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ABSTRACT

This paper describes architecture and implementation of the
ULTRAVIS system, a pure software solution for versatile and fast
volume rendering. It provides perspective raycasting, tri-linear
interpolation, on-the-fly classification using look-up tables, gradi-
ent shading (both diffuse and specular reflection), four light
sources, and alpha blending. For high frame rates, early ray termi-
nation and empty space skipping are implemented. Furthermore,
subsampling during motion is provided. The system accepts raw
data sets of 8-bit voxels as well as pre-segmented data sets contain-
ing up to 16 different materials. For gradient shading, the gradients
are precomputed and included in 32-bit voxels. Additionally, the
system supports volume animation, i.e., the display of a sequence of
data sets.

The system was specifically designed for Pentium Il1 CPUs, and
makes extensive use of MMX and Streaming SSIMD instructions. It
is a multi-threaded application and thus takes advantage of multi-
processor platforms. Time-critical portions of the code have been
hand-optimized in assembler. As a result, the system can achieve
interactive to real-time performance.

ULTRAVIS runs on the Windows NT 4.0 operating system on stan-
dard PCs.

CCS Categories and Subject Descriptors. 1.3.4 [Computer
Graphics]: Graphics Utilities- graphics packages; 1.3.3[Computer
Graphicg]: Picture/lmage Generation - display algorithms
Additional Keywords: volume rendering, raycasting

1 INTRODUCTION

It is commonly understood that real-time volume rendering requires
specia-purpose hardware [13], multi-processor servers[10], [16] or,
with some restrictions, 3D texturing hardware[1], [5], [6], [8], [17].
Ontheother hand, the performance of commadity CPUsisincreasing
at atremendous speed. Furthermore, specialized multi-media hard-
wareextensions(e.g., MMX) can be used for many basic volumeren-
dering operations such as tri-linear interpolations. Also, memory
costs have decreased so much that all but the largest data sets can be
placed into main memory for easy access. Thus, the use of ahigh-end
PC for software-based volume rendering is intriguing.

However, one mgjor obstacletowards high performanceremains: the
limited memory bandwidth, even more so because volume rendering
requiresthree-dimensiona accessto the dataset, and frequent access
to tables. Thus, the use of the on-chip caches decides on the achiev-
able performance.

There have been few attempts to achieve high-speed volume render-
ing in software on a single workstation or PC. Probably the most

prominent oneisthe Shear-War p Factorization algorithm[9]. Inthis
method, a projection plane is defined which is perpendicular to the
largest component of theview vector. Theslicesof voxelsparallel to
thisplaneare sheared according to the observer position. Then, apar-
alle projectionisperformed dliceby sliceinfront-to-back order. The
resulting distorted image is then corrected (warped) and displayed.
Voxels are accessed in scan-line order, giving agood spatial coher-
ence. Furthermore, the voxels are run-length encoded in al three
dimensions, aswell asthe pixelsin ascan line. Thus, runs of empty
voxelsor opaque pixels can be skipped, reducing memory traffic and

processing time. The method achieved about 1frame/sfor 256° data

sets on a typical workstation of that time. However, the method
requires extensive pre-processing, and is only fast for parallel pro-
jections.

In [7], the grayvalues in a 3x2x2 block are reduced to only two val-
ues such that mean and variance in the block are preserved. Each
voxel is assigned one hit selecting the corresponding value. In case
of 8-bit quantities, the data for one block fits into a 32-bit word. All
blocks of the volume are compressed redundantly such that all 8 vox-
els needed for tri-linear interpolation are available after one single
memory access. Again, interactive operation in the order of 1frame
per second was achieved. However, the method uses lossy compres-
sion of the data set, which is unacceptable for many applications.
The data set is rendered into a set of layered depth images in [2],
which are blended using 2D texturing hardware. Approximations of
new views can quickly be generated by reusing some of the more dis-
tant images, provided the new viewpoint is sufficiently close to the
previous one. Also, adaptive resolution can be used for the different
images, which reduces the total number of samples. The method is
used for interactiveolume navigation, i.e., a viewing frustum of
limited depth is placed inside the data set. The authors achieve about
4-6 frames/s using a 300MHz Pentium Il CPU, with a resolution of
160x160 pixels and about 120k voxels in the view frustum.

