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Abstract

Many applications of collaborative filtering (CF),
such as news item recommendation and bookmark rec-
ommendation, are most naturally thought of as one-
class collaborative filtering (OCCF) problems. In these
problems, the training data usually consist simply of bi-
nary data reflecting a user’s action or inaction, such as
page visitation in the case of news item recommenda-
tion or webpage bookmarking in the bookmarking sce-
nario. Usually this kind of data are extremely sparse
(a small fraction are positive examples), therefore am-
biguity arises in the interpretation of the non-positive
examples. Negative examples and unlabeled positive ex-
amples are mixed together and we are typically unable
to distinguish them. For example, we cannot really at-
tribute a user not bookmarking a page to a lack of inter-
est or lack of awareness of the page. Previous research
addressing this one-class problem only considered it as
a classification task. In this paper, we consider the one-
class problem under the CF setting. We propose two
frameworks to tackle OCCF. One is based on weighted
low rank approximation; the other is based on negative
example sampling. The experimental results show that
our approaches significantly outperform the baselines.

1 Introduction

Personalized services are becoming increasingly in-
dispensable on the Web, ranging from providing search
results to product recommendation. Examples of
such systems include recommending products at Ama-

zon.com1, DVDs at Netflix2, News by Google 3 etc.
The central technique used in these systems is collabo-
rative filtering (CF) which aims at predicting the pref-
erence of items for a particular user based on the items
previously rated by all users. The rating expressed in
different scores (such as a 1-5 scale in Netflix) can be ex-
plicitly given by users in many of these systems. How-
ever, in many more situations, it also can be implicitly
expressed by users’ behaviors such as click or not-click
and bookmark or not-bookmark. These forms of im-
plicit ratings are more common and easier to obtain.

Although the advantages are clear, a drawback of
implicit rating, especially in situations of data spar-
sity, is that it is hard to identify representative negative
examples. All of the negative examples and missing
positive examples are mixed together and cannot be
distinguished. We refer to collaborative filtering with
only positive examples given as One-Class Collabora-
tive Filtering (OCCF). OCCF occurs in different sce-
narios with two examples as follows.

• Social Bookmarks: Social bookmarks are very
popular in Web 2.0 services such as del.icio.us. In
such a system, each user bookmarks a set of web-
pages which can be regarded as positive examples
of the user’s interests. But two possible explana-
tions can be made for the behavior that a user did
not bookmark a webpage. The first one is, the
page is of the users’ interest but she did not see
the page before; the second one is the user had
seen this page but it is not of her interest. We
cannot assume all the pages not in his bookmarks
are negative examples. Similar examples include
social annotation, etc.

1http://www.amazon.com
2http://www.netflix.com
3http://news.google.com
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• Clickthrough History : Clickthrough data are
widely used for personalized search and search re-
sult improvement. Usually a triple < u, q, p >
indicates a user u submitted a query q and clicked
a page p. It is common that pages that have not
been clicked on are not collected. Similar to the
bookmark example, we cannot judge whether the
page is not clicked because of the irrelevance of its
content or redundancy, for example.

There are several intuitive strategies to attack this
problem. One approach is to label negative examples
to convert the data into a classical CF problem. But
this is very expensive or even intractable because the
users generating the preference data will not bear the
burden. In fact, users rarely supply the ratings needed
by traditional learning algorithms, specifically not neg-
ative examples [23]. Moreover, based on some user
studies [14], if a customer is asked to provide many
positive and negative examples before the system per-
forms well, she would get a bad impression of it, and
may decline to use the system. Another common solu-
tion is to treat all the missing data as negative exam-
ples. Empirically, this solution works well (see Section
4.6). The drawback is that it biases the recommen-
dation results because some of the missing data might
be positive. On the other hand, if we treat missing as
unknown, that is, ignore all the missing examples and
utilize the positive examples only and then feed it into
CF algorithms that only model non-missing data (as
in [24]), a trivial solution arising from this approach
is that all the predictions on missing values are posi-
tive examples. All missing as negative (AMAN) and
all missing as unknown (AMAU) are therefore two ex-
treme strategies in OCCF.

