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Recently a class of maximally entangled states has been proposed that has the maximum
amount of entanglement for a given purity. We investigate how such states violate the conven-

tional Bell inequality and discuss its implication.

Entanglement was recognized early as one of the key
features of quantum mechanics[1]. The advantage offered
by quantum entanglement relies on the crucial premise
that it not be reproduced by any classical theory[2, 3].
Despite the fact that the possibility of quantum entan-
glement was acknowledged almost as soon as quantum
theory was discovered, it is only in recent years that con-
sideration has been given to finding methods to quantify
it[4-6]. One of the previous techniques for investigating
entanglement was the Bell inequality. The Bell inequal-
ity is known as a marker for entanglement in two qubits.
If a state violates the Bell inequality then we know that
entanglement is present. The reverse is well known not
to be true. There are states that are entangled and do
not violate such an inequality[7]. One example is the
Werner state[8]. It has generally been found that it is
only weakly entangled states that may not violate the
Bell inequality (the Werner state is one such example).
Strongly entangled states are expected to violate the in-
equality. Hence in this proceeding we investigate a class
of states[9] that have the maximum amount of entangle-
ment for a given mixture and the point at which they
violate the Bell inequality. Do they have to be strongly
entangled to violate the inequality.

Let us now define our measure of entanglement and
the Bell inequality we will consider. In examining the
degree of entanglement there are currently a number of
measures available. These include the entanglement of
distillation[4], the relative entropy of entanglement[10],
but the canonical measure of entanglement is called the
entanglement of formation (EOF)[4]. For an arbitrary
two qubit system is simply given by[11],
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where h(z) = —zlog(z) — (1 — z) log(1 — z) is Shannon’s
entropy function, and 7 is the tangle[11] (concurrence
squared) given by,

7 =C% = [max{\ — A2 — A3 — Ay, 0}]%, (2)

where the A’s are the square root of the eigenvalues in

decreasing order of pp = p o)} ® ol p*o; ® of. Here
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p* denotes the complex conjugation of p in the compu-
tational basis {|00),|01),|10},|11)}. For two qubits the
tangle 7 can be considered a measurement of entangle-
ment and like the entanglement of formation ranges from
zero for a separable state to one for a maximally entan-
gled state. Next there are many Bell inequalities that
could be investigated in this article but we will focus our
attention on the original two qubit Bell inequality[2, 3],

Bs = [(S1(61)%(02)) + (S1(61) () +
(31(61)82(92)) — (31 (91)Sa(92)) | < 23)
where

Si(¢:) = cos; [|0){0] — |1)(1]]
+ sin ¢; [ei‘%i 0y(1| + e~
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The inequality (3) is violated if Bg > 2.

Given our measure of entanglement and the form of the
Bell inequality to be investigated it is now time to spec-
ify exactly the form of the maximally entangled mixed
states[9]. This state has the form
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and has been shown to have the maximal amount of en-
tanglement for a certain degree of mixture (as measured
by the linear entropy) [12], or vice versa. This state is
entangled for all nonzero v, and in fact it has been shown
that the tangle simply is given by

T =72 (7

For a given degree of mixture, the maximally entangled
mixed state is generally significantly more entangled that
the Werner state[8] at the same degree of mixture. How
well does this state violate the Bell inequality? What
degree of entanglement is required?



In Fig. (1) we plot the maximum value of Bg (opti-
mizing the analyzer settings to maximize the violation)
versus the degree of entanglement (as measured by the
tangle) for two different classes of states. The first is the
nonmaximally entangled pure state (curve a) specified by

|¥non) = cosB|00) + X sin 11) (8)

and the second is our state (5). This results show very
clearly that the maximally entangled mixed state and
the non-maximally entangled pure state violate the Bell
inequality by significantly different amounts for the same
degree of entanglement. For these two different classes of
entangled states there is a clear region where one of the
states (the non-maximally entangled pure state) violates
the Bell inequality. In fact our Bell inequality for the
maximally entangled mixed state is only violated if 7 >
0.5 (EOF > 0.6) (compared with an EOF > 0.44229
for the Werner state) . This is a significant degree of
entanglement given that a Bell state has 7 = 1.0 (EOF =
1.0) and a separable state has 7 = 0.0 (EOF = 0.0).
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FIG. 1: Plot of the maximum violation of the spin Bell in-
equality versus the degree of entanglement (tangle 7) for the
non-maximally entangled pure state (curve a) and the maxi-
mally entangled mixed state curve b). A violation of the spin
Bell inequality is achieved when |Bg| > 2.

The above results also tentatively indicates that the
more mixture contained in a state, the higher the degree
of entanglement required to violate the two qubit Bell
inequality. To investigate this we will consider a mod-
ification of the maximally entangled mixed state given
by

pm(7,€) = (1 =P[O} 1)(O[(1] + ¥[¥non)(¥non|-  (9)

where |¥,on) is given by (8. This is simply a mixture
of the non-maximally entangled pure state and the di-
agonal density matrix element |0)|1){0|(1]. Choosing the
parameters v and £ such that (9) just satisfies the Bell
inequality (that is Bg = 2) we vary the parameters v, £
such that we increase the degree of mixture in the system
while maintaining Bg = 2. For these v and £ values we
then determine the degree of entanglement and mixture.

In Figure (2) we plot on the tangle-linear entropy
plane, the boundary curve where Bg = 2 for both states.

Figure (2) confirms for this state our idea that as the
state becomes more mixed, more entanglement is re-
quired to violate the Bell inequality.

To summarize, in this article we have investigated the
extent to which the maximally entangled mixed state vi-
olates Bell inequality. For this state a tangle 7 = 0.54
(an EOF = 0.6) is required to violate the Bell inequality.
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FIG. 2: Plot of the degree of entanglement versus linear en-
tropy for (5). Curve a) traces out the curve for the state (9)
where v and £ are chosen such that Bs = 2.

This is a significant degree of entanglement and dispels
the impression that only the weakly entangled states do
not violate the Bell inequality. Our results indicate that
the more mixed a system is made the more entanglement
is generally required to violate the original Bell inequality
to the same degree.
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The 4/3 normalisation for Sy ensures that for a general
two qubit density matrix Si ranges between 0 and 1.