The approach presented here aims at avoiding restrictions or image
guality compromises of these kinds. Furthermore, it should be a pure
software system (with the exception of hardware-supported bit block
transfers) and still achieve interactive operation. An overview of the
ULTRAVIS architecture is given in section 2. Sections 3 and 4 detalil
the implementation and the performance of the system, respectively.

2 THE ULTRAVIS ARCHITECTURE

The block diagram of the different software modules is shown in Fig-
ure 1. The WTRAVIS system was designed as a client/server appli-
cation, allowing a thin client to connect to a powerful storage/
rendering server or server farm. The primary target platform, how-
ever, is a single PC. Then, client and server are running on the same
machine.

The WLTRAVISSystem currently supports four voxel types: 8-bit val-
ues /7. ) calledV, 8-bit values plus identifiers for up to 16 different

materials (16 bitsi3 V7 o with 4 MSBs unused) calldd, 8-bit
values and gradient componen@_oGy7._oGx7._oV7.0), called

GV and the latter including material identifiers
(13Gz7. 112Gy7. 111Gx7. 11gV7..1). calledIGV. Maximum data set
dimensions are 256x256x256.

In this paper we will focus on the memory data structure and the ren-
dering operation.
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Figure 1: Architecture of the ULTRAVIS System as a Client/Server Application

3 IMPLEMENTATION

The ULTRAVIS system is a collection of well-known and new tech-
niques for fast raycasting. Most of its performance comes from the
unique cache optimizations and the use of the SIMD-extensions as
described in the following sections.

3.1 SIMD-Extensions of Pentium Il CPUs

We can only give avery short description of thistechnology. Excel-
lent introductions can be found in [12] and [15].

SIMD extensions exist for both integer (MMX) and floating-point
(SSE) data types. MMX provides eight 64-bit registers (MMO-
MM7), which can hold one 64-bit operand, two 32-bit, four 16-bit or



eight 8-bit operands each. An MMX-instruction is applied to al
operands in one or two MM X-registers. Most MM X-instructions
execute in one clock (except multiply).

SSE provides a set of eight 128-bit registers (XMMO-XMM?7),
which can hold four single-precision floating-point operands each.
Again, an SSE instruction is applied to all four floating-point oper-
ands or operand pairs. As an example, an ADD has a latency of 4
clocks with athroughput of 1 every 2 clocks[4].

3.2 Cache Optimizations and Spread Mem-
ory Layout

Asstated earlier, the limited memory bandwidth of aPC isthemain
problem to solve. In our implementation, memory accesses occur
due to the following reasons:

U Accessto the dataset itself. For each raypoint, 8 voxelsof 1, 2
or 4 bytes must be read for tri-linear interpol ation.

U One access to a color/opacity table per raypoint.

U Additional accessestorendering parameterssuch asthresholds,

shading coefficients and more per raypoint.

Themeansto alleviatethisproblem arethe CPU caches, of whichwe
primarily consider theL 1 cache. In caseof aPentium |11 CPU, theL 1

data cache is a four-way associative cache with atotal capacity of

16K Byte. Thereisaseparateinstructioncacheof thesamesize[ 3], [4].

We'll start the discussion with the tables and parameters. Ideally,
these data items would be placed into a fast on-chip RAM, under full
software control, as it can be done on many DE&Rrgital Sgnal
Processors). In the absence of such feature on the Pentium Il CPU,
we try to mimic a RAM using the L1 cache. To this end, a way must
be found tdock a data item into the cache once it has been read. Thig
is done using a “spread memory layout” as explained below.

First, let's consider a direct mapped cache as shown in Figure 2. See
from the cache, the memory is organized as a set of consqumagive
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Figure 3: 4-Way Associative Cache

accesses to voxels can never cause replacement of data which hap-
pensto bein the other parts of the cache. This can be exploited for
frequently accessed tables by placing them into the remaining parts
of the first four memory pages, as shown in Figure 4b.

