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embedded computing, With the advent ofsystem level integration (SLI) and
special-purpose system-on-chip (SOC)the center of gravity of the
architectures, computer industry is moving from personal compuiing
customization, custom embedded computing. The resultingheaval isonly just
architectures, off-the- beginning to bewidely appreciated. The opportunities,
shelf customizable needs and constraints of this next generation of computing
systems, FPGA, are somewhat differerftom those towhich we have got
automation, architecture accustomed in general-purpose computing.tdm, we
synthesis, hardware- believe that this will lead to significantly different computer
software co-design, architectures, aboth the system andhe processorevels,
processor-compiler co- and a rich diversity of off-the-shelf and custatasigns.
design, frameworks, Furthermore, we predict that embedded computivily
constructors, introduce a new theme into computer architecture:
constructors, design automation of computer architecture. In thmeport, we
space exploration, PICO, elaborate on these claims apabvide, as an example, an
system synthesis, VLIW overview of PICO, the architecturesynthesis systenthat
synthesis, non- the authors and their colleaguss/ebeen developing over
programmable accelerator the past five years.
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1 Introduction

Over the past few decades, driven by ever increasing levels of semiconductor integration, the
center of gravity of the computéndustry hassteadily moveddown fromthe mainframe

price bracket to thpersonal computer price bracket. Nawth the advent oystemlevel
integration (SLI) and system-on-chip (SOC), the center of gravityoing into embedded
computing.

Embedded computers hidgthin products designed faeverydayuse as they assist our
world in an invisible manner. Wieefer tosuch products asmart products. Embedded
computershave been incorporated into a broadriety of smart productsuch asvideo
games, digital cameras, personal stereos, televisions, cellular phones, and metiecsk A
digital camcorderfor instanceuses aigh-performance embeddgdocessor to record or
playback a digital video stream of data. These embepldessorsichievesupercomputer
levels of performance on highly specitesksneededor recording anglayback. It is the
availability of high-density VLSI integration that makes it practical to prosigeh product-
defining performance at an affordable cost.

As VLSI density increases embeddawcessors antinue to provide more compute power

at evenlower cost. This is stimulatinghe rapid introduction of a vast array iohovative

smart products. Newly defined digital solutions, capable of inexpensivpsrforming
complex data manipulations provide revolutionary improvemenfgdduct functionality.
Embedded processors are often used in produatgpteviously relied on analog circuitry.
When analog signals are digitally represented, digital processing performance increases can
be used to provide highepeed, higher accuracy signal representation, rafiirgent
storage, and more sophisticated processing uniquely available in the digital domain.

Any computer architecture must be designed to take advantage of the oppowritfortaees]

by the latest technologieghile taking into consideration the requirements of tharket,
product and application. We now examine the way in which these requirements are different
in the embedded space relative to those for the general-purpose space.

1.1 Product Requirements

Demanding product requirements often constthgdesign of embeddesgystems from
many sides. Asmart producimay simultaneouslyeed,higher performancelower cost,
lower power, and higher memory capacity. High throughpespgcially important in data-
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intensive tasks such asmaging, video, sgnal processingetc. Products often have
demanding real time requirements that further exaggpratessing needs. In thesases,
embeddegrocessorsare required to perform complgxocessing steps in lamited and
precisely known amount dfme. Compute-intensivemart productaise special-purpose
processing engines to deliver very high performance that canmohleayed with aeneral-
purpose processor and software. Such prodaretoften enabled byon-programmable
accelerators(NPAs) that accelerate performance critical functions.

Often, cost is more important than performance, with budgets that allow only a few cents for
critical chips. Power is obviously importafiar battery-operatedevices, butan be equally
important in office environments whegensely stacked equipment requir@gpensive
cooling. In such settings, long term operatougtscan easily exceed the purchase price of
equipment. Lack of memory storage isaxious poblem and compression techniques are
used toconserve storage especiafiyr high-volume video, image,and audio data. The
storage oflarge computeprograms is often too costly apdocessorsre valuedor their

small code size. In some systempgygramsare compressed to redudkeir size andater
decompressed for execution.