In this paper, we consider how to balance the ex-
tent of treating missing values as negative examples.
We propose two possible approaches to OCCF. These
methods allow us to tune the tradeoff in the interpre-
tation of so-called negative examples and actually re-
sult in better performing CF algorithms overall. The
first approach is based on weighted low rank approx-
imation [24]. The second is based on negative exam-
ple sampling. They both utilize the information con-
tained in unknown data and correct the bias of treat-
ing them as negative examples. While the weighting-
based approach solves the problem deterministically,
the sampling-based method approximates the exact so-
lution with much lower computational costs for large
scale sparse datasets.

Our contributions are summarized as follows. First
we propose two possible frameworks for the one-class
collaborative filtering problem and provide and char-
acterize their implementations; second, we empirically

study various weighting and sampling approaches using
several real world datasets. Our proposed solutions
significantly outperform the two extremes (AMAN and
AMAU) in OCCF problems, with at least 8% improve-
ment over the best baseline approaches in our experi-
ments. In addition, we show empirically that these two
proposed solution frameworks (weighting and sampling
based) for OCCF have almost identical performance.

The rest of the paper is organized as follows. In
the next section, we review previous works related to
the OCCF problems. In Section 3, we propose two ap-
proaches for OCCF problems. In Section 4, we empir-
ically compare our methods to some baselines on two
real world data sets. Finally, we conclude the paper
and give some future works.

2 Related Works

2.1 Collaborative Filtering

In the past, many researchers have explored collabo-
rative filtering (CF) from different aspects ranging from
improving the performance of algorithms to incorporat-
ing more resources from heterogeneous data sources [1].
However, previous research on collaborative filtering
still assumes that we have positive (high rating) as well
as negative (low rating) examples. In the non-binary
case, items are rated using scoring schemes. Most pre-
vious work focuses on this problem setting. In all the
CF problems, there are a lot of examples whose rat-
ing is missing. In [2] and [19], the authors discuss the
issue of modeling the distribution of missing values in
collaborative filtering problems. Both of them cannot
handle the case where negative examples are absent.

In the binary case, each example is either positive or
negative. Das et al. [8] studied news recommendation,
while a click on a news story is a positive example, and
a non-click indicates a negative example. The authors
compare some practical methods on this large scale bi-
nary CF problem. KDD Cup 2007 hosted a“Who rated
What” recommendation task while the training data
are the same as the Netflix prize dataset (with rating).
The winner team [15] proposed a hybrid method com-
bining both SVD and popularity using binary training
data.

2.2 One-class Classification

Algorithms for learning from positive-only data have
been proposed for binary classification problems. Some
research addresses problems where only examples of
the positive class are available [22] (refer to one-class



classification) where others also utilize unlabeled exam-
ples [16]. For one-class SVMs [22], the model is describ-
ing the single class and is learned only from positive
examples. This approach is similar to density estima-
tion [4]. When unlabeled data are available, a strat-
egy to solve one-class classification problems is to use
EM-like algorithms to iteratively predict the negative
examples and learn the classifier [28, 17, 26]. In [9],
Denis show that function classes learnable under the
statistical query model are also learnable from positive
and unlabeled examples if each positive example is left
unlabeled with a constant probability.

The difference between our research and previous
studies on learning from one-class data is that they aim
at learning one single concept with positive examples.
In this paper, we are exploring collaboratively learning
many concepts in a social network.

2.3 Class Imbalance Problem

Our work is also related to the class imbalance prob-
lem which typically occurs in classification tasks with
more instances of some classes than others. The one-
class problem can be regarded as one extreme case of
a class imbalance problem. Two strategies are used
for solving the class imbalance problem. One is at the
data level. The idea is to use sampling to re-balance
the data [3] [18]. Another one is at the algorithmic
level where cost-sensitive learning is used [10] [27]. A
comparison of the two strategies can be found in [20].

3 Weighting & Sampling based Ap-
proaches

As discussed above, AMAN and AMAU (no missing
as negative) are two general strategies for collaborative
filtering, which can be considered to be two extremes.
We will argue that there can be some methods in be-
tween that can outperform the two strategies in OCCF
problems; examples include “all missing as weak nega-
tive” or “some missing as negative”. In this section, we
introduce two different approaches to address the issue
of one-class collaborative filtering. They both balance
between the strategies of missing as negative and miss-
ing as unknown. The first method uses weighted low
rank approximations [24]. The idea is to give differ-
ent weights to the error terms of positive examples and
negative examples in the objective function; the sec-
ond one is to sample some missing values as negative
examples based on some sampling strategies. We first
formulate the problem and introduce the main notation
in this paper. In the next two subsections, we discuss
the two solutions in details.