4-Way Associative Cache Main Memory

Volume Data

<+

a) Page Page Page Page
k k+1 k+2 k+3

= i i E&

b) Tables and other local data

N Figure 4: Spread Memory Layout and Table Placement

es, equal in size to the cache. The cache memory itself is organized

in lines (32 bytes for the Pentium Ill). Data is transferred to and from
the cache in units of complete lines.

The most characteristic feature of a direct mapped cache is thata lin
in memory at offsat can only go into the cache line at offisethus,

if a program only accesses the gray memory lines in Figure 2, fre-
guent cache line replacements tfurashing) will occur.

Cache Main Memory
00h 00h 00h 00h
20h 20h 20h 20h
40h 40h 40h 40h
60h 60h 60h | 4 ua 60h
80h 80h 80h 80h
AOh AOh AOh AOh
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/ .
One Cache Line Page 0 Page 1 Page N
Figure 2: Direct Mapped Cache

N-way associative caches alleviate this disadvantage. Conceptually

a 4-way associative cache can be thought of as a collection of 4 direct

mapped caches, as shown in Figure 3.

In this way, frequently accessed data items are virtually locked in the
cache for fast access. Up to 12KByte are available for this method on
@ Pentium Il CPU.

However, there are two disadvantages: the cache capacity for the
volume data set has essentially been reduced to one fourth, and the
required main memory size has been increased fourfold.

Let’s first consider the reduced cache size. For a good cache coher-
ence, we use the well-known techniqueilef casting as shown in
Figure 5. The idea is, that voxels fetched for a given raypoint can
potentially be reused for many new raypoints in its 3D neighbor-
hood.

Plane n Plane n+1

Screen

Tile 16 Raypoints  One lteration — > —

Figure 5: Tile Casting, 4x4 Rays

Still, storing the voxels in memory in a naive way (for examygfe,

Then, each memory line has four places to go, and a program caggt = Z7 0Y7.0X%7 o) can produce thrashing since the observer

access up to four lines at the same offset before a replacement occu
Now let's consider how the volume data set is placed into memory
We allocate memory space for four times the size of the data set, an
store the data set such that only the first quarter of each page is use

such as shown in Figure 4a. As a consequence, voxels can only be

cached in the first quarter of each cache block. Put differently,

I

SOSition is arbitrary. To avoid this, we use a cubic-interleaved
8ddress function, i.e.,

d, (ZY...O’ Y7...0’ X7...0) - Z7Y7X7ZSY6X625Y5X5“'

1
2 Z4Y 4 X4Z5Y300X5Z, Y, X0 Z, Y1 X, Zo Yo Ko @



(In (1), weassumed 8-bit voxels. Thetwo zero bitsrealize the spread Although the addressing scheme and the memory layout seem to be
memory layout.) Then, any arbitrarily located cubic region of quite convoluted, they are well worth the effort as outlined in section
dimension n occupies exactly nxnxn different cache locations ( 4. A single cache miss can consume as much time as literally hun-

being a power of two, ana® < cache size). Thus, as long as the dreds of CPU operations.

bounding cube of the 16 raypoints fits into the cache, all voxels need{t should be noted, though, that the cache structure can only be main-
ed for their processing can be cached without mutual replacement. [fained during the actual frame generation. If the system executes the
the raypoint spacing is approximately the grid spacing, an 8x8xguser interface, or during API calls or task switches, this cache struc-
region can always hold the 4x4 raypoints. In case of 8-bit (32-bit) ture will be corrupted.

voxels, this requires as little as 512Byte (2KByte) cache capacity. The disadvantage of the increased memory footprint is simply the
Thus, even the algorithmically reduced cache capacity is sufficient price we pay for high performance. However, memory capacity is
to achieve a high hit ratio. Another advantage is that cache line fills much more easily available than bandwidth.

always load a certain three-dimensional region. .

