTEM 
 
This section describes the QNM and LQM performance models developed for the TPC-W 

system described in Section IV.  Section VI applies these models in combination with WAM to 

predict mean request response time for the cases considered in Table 3. 

Figure 7 shows the two performance models. Both models take as input the average demands 

incurred by an HTTP request. Total per-request average CPU and disk demands are given in 

Table 3. 

Figure 7(a) illustrates the QNM. It only includes a think time delay centre and queues for 

hardware resources, namely client node CPU, Web/application server node CPUs and disk, 

database server node CPU, and database server node disk. The value 2 shown to the upper right 

of the Web/App Node CPU indicates that the server has two CPUs. Other hardware resources 

were very lightly loaded so they were not included in the model. The number of customers 

corresponds to the number of concurrent sessions. Customers flow from queue to queue. After 

visiting a CPU, a customer may have one or more alternative queues to visit. Routing choices do 

not depend on the state of the system, are random, and have probabilities such that the desired 
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ratio of demands is incurred at the resources. A customer that flows from the client node CPU 

through to the database server node CPU and back to the client node CPU completes a HTTP 

request. 

Figure 7(b) shows the LQM for the TPC-W system. LQMs are extended QNMs that include 

information about logical resources such as threading levels for application servers and software 

request-reply relationships. The LQM for the TPC-W system includes the same think time delay 

centre and hardware resources. The logical resources in the model are the client browsers, Web 

server threads, application server threads and database server threads. Threading levels other 

than one are shown by placing a value near the upper right hand side of an icon. In this model, 

we have blocking requests between software resources and between software resources and 

hardware resources.  

From Figure 7(b), there is one client browser for each concurrent session using the system. A 

customer using a client browser may visit its node’s CPU or may think. A HTTP request causes a 

blocking call to the Web server. If a Web server thread is available then the request is accepted. 

The thread uses some CPU resource from the Web /application server node CPUs and then 

makes a request to the application server. If an application server thread is available then the 

request is accepted. The application server thread uses some CPU resource from the Web 

/application server node CPUs and then makes a request to the database server. If a database 

server thread is available then the request is accepted. The thread uses some CPU and disk 

resource from the database server node and releases the calling thread. The released calling 

thread from the application server can then complete its first phase of work and release the 

calling thread from the Web server.  

From Figure 7(b), after finishing its first phase and releasing the calling thread from the Web 

server the application server thread continues on to a second phase of service. The second phase 

of service keeps the application server thread busy so that it cannot service another calling thread. 

However at the same time the calling thread from the Web Server that was released after the first 

phase of service can complete its work and release the calling thread from the client browser. 

This completes an HTTP request.  The reasons for modeling the request-reply relationship of the 

application server in this manner are discussed shortly.  
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During an HTTP request, if a thread is not available when a server is called, the calling thread 

blocks until a thread becomes available. Once a thread completes its work it is available to serve 

another caller. Such threading can lead to software queuing delays in addition to any contention 

for hardware resources that are incurred by active threads.  The numbers of threads used for each 

tier in the model reflect the application settings as described in Section IV. 

To obtain resource demand values, for each experiment replication we measured the CPU 

utilizations for the Web server threads, application server threads, and the database server 

threads.  We also measured the CPU and disk utilizations for the Web/application server node 

and the database server node, the elapsed time of the run, and the number of request completions. 

This enables us to compute the average resource demand per request for the Web server threads, 

application server threads, database server threads, and for the Web/application server node and 

database server node as a whole.  The aggregate demand values used in the models are given in 

Table 3. We note that there was a very small difference between the utilization of a node and the 

sum of the utilizations of software processes running on that node.  We modeled this as 

background load in the LQM. 

We note that the demand values per hardware resource are identical for the QNM and the LQM. 

Moreover, both models handle the dual Web/application server node CPUs by making use of 

residence time expressions developed for multiprocessor resources [8].  The only difference in 

the models relate to whether software interactions, i.e., threading and two phase processing, are 

reflected in the model or not.  