3.1 Problem Definition

Suppose we have m users and n items and the pre-
vious viewing information stored in a matrix R. The
element of R takes value 1, which represents a positive
example, or ‘?’, which indicates an unknown (missing)
positive or negative example. Our task is to identify po-
tential positive examples from the missing data based
on R. We refer to it as One-Class Collaborative Fil-
tering (OCCF). Note that, in this paper, we assume
that we have no additional information about users
and items besides R. In this paper, we use bold capi-
tal letters to denote a matrix. Given a matrix A, Aij
represents its element, Ai. indicates the i-th row of A,
A.j symbolizes the j-th column of A, and AT stands
for the transpose of A.

3.2 wALS for OCCF

Our first approach to tackle the one-class collabora-
tive filtering problem is based on a weighted low-rank
approximation [11, 24] technique. In [24], weighted
low-rank approximations (wLRA) is applied to a CF
problem with a naive weighting scheme assigning“1” to
observed examples and“0”to missing (unobserved) val-
ues, which corresponds to the AMAU. Another naive
method for OCCF is to treat all missing values as neg-
ative examples. However, because there are positive
examples in missing values, this treatment can make
mistakes. We address this issue by using low weights
on the error terms. Next, we propose the weighted al-
ternating least squares (wALS) for OCCF. We further
discuss various weighting schemes different from naive
schemes AMAU ([24]) and AMAN.

Given a matrix R = (Rij)m×n ∈ {0, 1}
m×n with m

users and n items and a corresponding non-negative
weight matrix W = (Wij)m×n ∈ Rm×n

+ , weighted low-
rank approximation aims at approximating R with a
low rank matrix X = (Xij)m×n minimizing the objec-
tive of a weighted Frobenius loss function as follows.

L (X) =
∑
ij

Wij (Rij −Xij)
2
. (1)

In the above objective function L (X) (Eq. (1)),
(Rij −Xij)

2 is the common square error term often
seen in low-rank approximations, and Wij reflects the
contribution of minimizing the term to the overall ob-
jective L (X). In OCCF, we set Rij = 1 for positive
examples; for missing values, we posit that most of
them are negative examples. We replace all the miss-
ing values with zeros. As we have high confidence on
the observed positive examples where Rij = 1, we set



the corresponding weights Wij to 1. In contrast, differ-
ent from the simple treatment of missing as negative,
we lower the weights on“negative”examples. Generally
we set Wij ∈ [0, 1] where Rij = 0. Before discussing
the weighting schemes for“negative”examples, we show
how to solve the optimization problem argminX L (X)
effectively and efficiently.

Consider the decomposition X = UV T where U ∈
Rm×d and V ∈ Rn×d. Note that usually the number
of features d � r where r ≈ min (m,n) is the rank
of the matrix R. Then we can re-write the objective
function (Eq. (1)) 3 as Eq. (2)

L (U ,V ) =
∑
ij

Wij

(
Rij −U i.V

T
j.

)2

. (2)

To prevent overfitting, one can append a regularization
term to the objective function L (Eq. (2)):

L (U ,V ) =
∑
ij

Wij

(
Rij −U i.V

T
j.

)2

+λ
(
‖U‖2F + ‖V ‖2F

)
, (3)

or

L (U ,V ) =
∑
ij

Wij

((
Rij −U i.V

T
j.

)2

+ λ
(
‖U i.‖2F + ‖V j.‖2F

))
. (4)

In Eq. (3) and Eq. (4), ‖.‖F denotes the Frobenius
norm and λ is the regularization parameter which, in
practical problems, is determined with cross-validation.
Note that Eq. (4) subsumes the special case of regu-
larized low-rank approximation in [21, 30]. Zhou et
al. [30] show that the alternating least squares (ALS)
[11] approach is efficient for solving these low rank ap-
proximation problems. In this paper, we extend this
approach to weighted ALS (wALS). Now we focus on
minimizing the objective function L (Eq. (4)) to illus-
trate how wALS works.

Taking partial derivatives of L with respect to each
entry of U and V , we obtain

1
2
∂L (U ,V )
∂Uik

=
∑

jWij

(
U i.V

T
j. −Rij

)
Vjk

+λ
(∑

jWij

)
Uik,∀1 ≤ i ≤ m, 1 ≤ k ≤ d. (5)

Then we have

1
2
∂L (U ,V )
∂U i.