However, the construction of the memory offset from the coordi- 3.3 ~ Ray-Volume Intersection Tests

nates of a voxel is quite complex. Here we use a table-based cong
version as reported in [14]. The bit patterns produced by the
individual coordinates are independent from each other, and cal
therefore be looked up in three address translation tabld3 4nd
ORed together. Actually, two tables are always the same except fo
a one-hit shift, see thé andz-patternsin (1). Thus, the memory off-
setQ of a voxel aiX,Y,Z is given by

onditional branches can severely reduce performance on today’s
deeply pipelined CPUs. For perspective raycasting from arbitrary
r’\/iewpoints, the ray-volume intersection calculation is subject to
these problems, even in the optimized form as given in [18]. How-
Bver, SSE and a modification to [18] allow an optimized algorithm to

be used, which removes all conditional branches. As shown in Fig-
ure 7, the observer can be in 27 sub-spaces: either inside the data set
Q = ATT(X; o OATT(Y; ) OATT(Z, p«1 (2) (not considered here) or outside with one, two or three faces visible.

The ATTs have 1KByte each and, as one might expect, are lockedt
into the cache using the technique just described.

Next, intermediate results for the 16 rays must be stored in a tile-
buffer. For each pixel, we store the coordinates and the plane numbe
of the current raypoint, the vector to the next raypoint (all vector
components in a 16.16 fixed-point format), and the accumulated col
ors (8.8) and translucency (0.16). The pixel entries are organized a
a double-linked list for early ray termination (see section 3.8).
1KByte is allocated for the tilebuffer in the cache, as well as for all
local variables and rendering parameters.

The next class of tables are the color look-up tables (CLUT). A
CLUT is accessed by the interpolated 8-bit function value of a ray-
point, yields a 32-bit RG&-quadruple and has 1KByte. Each mate-
rial has its own CLUT. Thus, the size of all CLUTs exceeds the
remaining cache capacity. However, the CLUTSs are stored such that
they can only replace themselves in the cache. Furthermore, ele
ments of up to four CLUTSs can be kept in the cache. Thus, if the data
set has four materials or less, this is again approximate to having a s o N . .
dedicated on-chip RAM. Given observer positiokE and a viewing rayR , the intersection
Finally included in the spread memory layout is an acceleration datapoint |5 with any of the volume faces is given by

structure ADS) for empty space skipping (see section 3.7). This NN R

gives the memory layout as shown in Figure 6. P=E+t[R (©)]

=

uy

Figure 7: Intersection Tests

One coordinate o is always known, and scdetermined. In the

Volume Volume Volume Volume Volume _
Data Data Data Data Data case of the fac& = max,
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Figure 6: Spread Memory Layout

Qx = Hnaxx -E, for E, > max, (6)
o else




(Qy and Qaccordingly). After performing (5), the one possible can-
didatemust beisolated. Sincethe bounding box of thedatasetiscon-
vex, tisgiven by

t = max(ty, ty, ty)

@)

Thus, by using (5)-(7), all 26 cases have been reduced to one. After

performing (3), however, the resulting intersection point P must

still betested for being on the bounding volume of the data set. The
following relations must be satisfied:

(min, <P, < max,) 0 (min, < Py < max ) (min, < P,< max,)

A fast SSE implementation of thisalgorithmisoutlined in Figure 8,
which usesthe SSE operations RCP (fast reciprocal, 2 cyclelatency

with a maximum absolute error of 1.5;@3, MUL, MAX (returns

the maxima in four pairs), CMP (returns all “1” if true, else all “0” in
destination register), AND (bitwise AND) and MOVMASK (special
instruction which transfers the four sign bits into an integer register).

Note that we perform 16 intersection tests in one loop (see Figure 5)

and that most constants can be kept in the SSE registers during th
operation for further speedl}p.