Finally, we observed from measurement runs with one concurrent session that mean response 

times were often lower than the aggregate demand upon the hardware resources.  This is an 

indication of two phases of processing at a server.  We reflected this in the LQM by placing 25% 

of the application server thread demands in a second phase of service [7][8].  This modeling 

choice was found to produce good model predictions.  For the application settings considered, 

the per session population level mean response time predictions from the LQM closely matched 

the corresponding per session population level mean response times observed from the 

measurements in Section IV.      

 



 

24  

VI. RESULTS OF QNMs AND LQMs WITH WAM 

This section applies the QNM and LQM models of Section V with WAM to predict the mean 

response times for the experiments of Section IV. These results are further compared with the 

straightforward application of QNMs and LQMs and the hybrid Markov chain birth-death 

approach of Section II for session based systems. 

Table 4 shows the four different modeling approaches that are explored for both QNMs and 

LQMs. The “MEAN” approaches ignore the distribution of number of concurrent sessions.  They 

solve a predictive model for only one customer population, namely, the mean number of 

concurrent sessions observed during an experiment replication.  The “MBD” methods use the 

Markov birth-death approach to estimate the population distribution and Rmean.  The birth-death 

model used a constant, state-independent birth rate2 that equals the mean session arrival rate 

observed during a measurement experiment replication. The “WAMEMP” methods predict Rmean 

for an experiment replication by using WAM in conjunction with the empirical population 

distribution as measured during the replication. It does not use the population distribution 

estimation technique illustrated in Figure 2.  The “WAMMC” method uses the SWAT trace 

corresponding to an experiment replication and Monte Carlo simulation as per the algorithm in 

Figure 2 to estimate the measured population distribution.  The estimated population distribution 

is used to compute Rmean.   

In general all the methods yielded good throughput estimates.  The absolute errors for throughput 

were within 2% for the WAMMC methods and the MBD methods.  The accuracy of the MEAN 

methods was slightly poorer.  The throughput estimates of the MEAN-LQM and MEAN-QNM 

methods were within 3.5% and 4.0% of measured values, respectively.     

However, there are significant differences in prediction accuracy for Rmean across the different 

methods. Three different error metrics are used to characterize the Rmean prediction accuracy of 

the modeling approaches. The mean absolute error (ABS_ERROR) is defined as 

                                                             

2 Models with state-dependent birth rates were also tried but their accuracy was poorer than the state-independent approach.  
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 where ei is the difference between the measured and predicted 

mean response time and yi is the measured response time for the ith replication in a set of 

replications.  The maximum of the absolute e values, expressed as a percentage, calculated for a 

set of replications is denoted as the maximum absolute error (MAX_ERROR).  The trend error 

(TRND_ERROR) is an indicator of the range of errors obtained with a modeling approach.  It is 

defined as the difference between the largest e value and the smallest e value, expressed as a 

percentage, for a set of replications.  Table 4 shows the error measures for models pertaining to 

the entire set of thirty nine replications described in Table 3. The table gives results for the MEAN, 

MBD, WAMEMP, and WAMMC cases.  
Table 4: Accuracy of modeling approaches for predicting Rmean over all workloads 

Modeling Approach ABS_ERROR (%) MAX_ ERROR (%) TRND_ERROR (%) 
MEAN-LQM 15.20 32.37 42.50 
MEAN-QNM 17.22 42.56 63.75 
MBD-LQM 13.67 32.56 45.09 
MBD-QNM 16.71 42.68 66.01 
WAMEMP-LQM 5.79 15.50 28.23 
WAMEMP-QNM 9.77 26.10 44.94 
WAMMC-LQM 7.18 18.44 33.17 
WAMMC-QNM 12.14 30.69 57.30 

 