=
1
2

(
∂L (U ,V )
∂Ui1

, . . . ,
∂L (U ,V )
∂Uid

)
= U i.

(
V TW̃ i.V + λ

(∑
jWij

)
I
)
−Ri.W̃ i.V ,

Algorithm 1 Weighted Alternating Least Squares
(wALS)
Require: data matrix R, weight matrix W , rank d
Ensure: Matrices U and V with ranks of d

Initialize V
repeat

Update U i.,∀i with Eq. (6)
Update V j.,∀j with Eq. (7)

until convergence.
return U and V

where W̃ i. ∈ Rn×n is a diagonal matrix with the ele-
ments of W i. on the diagonal, and I is a d×d identity
matrix.

Fixing V and solving ∂L(U ,V )
∂Ui.

= 0, we have

U i. = Ri.W̃ i.V
(
V TW̃ i.V + λ

(∑
jWij

)
I
)−1

,

∀1 ≤ i ≤ m. (6)

Notice that the matrix V TW̃ i.V + λ
(∑

jWij

)
I is

strictly positive definite, thus invertible. It is not dif-
ficult to prove that without regularization, V TW̃ i.V
can be a degenerate matrix which is not invertible.

Similarly, given a fixed U , we can solve V as follows.

V j. = RT
.jW̃ .jU

(
UTW̃ .jU + λ

(∑
iWij

)
I
)−1

,

∀1 ≤ j ≤ n, (7)

where W̃ .j ∈ Rm×m is a diagonal matrix with the
elements of W .j on the diagonal.

Based on Eq. (6) and Eq. (7), we propose the follow-
ing iterative algorithm for wLRA with regularization
(based on Eq. (4)). We first initialize the matrix V
with Gaussian random numbers with zero mean and
small standard deviation (we use 0.01 in our experi-
ments). Next, we update the matrix U as per Eq. (6)
and then update the matrix V based on Eq. (7). We
repeat these iterative update procedures until conver-
gence. We summarize the above process in Algorithm
1 which we refer to as Weighted Alternating Least
Squares (wALS). Note that for the objective function
Eq. (3) with a uniform regularization term, we only
need to change both

(∑
jWij

)
in Eq. (6) and (

∑
iWij)

in Eq. (7) to 1.

3.2.1 Weighting Schemes: Uniform, User Ori-
ented, and Item Oriented

As we discussed above, the matrix W is crucial to the
performance of OCCF. W = 1 is equivalent to the case
of AMAN with the bias discussed above. The basic idea



Table 1. Weighting Schemes

Pos Examples “Neg” Examples
Uniform Wij = 1 Wij = δ

User-Oriented Wij = 1 Wij ∝
∑
j Rij

Item-Oriented Wij = 1 Wij ∝ m−
∑
iRij

of correcting the bias is to let Wij involve the credibility
of the training data (R) that we use to build a collab-
orative filtering model.d For positive examples, they
have relative high likeliness to be true. We let Wij = 1
for each pair of (i, j) that Rij = 1. For missing data, it
is very likely that most of them are negative examples.
For instance, in social bookmarking, a user has very
few web pages and tags; for news recommendation, a
user does not read most of the news. That is why pre-
vious studies make the AMAN assumption although it
biases the recommendations. However, we notice that
the confidence of missing values being negative is not
as high as of non-missing values being positive. There-
fore, essentially, we should give lower weights to the
“negative” examples. The first weighting scheme as-
sumes that a missing data being a negative example
has an equal chance over all users or all items, that is,
it uniformly assign a weight δ ∈ [0, 1] for “negative” ex-
amples. The second weighting scheme posits that if a
user has more positive examples, it is more likely that
she does not like the other items, that is, the missing
data for this user is negative with higher probability.
The third weighting scheme assumes that if an item
has fewer positive examples, the missing data for this
item is negative with higher probability. We summarize
these three schemes in Table 1. A parameter for the
three schemes is the ratio of the sum of the positive
example weights to the sum of the negative example
weights. We will discuss the impact of the parameter
in Section 4.6. In the future, we plan to explore more
weighting schemes and learn the weight matrix W it-
eratively.