XMMO - R, Ry Ry D
XMM1 - 1R, IR, 1R, RCP
XMMO - R, Ry Rx
XMM1 | - ty t ty D MUL
XMM7 - Q. Qy Q«
XMM1 - t3 %) ty D MOVE
XMM2 _ _ ty t, SHUFFLE
XMM1 | - - |max(taty)|max(tyty) D MAX
XMM2 - - t3 7
SHUFFLE
XMMO - F\;z F‘;y F:x MAX
XMML | - coPY
XMM6 - E, Ey Ex
XMMO - R, Ry Rx MUL
XMM1 - P, Py Py
XMM4 - min, mll"ly miny ADD
XMM5 - max, maxy maXy
XMM6 - E, Ey Ex
o [ — I = I . I . oMP <=
XMM4 - All' 1 or O|All 1 or O[All 1 or O CMP >=
XMM5 - All 1 or O|All 1 or O[All 1 or O
XMM4 - All 1 or O|All 1 or O[All 1 or O AND
XMM5 - All 1 or O|All 1 or O[All 1 or O
MOVMASK
Integer Register | Mask
Intersection Point is valid if {Bit2,Bit1,Bit0} = {111}
Figure 8: Fast Ray-Volume Intersection Test Using SSE

1 The problematic casecet x 0 is forced to 0 by using a bitmask

derived fromé . Not shown for clarity.

3.4 Fetching the Voxels from Memory

It should be noted that only three accesses to the ATTs need to be
done per raypoint for the tri-linear interpolation. This is because two
neighboring table entries can be loaded into an MMX-register in one
access, e.gATTy( x]) amlTTy([x1) xbeing the x-coordinate

of the raypoint. From these six bit patterns, all eight voxel addresses
are constructed by logical operations according to (2).

3.5 Tri-Linear Interpolation and Classifica-
tion
If the data set contains material identifiers, the first step for each ray-
point is to fetch the identifier of the nearest-neighbor voxel. This is
the material which is assigned to the raypoint. The user can disable
materials individually, if that has been doneifdhe raypoint is dis-
carded. Otherwise the eight neighboring voxels are fetched. The
material identifiers of all voxels are then compareid bo case of a
mismatch, the corresponding voxel is set to zero. This generates
crisp material boundaries, especially if gradient shading is used.
or the tri-linear interpolation we can exploit the Multiply-and-Add
MX-instruction, which can be used to perform two linear interpo-
lations. Thus, four such instructions are needed for one tri-linear
interpolation. If gradients are present, the components are tri-linear-
ly interpolated as well.
The resulting raypoint valuép is checked against a user-supplied

threshold and, if above, used as index into the proper CLUT, i.e.,
Cy, p 0p = CLUT;(Vp) with A={RG,B}.

3.6 Gradient Shading

For data sets which include gradients, the following illumination
model is evaluated for each (valid) raypoint:

3
e = ka,i[c)\,P+kd,i[C)\,Pz By CIG « L + (8

m=20

3
Ks, i z By, Chax(n; 0G + Al + a;, 0)

m=20

In(8),1) pisthe lightintensity of a raypoint emitted towards the eye,
k5, kg andkg are the ambient, diffuse and specular reflection coef-

ficients, respectivelyi denotes the material identifief:,m is the
direction to them-th light source with brightnes®,, and

YELm Also, kg
|V + Lol

The two remaining quantitieg anda; and the second and third term

in (8) require more explanation.

These terms are computed in floating-point format using SSE. The
interpolated gradient is transferred to the SSE-unit and normalized
using the fast Square-Root-Reciprocal SSE-instruction (same per-
formance as RCP, see column to the left).

We assume white light sources at infinity. The light directions are
always relative to the main viewing direction, i.e., the direction from
the eye to the center of the screen. One light direction is just that
(similar to miner’s helmet), the other ones aréfddm the right, left

and above. Using the absolute value of the dot products implements
two-sided shading.

For the specular (third) term in (8), a number of simplifications are

Hin

= 1_kd,| .

made. First, we assume a constant viewing vattor per tile (only for



the shading, not for theraycasting) asthe direction from the center of

thetiletothe eye. Thus, the vectors A m arealso constant and can be
precomputed prior to therendering of agiventile. Second, the expo-
nentiation is replaced by a multiplication, an add and a clamp. This
isoutlinedin Figure9. Essentially, thecosineisstretched by themul -

max(n*cos(x) + a, 0) A cos(x)
i a

cosd(x)

Figure 9: Exponentiation Replacement

tiplication and shifted such that n Ccos(0) +a = 1, fromwhichit

followsthat a = 1-n.1

This method shows a number of advantages. First, the function is
smooth around the origin whereit isrequired most, even for largen.
This stands in contrast to table-based methods, which are always
prone to produce aiasing for narrow highlights. Second, the largest
deviation occurs for small values, and so the discontinuity may not
even be noticeable. Also, the approximation gets better for large n.
Finally, the method is computationally inexpensive since it avoids
the exponentiation.