First we consider the MEAN cases. These are the only cases that do not take population 

distribution into account. From Table 4, the ABS_ERROR is lower for the MEAN-LQM approach 

than the MEAN-QNM approach.  The MEAN-LQM approach also does better in terms of 

MAX_ERROR and TRND_ERR.  The improved prediction accuracy is due to the LQM taking 

into account the performance impacts of finite server thread pools and two phases of application 

server processing.  However, the ABS_ERROR of about 15% and the MAX_ERROR of about 

32% are still quite large for the MEAN-LQM approach.  These errors are large despite individual 

per session population level Rmean predictions from the LQM agreeing well with the 

corresponding measured values.  This suggests there will be benefits from considering the 

population distribution.    

We now consider the Markov Chain birth-death approach MBD. From Table 4, results show only 

slight improvements in ABS_ERROR.  For example, the technique when used in conjunction 

with the LQM (MBD-LQM) achieves a reduction in ABS_ERROR of only about 1.5% when 

compared to MEAN-LQM.   
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WAM with the empirical population distribution from a historical trace with measured response 

times, WAMEMP, improves accuracy a great deal.  From Table 4, the ABS_ERROR drops by 

nearly 10% with WAMEMP-LQM when compared to MEAN-LQM.  Moreover, MAX_ERROR and 

TRND_ERROR drop by about 17% and 14%, respectively when compared to MEAN-LQM.  

Similar improvements are noticed when comparing WAMEMP-QNM and MEAN_QNM.  This 

confirms the importance of population distribution. 

Finally, we consider WAM with a population distribution estimated using the algorithm of 

Figure 2, WAMMC. The results from Table 4 show the effectiveness of the approach. The WAMMC 

methods performed nearly as well as their corresponding WAMEMP methods.  For example, from 

Table 4 the error metrics for WAMMC-LQM are very similar to that of WAMEMP-LQM.  However, 

WAMMC has an advantage over WAMEMP. It allows the WAM method to be applied in a 

constructive manner to predict the performance of systems when varying workload parameters 

and when a historical trace with measured response times is simply not available. 

The WAMMC results validate the population distribution estimator’s use of the Rmean prediction 

from a predictive model for the current population level as an approximation of the response 

time of an individual request.   We suggest that the approach works well for these cases because 

the think times encountered in the synthetic workloads used for the study are much longer, on the 

order of tens of seconds, than the response times which are on the order of hundreds of 

milliseconds or seconds.  As a result the population distribution is governed more by the session 

length, think time, and session inter-arrival time distributions than the response time distribution 

for each population level.  We note than an analysis of the empirical think time distribution of 

Table 1 indicates that the assumption of think times being much longer than response times is 

likely to be valid for real session-based workloads.   
Table 5: Accuracy of modeling approaches for predicting Rmean for bursty workloads 

Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%) 
MEAN-LQM 21.20 32.37 28.03 
MEAN-QNM 23.88 42.56 45.11 
MBD-LQM 19.24 32.56 30.06 
MBD-QNM 22.55 42.68 46.79 
WAMEMP-LQM 4.93 13.80 25.53 
WAMEMP-QNM 9.03 18.84 29.40 
WAMMC-LQM 7.06 18.44 31.17 
WAMMC-QNM 12.43 30.69 41.57 

 
We now consider several subsets of the results in more detail. Results are discussed for the 

following cases: bursty workloads; higher and lower contention for the bottleneck; higher and 
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medium coefficients of variation for request resource demands; non-bursty workloads; and, 

workloads with heavy-tail-like distributions. Finally, a case is presented that demonstrates the 

constructive capability of WAMMC. 