3.3 Sampling-based ALS for OCCF

As we state above, for one-class CF, a naive strategy
is to assume all missing values to be negative. This
implicit assumption of most of the missing values being
negative is roughly held in most cases. However, the
main drawback here is that the computational costs
are very high when the size of the rating matrix R
is large. wALS has the same issue. We will analyze
its computational complexity in the next subsection.
Another critical issue with the naive strategy is the
imbalanced-class problem discussed in Section 2.3.

In this subsection, we present a stochastic method

Figure 1. A diagram that illustrates an ensem-
ble based on negative exampling sampling
for OCCF

based on negative example sampling for OCCF as
shown in Figure 1. In phase I, we sample negative
examples from missing values. Based on an assumed

probability distribution, we generate a new matrix R̃
(i)

including all positive examples in R. In phase II, for

each R̃
(i)

, we re-construct the rating matrix R̂
(i)

by a
special version of wALS which we discuss in Section 3.2.

Finally, we combine all the R̂
(i)

with equal weights gen-
erating a matrix R̂ which approximates R. We refer to
this method as sampling ALS Ensemble (sALS-ENS).

3.3.1 Sampling Scheme

Since there are too many negative examples (compared
to positive ones), it is costly and not necessary to learn
the model on all entries of R. The idea of sampling
can help us to solve the OCCF problem. We use a
fast (O (q)) random sampling algorithm [25] to generate
new training data R̂ from the original training data R
by negative example sampling given a sampling proba-
bility matrix P̂ and negative sample size q. As OCCF
is a class-imbalanced problem, where positive examples
are very sparse, we transfer all positive examples to the
new training set. We then sample negative examples
from missing data based on P̂ and the negative sample
size q.

In this algorithm, P̂ is an important input. In this
paper, we provide three solutions which correspond to
the following sampling schemes:

1. Uniform Random Sampling: P̂ij ∝ 1. All the miss-
ing data share the same probability of being sam-
pled as negative examples.

2. User-Oriented Sampling: P̂ij ∝
∑
i I[Rij = 1],

that is, if a user has viewed more items, those items
that she has not viewed could be negative with
higher probability.

3. Item-Oriented Sampling: P̂ (i, j) ∝ 1/
∑
j I[Rij =



1], which means that if an item is viewed by less
users, those users that have not viewed the item
will not view it either.

3.3.2 Bagging

After generating a new training matrix by the above
algorithm, we can use a low-rank matrix R̂ to approx-
imate R̃ using wALS. Because R̃ is stochastic, R̂ can
also be biased and unstable. A practical solution to the
problem is to construct an ensemble. In particular, we
use the bagging technique [6] (Algorithm 2).

Algorithm 2 Bagging Algorithm for OCCF

Require: matrix R ∈ Rm×n, matrix P̂ ∈ Rm×n, sam-
ple size q, number of single predictor `

Ensure: Reconstructed matrix R̂
for i = 1 : ` do

Generate a new training matrix R̃i by negative
example sampling (Section 3.3.1 )
Reconstruct R̂i from R̃i by ALS [30]

end for

R̂ =
1
`

∑̀
i=1

R̂i

return R̂

3.4 Computational Complexity Analysis

Next, we analyze the running time of wALS and
sALS-ENS. Recall that U is a m × d matrix, V is a
n×d matrix, and d ≤ min{m,n}. For wALS, each step
of updating U (or M) takes time O

(
d2nm

)
(based on

Eqs. 6 and 7). The total running time of wALS is

O
(
d2ntmn

)
assuming that it takes nt rounds to stop.

For sALS-ENS similarly, assuming that ALS takes
on-average nt rounds to stop, and the number of NES
predictors is `, then its total running time is

O
(
d2`nt (nr (1 + α) + (m+ n) d)

)
.

In practice, nt, `, α are small constants (nt ranges
from 20 to 30, ` ≤ 20, and α ≤ 5), and (n+m) d ≤
nr (1 + α). Therefore the running time of wALS
is O(mn), while the running time of sALS-ENS is
O(nr). Thus sALS-ENS is more scalable to large-
scale sparse data compared to wALS. To be pre-
cise, the running time ratio of wALS to sALS-ENS
is
(

mn
`(nr(1+α)+(n+m)d)

)
. When the data is very sparse(

nr

mn � 1
)
, then ALS-ENS takes less time to finish than

wALS; otherwise, wALS is faster.