Depending on the rendering mode, many products of the specular
term can be precomputed, in which casethe computing requirements
arein the same order as diffuse shading.

SSE can speed up therequired computationssignificantly. An exam-
pleis shown in Figure 10, which computes four dot products using

XMMO [ Lagyx | Lox | Lix | Lox
XMML | Ly | Ly | Ly | Loy

XMM2 Laz Lo, Lz Loz 2 ADDs
XMM3 Gy Gy Gy Gy

XMM4 Gy Gy Gy Gy

XMM5 | G, G, G, G; | 3MuLs

Figure 10: Computation of four Dot Products

only five SSE instructions and also showswhy there are exactly four
light sources.

Notethat theuser can set k5, kg and nfor each material, and thuscon-
trol the appearance (glossiness etc.) of each material individualy.
Also, the user can set athreshold for the gradient magnitude below
which no shading is done. This can be used to highlight structures
inside the volume data set.

3.7 Empty Space Skipping
For empty space skipping, we use aseparate accel eration datastruc-

1 It is of course not the task to find an n which best approximates the

shape of a given cosd(x). The user can simply adjust n until the
results are satisfactory.

ture (ADS). Other than any form of Distance Coding [19], we usejust

one bit to indicate whether or not a region of size 2x2x2 is empty.
Note that for such a region 27 voxels are considered, and that the data
set is divided into such regions in a space-filling manner.

Aregionis not empty if at least one voxel belongs to a material which
is not currently disabled, and its value is above the user-supplied
threshold for that material.

The bits are written into thelWRAVIS memory structure such that

one byte and one quadword (64 bits) describe a region of size 4x4x4
and 8x8x8, respectively.

Although the ADS itself is not hierarchical, the operations we per-
form on its elements are so (a technique cdliedarchy compres-

sion). This is because we can load one quadword in a single access
into an MMX-register and test it for being all zero in one single oper-
ation. If the test fails, we can test an individual byte in that quadword,
and finally a single bit.

If a region is found empty, the plane of the next raypoint on the actual
ray is computed using a technique similar to that described in section
3.3 (see also Figure 5). This plane number is written into the tile-
buffer. Processing of all intermediate raypoints on that ray basically
involves one read from the tile-buffer and one compare.
Additionally, if a region is found solid (hot a single bit indicates
“empty”), the plane number for which the next empty space test must
be performed is computed, and also written into the tile-buffer. This
reduces the overhead of empty space skipping.

The ADS is rebuilt each time after the user either switches a material
on or off or adjusts the thresholds. In case of a sequence of data sets,
each data set has its own ADS. Since the overhead of empty space
skipping does not always pay off, the user can switch it on and off at
any time.

3.8 Compositing and Early Ray Termination

Currently, the system only supports standard alpha-blending [11]. In
case the accumulated translucency of the actual ray has fallen below
a user-supplied threshold, its entry in the tile buffer is removed from
the double-linked list. Thus, despite the tile-oriented processing,
these rays do no longer consume processing time.

3.9 DirectDraw

Using DirectDraw, an off-screen double buffer of 256x256 pixels
each (which is also the number of rays shot per frame) is allocated in
the video memory of the graphics adapter, and made available to the
rendering threads. Each completed tile is written from the on-chip
cache via MMX registers directly to the video memory using non-
temporal store instructions to avoid cache pollution [4]. After the
frame is completed, it is copied to the visible frame buffer and at the
same time magnified to the final image resolution of 512x512 pixels
using 2D graphics hardware, again under control of DirectDraw.