The WAM approach is particularly effective for bursty workloads - Table 5 summarizes the 

error measures for only those seventeen experiment replications that employed the bounded 

Pareto session length and think time distributions of Table 1.  For bursty workloads using just the 

mean population provides very poor Rmean estimates.  From Table 4, the ABS_ERROR is nearly 

21% for the MEAN-LQM approach. From Table 4 and Table 5, the MEAN-LQM approach applied 

to these workloads results in 6% greater ABS_ERROR than overall for all workloads.  For these 

workloads the WAM method results in a greater reduction in ABS_ERROR than overall for all 

workloads.  For example, from Table 4 the ABS_ERROR for WAMEMP-LQM is about 16% lower 

than that for MEAN-LQM.  This represents about 6% more reduction in error than when 

considering all the workloads.  A similar trend can be noticed with WAMEMP-QNM.  The 

WAMMC-LQM and WAMMC-QNM methods result in slightly increased ABS_ERROR when 

compared to their counterparts that use the empirically measured population distribution.  

However, the errors are still significantly less than those obtained with the MEAN and MBD 

methods.            
Table 6: Comparison of gains from WAM for two different bottleneck device utilizations 

BPSLZ-HiMix-77 
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%) 
MBD-LQM 21.59 27.99 13.91 
WAMEMP-LQM 5.80 10.59 8.47 
WAMMC-LQM 5.90 9.90 10.48 

BPSLZ-HiMix-71 
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%) 
MBD-LQM 12.94 21.24 18.73 
WAMEMP-LQM 6.48 11.74 16.61 
WAMMC-LQM 6.97 12.72 17.73 
 

The gains from WAM are significant when there is higher contention for the bottleneck 

resource - To illustrate this effect Table 6 compares the error metrics for the BPSLZ-HiMix-77 

and BPSLZ-HiMix-71 replications.  For the sake of clarity results are shown only for the MBD-
LQM, WAMEMP-LQM, and WAMMC-LQM methods.  From the table, when UWeb,CPU is 71% WAM 

results in an improvement of about 6%, 9%, and 1% in ABS_ERROR, MAX_ERROR, and 

TRND_ERROR, respectively.  These numbers increase to 15.5%, 18%, and 3.5% when UWeb,CPU 

is 77%.  Previous studies have shown that the burstiness induced by heavy-tails becomes more 

pronounced at higher utilizations [33]. Consequently, the BPSLZ-HiMix-77 workload is more 
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bursty than the BPSLZ-HiMix-71 workload.  The increased gain in accuracy for the BPSLZ-

HiMix-77 workload provides further evidence that WAM is very effective for predicting the 

behaviour of bursty workloads. 

WAM is particularly effective for mixes characterized by higher variability in request 

resource demands -Table 7 compares the MBD-LQM and WAM methods for the BPSLZ-HiMix-

77 and BPSLZ-MedMix-77 workloads.  Recall from section IV that the HiMix workload 

exhibits more variability in demands than the MedMix workload since it has a greater percentage 

of resource intensive and resource non-intensive requests.  From Table 7, the MBD-LQM 

method results in an ABS_ERROR of 13.55% and a MAX_ERROR of 17.33% for the MedMix 

workload.  The method performs even poorer for the HiMix workload with the ABS_ERROR and 

MAX_ERROR increasing to 21.59% and 27.99%, respectively.  From Table 7, the WAM methods 

are significantly more accurate than MBD-LQM for both workloads.  The gains in ABS_ERROR 

while using the WAMMC-LQM method over the MBD-LQM method are nearly 11.5% for the 

MedMix workload and 15.5% for the HiMix workload.      
Table 7: Comparison of gains from WAM for HiMix and MedMix workloads 

BPSLZ-HiMix-77 
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%) 
MBD-LQM 21.59 27.99 13.91 
WAMEMP-LQM 5.80 10.59 8.47 
WAMMC-LQM 5.90 9.90 10.48 

BPSLZ-MedMix-77 
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%) 
MBD-LQM 13.55 17.33 8.54 
WAMEMP-LQM 1.98 3.49 4.33 
WAMMC-LQM 1.90 3.48 5.31 
 
WAM is effective for cases with non-bursty workloads -Table 8 summarizes the error 

measures for those experiment replications that did not use the bounded Pareto session length 

and think time distributions.  From Table 8 and Table 4, the MEAN-LQM and MBD-LQM 

approaches have a much lower ABS_ERROR for these workloads than overall for all workloads.  