While the speed of general-purpose processnay exceed 1GHz, embeddptbcessors
often execute at modest clocpeeds relying stead on parallelism tachieve needed
performance. The use of parallel execution, rather than high clock speed,fati@esigns
with cheaper, lower power circuits. These low cost and power-effidesignsare also less
dependent on precisely tuned Idsvel crcuitry. Additional power management features,
such as gated or variable speed clocks, may also be used.

1.2 Market Requirements

Smart products require newly developed, and highly specialized, embedded systems in order
to provide the novehnd product-defining features necessary aomapetitive marketplace.

Often, the introduction of aew smart product dependgon the successful design and
fabrication of a new chip that gives the product its distinguishing,Jatyte features.Time-
to-market determines thgiccess ofailure of products andusinesses. Whilene smart

product vendor (SPV) awaits a tardy chip design before dan ship product, a competing

SPV's productakesadvantage of théiigher profit margins andisible pressavailable

during early product introductioriThe SPVswho deliverproduct early capturéhe lion's

share ofthe profit and visibity. Those whose productse late, miss the market window



and mustsettle for what isleft. The ability todesign rapidly provides a distinaharket
advantage.

There is a proliferation in the number of smart products being introduced, and an escalating
number of embedded systedesignsare needed teupportthem. The problem is
exacerbated by the shorter life cycles experienced by smart productsconguenerspace,

since each generation of a rapidly improving smart product requires new embgsldeads

in order to improve functionality.

The need for complex new chip designs cannot currently be satisfied. Arodwettion is
limited by our ability to performexpensive and time-consumimgsign tasks. A design
bottleneckresults fromthe use of alimited pool of highly talentedengineers who must
design a greater variety of complex chips at ever increasing rates.

1.3 Application Characteristics

Embedded applications are characterized by small well-defined workloads. Embedded
systemsoften areused within single function productsSuch productshave product-
specific and portabléorms with simple and intdive user interfaces. Single function
productsarebased on far simpler software than general-purpose computers. They do not
havethe system crashes and rebotiteat we commonly associatgith general-purpose
systemsTheir administration is simple and computer-illiteraterscan enjoy theiuse.
Single-function productswith complex, high-performance, embeddedystems are
increasingly popular athe cost of theirelectronic contentlecreases. Many users dot,

and cannot, write progranfier their products. To them, progranase invisible logiowhich

is used to provide product-defining functions.

Often, key kernelswithin applicationsrepresent the ast majority ofrequired compute
cycles. Kernels consist of small amounts of catdéch must run awery high performance

levels to enable a smart product's functionality. In video, image and digital signal processing,
the applications' execution times are often dominated by silopfe nestswith a high

degree of parallelism. These applications are typically characterized by a greater degree of
determinacy themeneral-purpose applications. Not onlythe nature of the application

fixed, butkey parametersuch as loogrip counts or array sizesre pre-determined by
physical product parametessich aghe size of an imagingensor. For such demanding
application-specific products, high performance and high efficiency is often obtesimeg



deeply pipelined function unitshich havebeen crafted into custom architectures designed
to solve kernel codes.

Productsmay also havereal-timeconstraintsvhere time-criticalcomputingsteps must be
completed beforavell undestood deadlines tpreventsystem failure Real-timesystems
require highly predictable execution performance. This often requiraséhef areal-time
operating systenwhich providestask scheduling mechanisms necessaryguarantee
predictable performance. Complex dynamic technigsieshh asghe use ofvirtual memory,
caches, or dynamimstruction scheduling may not kalowed. When these techniques
make the accurate prediction of performance excessively difficult, real-time constraints
cannot be verified.