In case of subsampling during motion, 128x128 rays are shot
through the volume. The resulting 128x128 pixel images are again
magnified to 512x512 screen pixels using fast 2D hardware. Thus,
the speed-up is typically greater than 3.5.

3.10 Multi-Threading

For each CPU in the PC, thetikaVIssystem creates one rendering
thread. We use screen-space partitioning in units of 4x4 pixel tiles.
For an even workload, the threads assign themselves tiles using a
shared tile counter (dynamic self-scheduling).

3.11 Volume Animation

All data sets in a sequence must fit into main memory for maximum
performance. The threads run continuously in wrap-around mode.
Still, however, the user has complete control over the operation and
can move the data set and adjust rendering parameters while the ani-
mation is running, due to the multi-threaded architecture.



4 PERFORMANCE polation, empty space skipping and early ray termination with the
translucency threshold set to 1/256. The raypoint distance was set to
Thetest machineisan HP Kayak XU PC with two 500M Hz Pentium 0.75 grid units.

Il CPUs, 1GByte of main memory and agraphics adapter using the For Figures 11a-c, empty space was defined as the set of voxels with
TNT2 Ultra-from_ NVidia. The test data sets are frequently used as values below 30. Thresholds for the four different tissue types cere-
benchmarks: engine and MRI-head (courtesy UNC Chapel Hill). brum, cerebellum, brain stem and all remaining tissue were {25, 21,

The latter contains material identifiers for four tissue types. Both 23, -} (Figure 11d), {25, 21, 23, 41} (Figure 11e) and {51, 16, 6, 38}
data sets have about 256x256x110 voxels, however, the actuglrigure 11f).

bounding box can be smaller depending on the threshold values.
The VTune-tool from Intel, which monitors the CPU performance
using the various event counters of the processor, was used to me
sure the following performance details.

For the engine data set, each raypoint in non-empty space requires
three accesses to the ATTs and eight accesses to the volume data set.
%he CLUT is only accessed for raypoints whose values after tri-lin-
ear interpolation exceed the threshold.

4.1 Ray-Volume Intersection Test For the MRI-head, each raypoint in non-empty space first requires
. . - . three accesses to the ATTs and one to the volume data set in order to
The pure ray-volume intersection test as shown in Figure 8 (includ- getermine the material identifier of the raypoint. If the material is not

ing all move, shuffle and logical instructions, but excluding type gyjitched off, another three accesses to the ATTs and eight to the vol-
conversion of the results) was implemented using 26 assembler,me gata set follow. Since no materials are switched off in Figures

instructions. One test takes 30.82 clocks on average, and thus, theqa and f. column 4 = 6xcolumn 3 and column 6 = 9xcolumn 3. This
intersection tests for one tile are performed in approximatedy 1 doesn't hold for Figure 11d, since raypoints in non-empty space can

S : still be in disabled material. Again, the CLUTs are only accessed for
4.2 Tri-Linear Interpolation raypoints exceeding the corresponding threshold.

Decomposed into seven linear interpolations and performed usingas can be seen in Table 2, the mechanism to virtually lock data items
the Multiply-and-Add MMX-instruction, the tri-linear interpola-  jn the cache works very well. Note that columns 5 and 11 show the
tions were implemented using between fjignd 30 (GV) assem-  total number of cache misses during frame generation for accesses to
bler instructions. One tri-linear interpolation takes between 12.6 andthe ATTs and CLUTSs, respectively. In many cases the numbers
19.5 clocks on average, giving a performance of 25M to 40M tri-lin- imply that table elements are read from memory only once.

ear interpolations per second per CPU. Equally important is the very high cache hit rate for accesses to the
. . volume data setin main memory, which can exceed 98% (column 8).

4.3 Diffuse Shading These results demonstrate the efficiency of the spread memory lay-

For GV andIGV, the user can select between no shading, diffuse- out and the cubic-interleaved address function, and give reason to

only shading and combined diffuse and specular shading. Diffusehope that the performance of theTgaVis system will scale well

shading (including gradient normalization) was implemented using With the CPU clock frequency.