The ABS_ERROR for WAMEMP-LQM is comparable to those of MEAN-LQM and MBD-LQM.  

However, WAMEMP-LQM method results in a smaller range of errors when compared to the other 

two approaches.  For example, the MAX_ERROR and TRND_ERROR for WAMEMP-LQM are 

about 9.5% and 7.5% lower, respectively than those of MEAN-LQM.  Furthermore, the WAMMC 

methods result in almost similar errors to those of their counterpart WAMEMP methods.  These 

results show that the WAM technique can provide more robust performance estimates than the 

other approaches and is suitable for both bursty as well as non-bursty workloads.       
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Table 8: Accuracy of modeling approaches for predicting Rmean for non-bursty workloads 
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%) 
MEAN-LQM 6.91 24.92 35.05 
MEAN-QNM 8.03 22.32 43.51 
MBD-LQM 5.99 23.17 35.70 
MBD-QNM 8.66 23.32 44.34 
WAMEMP-LQM 6.98 15.50 28.23 
WAMEMP-QNM 10.78 26.10 38.73 
WAMMC-LQM 7.33 15.79 30.52 
WAMMC-QNM 11.75 26.61 40.73 

 
WAM captures the complex effects of heavy-tail-like distributions - Figures 8 to 11 show the 

probability distribution function (PDF) of number of concurrent sessions for the BPSLZ-HiMix-

71-BigDB experiment replications estimated using WAMMC-LQM and MBD-LQM.  Figure 12 

compares the measured Rmean values for this workload with those predicted using WAMMC-LQM 

and MBD-LQM. As discussed in Section IV, the Rmean values measured for this case varied by up 

to a factor of 1.63 even though the measured demands and device utilizations were nearly 

identical for all the replications.     

Figures 8 to 11 reveal that the MBD-LQM method does not capture the differences in measured 

PDFs among the replications.  The PDFs estimated by MBD-LQM are nearly identical for all the 

replications.  In contrast, WAMMC-LQM closely tracks the changes in PDFs.  The PDFs estimated 

through simulation are very close to their counterpart measured PDFs. Consequently, from 

Figure 12 the Rmean values predicted by MBD-LQM are nearly the same for all the replications.  In 

contrast, the Rmean values predicted by WAMMC-LQM closely track the measured Rmean values.  

From Figure 12, MEAN-LQM also suffers from the same limitation as MBD-LQM and predicts 

almost the same Rmean for all the replications.  We note that for non-bursty workloads there is less 

concentration of probability mass towards very large and very small populations.  As a result the 

accuracy obtained with the other methods starts to approach that obtained with WAM. 
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Figure 8: PDF of number of concurrent sessions for BPSLZ-HiMix-71-
BigDB-1 

 
Figure 9: PDF of number of concurrent sessions for  
BPSLZ-HiMix-71-BigDB-2 

 
Figure 10: PDF of number of concurrent sessions for BPSLZ-HiMix-71-
BigDB-3 

 
Figure 11: PDF of number of concurrent sessions for  
BPSLZ-HiMix-71-BigDB-4 

 

 
Figure 12: Predicted and measured Rmean values for BPSLZ-HiMix-71-
BigDB 

 
Figure 13: Predicted and measured mean Rmean values for  
BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base 
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Another consequence of the ability to accurately estimate the population distribution is that 

WAM can assess the predictability of performance.  As shown in Figure 12, WAM is the only 

method able to capture the variation in measured Rmean values for the statistically identical 

replications of the BPSLZ-HiMix-71-BigDB workload.  The results are similar for the other 

bursty cases, though less pronounced. 