4 Experiments

4.1 Validation Datasets

We use two test datasets to compare our proposed
algorithms with possible baselines. The first dataset,
the Yahoo news dataset, is a news click through record
stream4. Each record is a user-news pair which con-
sists of the user id and the URL of the Yahoo news
article. After preprocessing to make sure that the
same news always gets the same article id, we have
3158 unique users and 1536 identical news stories. The
second dataset is from a social bookmarking site. It
is crawled from http://del.icio.us. The data contains
246, 436 posts with 3000 users and 2000 tags.

4.2 Experiment setting and Evaluation
Measurement

As a most frequently used methodology in machine
learning and data mining, we use cross-validation to
estimate the performance of different algorithms. The
validation datasets are randomly divided into training
and test sets with a 80/20 splitting ratio. The train-
ing set contains 80% known positive examples and the
other elements of the matrix are treated as unknown.
The test set includes the other 20% known positive and
all unknown examples. Note that the known positives
in the training set are excluded in the test process.
The intuition of good performance of a method is that
the method has high probabilities to rank known posi-
tives over unknown examples most of which are usually
negative examples. We evaluate the performance on
the test set using MAP and half-life utility which will
be discussed below. We repeat the above procedure
20 times and report both mean and standard devia-
tion of the experimental results. The parameters of
our approaches and the baselines are determined by
cross-validation.

MAP (Mean Average Precision) is widely used in
information retrieval for evaluating the ranked docu-
ments over a set of queries. We use it in this paper
to assess the overall performance based on precisions
at different recall levels on a test set. It computes the
mean of average precision (AP) over all users in the test
set, where AP is the average of precisions computed at
all positions with a preferred item:

APu =
∑N
i=1 prec (i)× pref (i)
# of preferred items

, (8)

where i is the position in the rank list, N is the number
of retrieved items, prec (i) is the precision (fractions of

4We thank“NielsenOnline”for providing the clickstream data.



retrieved items that are preferred by the user) of a cut-
off rank list from 1 to i, and pref (i)is a binary indicator
returning 1 if the i-th item is preferred or 0 otherwise.

Half-life Utility (HLU): Breese et al. [5] introduced
a half-life utility [13] (“cfaccuracy” [12]) to estimate
of how likely a user will view/choose an item from a
ranked list, which assumes that the user will view each
consecutive item in the list with an exponential decay
of possibility. A half-life utility over all users in a test
set is defined as in Eq. (9).

R = 100
∑
uRu∑

uR
max
u

, (9)

where Ru is the expected utility of the ranked list for
user u and Rmaxu is the maximally achievable utility if
all true positive items are at the top of the ranked list.
According to [5], Ru is defined as follows.

Ru =
∑
j

δ (j)
2(j−1)(β−1)

, (10)

where δ (j) equals 1 if the item at position j is pre-
ferred by the user and 0 otherwise, and β is the half-life
parameter which is set to 5 in this paper, which is the
same as in [5].

4.3 Baselines

We evaluate our approaches weighting/sampling
negative examples by comparing with two categories
of baselines treating all missing as negative (AMAN)
or treating all missing as unknown (AMAU).

4.3.1 AMAN

In AMAN settings, most traditional collaborative fil-
tering algorithms can be directly applied. In this
paper, we use several well-known collaborative filter-
ing algorithms combined with the AMAN strategy
as our baselines, which include the alternating least
squares with the missing as negative assumption (ALS-
AMAN), singular value decomposition (SVD) [29], and
a neighborhood-based approach including user-user
similarity[1] and item-item similarity algorithms[1].

4.3.2 AMAU

Following the AMAU strategy, it is difficult to adapt
traditional collaborative filtering algorithms to obtain
non-trivial solutions, as we discussed in Section 1. In
this case, ranking items by their overall popularity is a
simple but widely used recommendation method. An-
other possible approach is to convert the one-class col-
laborative filtering problem into a one-class classifica-
tion problem. In this paper, we also include one such

algorithm, namely the one-class SVM [22] into our pool
of baseline methods. The idea is to create a one-class
SVM classifier for every item, which takes a user’s rat-
ings on the remaining set of items as input features
and predicts if the user’s rating on the target item is
positive or negative. The set of training instances for
a SVM classifier consists of the rating profiles of those
users who have rated the target item, which should
consists of positive examples only in the one-class col-
laborative filtering setting, which could be used to train
a one-class SVM classifier for each target item.