1.4 Overview of this Report

The movement of the center of gravity of computifigm general-purpose personal
computers to special-purpose embedded computers, will cause auplagaval in the
computerindustry. Successful aaputer architecturbasalways resultedrom a judicious
melding of the opportunities afforded by the latest technologies with the requirements of the
market,product and application. Theaee significantly differenfor embedded computing
leading to substantially different computer architecturesbadh the system and the
processotevels, as well as ach diversity of off-the-shelf (OTS) and custom designs.
Furthermore, we believe that embedded computing will introduce a new theme into computer
architecture: the automation of computer architecture.

In therest of thisreport, we elaborate on thegeints. In Section 2, we look ambedded
computer architectures, and explain the increased emphasis on special-purpose architectures
over general-purpose onesection 3 considershe issue of customization and the
circumstances that force a SPV to resort to it instead of using an OTS solution. In Section 4
we argue for the use of automation in architecting and designing embedded systems, and we
articulate our philosophy for so doing. As asxample ofthis philosophy, Section 5
provides aroverview of PICO, the architectursynthesis system th#te authors andheir
colleagues have been developing over the past five years.

2 Embedded Computer System Architecture

To achievethe requisite performance, high-performance embedgistémsoften take a
hierarchicalform. The system consists of a network of processeash processor is



devoted toits specialized computintask. Processorsommunicate as required by the
application and network connections amopgocessors support onlghe required
communications. Eaclprocessor alsoprovides parallelism and is constructeding
networks of arithmetic units, memory units, registed control logic. Hierarchical
systems jointly offer both the process-level parallelism achieved with myitipteessors as
well the instruction-level parallelism achieved bging multiple function unitswithin each
processor.

For efficientimplementationand to provide product featureach as highegierformance,

lowest costand lowestpower, embedded computer systatesignsare often irregular at

both levels of thedesign hierarchy. The ém& system, asvell as each of theprocessors,
represents a highly special-purpose architecture that shows a strong irregularity that closely
mirrors application requirements and ideally supports kernel needs.

Whereasspecialization can based to povide the veryhighest performance #he very
lowest cost, embedded systems employ architectulmesh span a spectrum. At orend, a
special-purpose archdtire providesvery high performancewith very good cost-
performance, but little flexibility. At the other end of the spectrum, a general-purpose
architecture provides much lower performance and p@osrperformance, butith all of

the flexibility associated with software programming. A thalabice, theOTS customizable
architecture, provides an increasingly important compromise between these two extremes.

2.1 Special-Purpose Architectures

Smart products often incorporate special-purgoebeddegrocessing systems in order
to provide high performanceith low cost and powerfFor example, a pnter needs to
performmultiple processing steps on itsput data e.g.: error correction, decompression,
image enhancement, coordinate transformatiowipr correction,and final rendering.
Enormous computation is needed to perform thesgeps. To achieve the needed
performance,printers oftenuse a pipeline consisting ahultiple processors;data is
streamed through thigipeline of concurrently executirgpecial-purpose processors. This
style of design produceslatively inexpensiveand irregular system architectures that are
specialized to an application's needs.

In performance- and cost-critical situations, these embedded comgygtems are
specialized to simplify circuitryEnormous savingsan be achieved bgpecializing high-
bandwidth connections amongrocessors. Connections @appropriate bandwidth are



provided betweenprocessors,exactly as needed, to accommodate vespecific
communicationneeds. While highlbandwidth datgpathsare provided amongrocessors
that must exchange a largelume of data, nalata pathsare provided amongrocessors
that never communicate.

Likewise, thedesign ofeachprocessor is alsspecialized to the specifiteeds othe task

that it performs. If we lookwithin the design of each processor, we again sdbat
specialization greatly simplifies needed circuitry. Each processor's performasoery,

and arithmetic capability are alhdjusted to exactlymatch its dedicatedtask needs.
Arithmetic units and registers are conneactgith a network of dat@aths that is specific to

task needsEach arithmetic unit, data path, or register is optimized to exact width
requirements dictated by the statically knoanthmetic precision of the operations and
operands that they support. This specialization process again eliminates substantial amounts
of unnecessary circuitry.