33 (GV) or 35 (GV) assembler instructions. Diffuse shading for one

raypoint takes about 53 clocks or 106ns on average. 4.6 Frame Rates

4.4 Diffuse and Specular Shading The frame rates were measured using the high-resolution perfor-

) ) ] ) ) mance counter of the PC. The rendering parameters were the same as
ForGV, combined diffuse and specular shading as defined in (8) wasgpgve, except that both CPUs were used. Subsampling during
implemented in 54 assembler instructions and takes 72.5 clocks ofotion was disabled. Table 1 summarizes ther4dVis perfor-

145ns on average. Thus, this simplified method of generating high-mance on our test machine.
lights increases the computational expenses of diffuse shading by
only about 37% in this case.

ForlGV, fewer terms can be precomputed since they depend on the¢ Fig. Voxeltype Frames/s Typ. Range
material identifier of the raypoint. Thus, 70 instructions are needed, 1ia v 0 .14
which take 102 clocks or 204ns on average per raypoint. Note that al

performance figures include the processing of four light sources. 11b \ 2.2 15-25
45 Cache Hit Rate g eV 8 -1
For the images in Figure 11, we measured the cache hit rates fof 11d ad 62 4-7
accesses to the Address Translation TaBlES)( to the volume data 1le v 17 15-25
setand to the CLUTSs. Misses to both the L1 and L2 caches have begn 115 GV 2.2 1.7-3
counted. One L2 data cache miss always causes 32 bytes to be read

from main memory [3]. The measurements have been done using a Table 1: Frame Rates (Examples)
single-threaded version of the program. The results are summarized

in Table 2.

In all cases, the images have been generated using tri-linear inter5 CONCLUSIONS AND FUTURE WORK

While it is undisputed that special-purpose hardware accelerators
will always be superior in performance, efficient use of advanced
features of general-purpose CPUs can still result in a useful volume

1 The ray-volume intersection test needs 20 arithmetic FP operations.
Thus, a 500MHz Pentium |11 CPU achieves 1.19 clocks per instruc-

tion (CPI), 154 clocks per floating-point operation and rendering system. Furthermore, substantial performance leaps can
324MFLOPS in this part of the algorithm. In our implementation, a be anticipated for the CPUs and PC systems of the near future, from
tri-linear interpolation accounts for 24 arithmetic integer operations. which the WTRAVIS system will benefit automatically.

In case of V, one CPU achieves 0.9CPI and 0.53 _C|0C|<S per arith- It is planned to include support for additional voxel types such as
metic integer operation. Thus, a 500MHz CPU achieves 952MI0PS RGB, RGBa andIRGBa, as well as support for the mixed rendering
here. of polygonal and volume data.



1 2 3 4 5 6 7 8 9 10 1
Bytes
ngpoints Cache Cache Hit read Accesses | Cache
SR Il e BYEY fecriond I o IR IRET
Space L1/L2 L1/L2 (%) Data Set CLUTs L1/L2
(KB)
1la 378,156 1,134,468 58 /58 3,025,248 32,169 /17,501 98.9/99.4 547 270,712 29/29
11b 2,588,550 | 7,765,650 | 57 /57 20,708,400 | 232,244 /116,385 | 98.9/99.4 3,637 2,173,670 | 29/29
11c | GV 319,143 957,429 124 /58 j 2,553,144 | 98,185/56,125 96.2/97.8 1,754 211,059 | 29/29
11d | v [ 674,783t || 3538812 | 90/90 § 4,713,351 | 61,980/49,952 | 98.7/98.9 1,561 497,921 | 48/48
1le IV [ 24169762 | 14,501,856 | 118/118 || 21,752,784 | 424,562 /268,059 | 98.0/98.8 8,376 1,886,104 | 91/68
11f | IGV | 1,064,492 [ 6,386,952 | 239/119 | 9,580,428 | 363,976/184,496 | 96.2/98.1 5,766 627,973 | 61/60

1 Raypoints in non-empty space, belonging to enabled material: 504,821

Table 2: Cache Hit Rates

2 Measurement had to be terminated prior to image completion due to prohibitively long simulation times.
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Figure 11: Sample Images, generated from 2562 Rays
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