4.4 Impact of Number of Features

Figure 2 shows the impact of the number of features
(parameter d) on SVD and wALS. We can see for SVD,
the performance will first increase and then drop as we
increase the number of features. But for wALS, the
performance is much more stable and keeps increas-
ing. The performance of wALS usually converge at
around 50 features. In our following experiments, we
will use the optimal feature number for SVD (10 for
Yahoo news data and 16 for user-tag data) and wALS
(50).

4.5 Sampling and Weighting Approaches

In Section 3, we introduced two approaches to
OCCF based on sampling and weighting. For each ap-
proach, we proposed three types of schemes, that is uni-
form, user-oriented and item-oriented. In this section,
we will compare the three schemes for both sampling
and weighting.

Table 2 compares these schemes. Among the weight-
ing schemes, the user-oriented weighting scheme is the
best and the item-oriented weighting scheme is the
worst. The uniform weighting lies in between. This
may be due to the imbalance between the number
of users and the number of items. For the current
datasets, the number of users is much larger than the
number of items.

4.6 Comparison with Baselines

Figure 3 shows the performance comparisons of dif-
ferent methods based on the missing as unknown strat-
egy (Popularity and SVM), methods based on the miss-
ing as negative strategy (SVD and ALS-AMAN) and
our proposed methods(wALS, sALS). The x-axes α is
defined as α = (

∑
ij∈Rij=0Wij)/(

∑
ij∈Rij=1Wij). For

comparison consideration, given α, the negative sam-
pling parameter q in Algorithm 2 (sALS-ENS) is set



(a) Yahoo news data

(b) User-Tag data
Figure 2. Impact of number of features

Yahoo News User-Tag
sALS-ENS wALS sALS-ENS wALS

MAP HLU MAP HLU MAP HLU MAP HLU
Uniform 7.45 12.10 7.33 11.81 11.15 21.80 11.23 21.76

UserOriented 7.46 12.11 7.47 12.11 11.21 21.81 11.24 21.80
ItemOriented 7.44 12.08 7.24 11.65 10.93 21.78 11.22 21.37

Table 2. Comparisons of different weighting and sampling schemes



to α×nr, where nr indicates the number of total posi-
tive examples. The baseline popularity will not change
with the parameter α, therefore it is shown in a hori-
zontal line in the figures. The same holds for the base-
lines SVD and ALS-AMAN. It can be seen from the
figures that our methods outperform all the methods
based on missing as negative and missing as unknown
strategies.

Parameter α controls the proportion of negative ex-
amples. As α → 0, the methods are approaching the
AMAU strategies and as α → 1, the methods are ap-
proaching the AMAU strategies. We can clearly see
that the best results lie in between. That is to say
both weighting and sampling methods outperform the
baselines. The weighting approach slightly outperform
the sampling approach. But as indicated in Table (3),
the sampling approach is much more efficient when α
is relative small.

wALS sALS sALS-ENS
α = 1 904.00 32.58 651.67
α = 2 904.00 37.45 749.13

Table 3. Runtime (seconds) of wALS, sALS
ans sALS-ENS with 20 sALS combinations
on the Yahoo News data.

We can also see that compared to the AMAU strate-
gies the missing as negative strategy is more effective.
This is because although the label information of un-
labeled examples are unknown, we still have the prior
knowledge that most of them are negative examples.
Disregarding such information does not lead to com-
petitive recommendations. This is somewhat differ-
ent with the conclusion in class imbalance classification
problems where discarding examples of the dominating
class often produces better results [7].

5 Conclusion and Future Work

Motivated by the fact that negative examples are
often absent in many recommender systems, we for-
mulate the problem of one-class collaborative filtering
(OCCF). We show that some simple solutions such as
the “all missing as negative” and “all missing as un-
known” strategies both bias the predictions. We cor-
rect the bias in two different ways, negative example
weighting and negative example sampling. Experimen-
tal results show that our methods outperform state of
the art algorithms on real life data sets including social
bookmarking data from del.icio.us and a Yahoo news
dataset.

For future work, we plan to address the problem how
to determine the parameter α. We also plan to test

other weighting and sampling schemes and to identify
the optimal scheme. We also plan to study the rela-
tionship between wALS and sALS-ENS theoretically.
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