Thc control circuitryfor each speail-purpose processman also bespecialized to exact

task requirements. Control circuits often degenerate to simple state mashinksare
highly-efficient in executing simple dedicatetsks. RAM structurewithin eachprocessor

are distributed according to need. Special table look up RAMs may be connected directly to
the arithmetic units which use their operands. Each RAM is minimal in size in both number
and width of its words. Rather precise information about the applicatioset tosqueeze

out unnecessargrithmetic, communicatiorgand storage circuitry. Chained sequences of
arithmetic, logical,and data-transfer operations asatically optimized to squeeze out
additional circuitry. These optimized circuits perform multiple operatigssiag far less

logic than would be required if cascadewits were designed toexecute each operation
separately.

2.2 General-Purpose Architectures

The widespreadise of special-purpose architectures sharply incretimesaumber of
distinct architectures thatust be designed. If satisfactory programmable general-purpose
system architecturesxisted, they would eliminate theeed to specialize architectures to
specific applicationsSuch general-purpose and domain-dpegystemswould offer the
hope thainew smart products could be designesing OTS parts thare reusablacross
many new smart products. General-purposgstemsare highly flexible andare, in fact,
reusableacrossalmost all low-performance applications. General-purpasstems are
designed in a number of ways. A general-pur@®k&C processocan be re-programmed



for a large variety ofasks.Domain-specificsystemsare customized to specific application
areas (e.g. digital signal processing) but not tepecific smart product or application.
Domain-specific systems often incorporate a corgrotessor to run apperating system
and a digital signal processor (DSP) to accelerate signal proc&ssima code. Tomften,
however, general-purpose and domain-specific systeares not are not able toneet
demanding embedded computing needs. RISC, superséaldf, and DSP architectures
do not efficiently scale beyond their respective architectural limits. iaeglimits in clock
speed and ability to exploit parallelism that make them casitlimpractical at the highest
levels of performance.

Symmetric multiprocessors are commounbed toextend system performance through the
addition of moreprocessors.Because general-purpose multiprocessars designed
without application knowledge, they provid@iform communication amongrocessors.
Identical processors are connected in a symmetric manner. General-potgpasanection
networks and multiprocessor shared memories pratiderequired general anghrallel
accessHowever, such highlyconnected and symmetric hardware scgesrly as the
number ofprocessors ificreased. The communication hardware is either over-designed,
permitting high-volume dat&ransfers thahever occur, ounder-designed and unable to
handle thosehtit do. For large numbers of processorthe interconnect requires large
amounts of chip area and the long transmission delays adversely affect the cycle time.

General-purpose systemly on general-purposerocessors fortheir computing
horsepowerEachgeneral-purpose processor uflegible, general-purpose, function units
(FUs) that can execute any common operation that might be needed in an arbitrary program.
The general-purpose FU, however, is very expensive when compared to specialized function
units (within custom processors) that execute only a single operation type. General-purpose
processor®ften require symmetric accelsstweenfunction units and registers &AMSs.

They useexpensive and slow multi-ported register files and multi-poRédi1s to allow

general (and parallelommunication andgtorage. Multi-ported register files amdulti-

ported RAMs do noscale angrocessors tain their efficiency abnly modestlievels of
parallelism. Since thgeneral-purpose processoreigpected to be capable of executing a
broad range of applications, it ends up being both over-desagkdften, uner-designed

for the specific aplication it is called upon to execute in the embedded system.

The controlfor a general-purpose processor is based on instructionsetiste wide
access, complex shiftingand long distance transfer. The unpackingtle complex
instruction formats needed to reduce code s&e be very complexThis problem is
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especially difficultfor wide-issue superscalar or VLIW machines. Their instruction units
are well designed for supporting arbitrary and large programs on machines of modest issue
width. But, for simple and highlyparallel tasks, they are too expensive when compared to
state-machine based controllers found in special-purpose systems.