Finally, we show that WAM is better suited for predicting the impact on system performance of 

changes in workload characteristics than the other methods.  Figure 13 plots the mean of 

measured Rmean values over all replications for both the BPSLZ-HiMix-77 and EMPSLZ-HiMix-

77 workloads.  It also shows the mean of the predicted Rmean values over all replications for both 

workloads while employing the MEAN-LQM, MBD-LQM, WAMEMP-LQM, and WAMMC-LQM 

methods.  From the figure, WAM is able to capture the increase in the measured mean Rmean that 

is caused by increased heavy-tail behaviour for session lengths and think times in the BPSLZ-

HiMix-77 workload.    While the measured increase is approximately 125 ms the increase 

predicted by WAMMC-LQM is about 110 ms. In contrast, the MEAN-LQM and MBD-LQM 

methods do not reflect the impact of the changes and offer almost identical results for both 

workloads.              

VII SUMMARY AND CONCLUSIONS 
 

In this paper, we introduce a new technique called the Weighted Average Method (WAM) for 

improving the accuracy of predictive models for systems with bursty customer populations. The 

technique is appropriate for session-based systems such as e-commerce systems and enterprise 

application systems. Others have shown that real session based systems exhibit such bursty 

behaviours so sizing, capacity planning, and on-going management exercises should benefit from 

WAM. 

The technique was motivated by the well-known hybrid method that combines a Markov birth-

death process and QNMs. We apply the general approach but replace the closed expression for 

estimating population distribution with a fast Monte Carlo simulation technique that lets us take 

into account arbitrary distributions that affect burstiness for request arrivals. Furthermore, we 

consider both QNMs and LQMs. A measurement based study for a TPC-W system permits us to 

compare the effectiveness of all these methods at predicting the mean request response time for 
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the TPC-W system. The system is subjected to both bursty and non-bursty workloads including 

workloads with heavy-tail-like distributions. 

The results indicate that modeling approaches that only consider the mean number of concurrent 

customers produce very poor estimates of mean response time for systems with bursty workloads.  

The average prediction error for bursty workloads is nearly 24% and 21% for the QNM, and the 

LQM, respectively.  Furthermore, for bursty workloads, using the QNM and LQM models in 

combination with a Markov birth-death model does not improve prediction accuracy 

significantly.  In contrast, the WAM approach significantly improves the accuracy of mean 

response time predictions.  For bursty workloads, prediction accuracy improved by 12% and 

10% for LQMs and QNMs, respectively, as compared to the Markov birth-death approach. 

Moreover, the LQM-based WAM approach had much lower average error and range of errors 

than the QNM-based WAM approach. Furthermore, WAM also enabled the prediction of very 

different mean response times reported by multiple statistically identical runs for cases that 

include heavy-tail-like distributions. In effect, WAM can be used to assess whether a system has 

unpredictable behaviour by reporting a range of possible behaviours.  

Others using MVA based techniques for modeling multi-tier session based systems [12][13][14] 

have not been considering burstiness that is inherent in these systems [18] [19]. To the best of 

our knowledge these are the first results that accurately predict mean request response times for 

such complex systems with bursty behaviour in such a straightforward way. The accuracy of 

WAM’s predictions for the system studied is due both to WAM’s approach for estimating 

customer session population distribution and the benefits obtained from using LQMs rather than 

QNMs.  

The results we present likely benefit from the relatively large think times between requests. The 

think times were on the order of 46 seconds with response times typically less than a second. 

However, the think times chosen were realistic since they were based on empirical measurements 

from a large e-commerce site [23].   

Our future work includes extending the technique to consider multi-class models, load dependent 

service rates, and embedded requests for images. We also intend to apply WAM for studying a 

time varying customer session arrival process and “flash crowd” scenarios.  Techniques will be 
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developed to ensure the efficiency of WAM, in particular for multi-class models. Future work 

will apply and validate these techniques for other multi-tier software systems, including 

enterprise application systems.  
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