2.3 Off-the-shelf, Customizable Systems

In many settings, general-purpose and domain-sp&2ifis processor chipsannotdeliver
adequate computing powedtroduct designers seek otHem'S chip architectures tmeet
high-performance needs. Field Programmable Gate Array&ABP [1] provide one
alternative approach. FPGAs use programmable logic cells interconnected with a network of
wires and programmable switches. Rather than relying on normal sequential programming,
FPGAs are programmed using hardware design technigB€sAs havetraditionally been

used tomplement simple control logiand "glue logic"-thdeft overlogic needed to glue

key components together. An FPGA allows such logic to be collected within a single chip to
reduce system costhe density of FPGAs haggrown to the pointwwhere complex data
paths are now possible on a single FPGA. The architecture of FE@®ieues tamprove

as features are added to support witkta paths, wider arithmetiand substantial amounts

of on-chip local memory.With theseimprovementsFPGAs are increasinglyused to
implement special-purpose, high-performance processors.

The data patland control of an embedded architecture can be specifiedciasuih or as
network of hardwardunctions. Thecircuit can execute operatiorilom a repertoire of
memory and logic operations that are supported directly, or through libraries, IRRIIS
hardware. The embeddsgistemcircuit can be carefully specialized to applicatioeeds.
After completing logic design, the circuit is then mappetb an FPGAThe simplified
logic diagram is mapped onto logic cells an@cpdd and routedvithin OTS FPGA
hardware.

While not as easy as softwapeogramming, embeddeslystem design usingFPGAs
eliminates expensive, risky, and slow chip design efforts and substantially decreases product
risk and time-to-market. Because they are programmable, the cost oftugsgin FPGA-

based systems is small. A fix can be quickly tried and shipped. Firmware downloads can be
used to fixFPGA relatedproblems. FPGAs offer ancreasingly important programming
paradigm for delivering high-performance processing and rapid time to market.



Due to inherent hardware costs for supporting programnhadite FPGAs cannot hope to
be as efficient as customized hardware. Though FPGAs may be an order of mdgsgude
efficient than customizebardware FPGA-based designs siigh-performanceprocessors
can be far more efficient thatesigns thately solely on general-purpoggocessors for
computing horsepower.

FPGA vendors now provid®©TS chips hat contain ageneral-purpose processor, FPGA,

and RAM hardware in a single SOC. These FPGA-based architeparra thedesign of
complex special-purposprocessing systems. The general-purpose processor provides
flexible low-performance computing while the FPGA, along with its associated configurable
RAM blocks, allows high-performance spaepurpose processors to meplemented as
programmable logic. FPGA libraries now also provide processor cores that are programmed
as FPGAlogic. Theseprocessorcan be modified or enhancddr specific application
needs. Other functionality, such as support geripheral interfaces and programmable
I/Os, further increase FPGA utility.

3 System Customization

By customization we mean tgocess otaking anOTS systenand modifying it tomeet

one's requirements. In its extreme form, it entails designing the system from scratch. At one
level, customization is quite commonplacEor instance whenone buys a personal
computer,one typically configuresthe amount of memory, diskand the set oflevices
connected to the peripherbalUs. But one never modifies theprocessor oithe system
architecture (e.g., its bus structure). That task is viewed as the domain of the semiconductor
or computer manufacturer from whom we expect to buy an OTS sySiendiscussion of
customization is focused on this parttieé overallembedded systermhat we will refer to

as thecentral computing complex(CCC), which is theset of processors, memories and
interconnect involved in executing the embedded application.

Customization of th€€CC increaseshe design cost of smart products and often delays
product introduction. Whereas itcan greatly simplify the system, allowing high
performance at low cost, itqaires acomplicateddesign process. A customized system
involves comfex tasks, includingrchitecture, logic, circuitand physical desigrDesigns
must beverified and maskgabricated before chip production can begin. B/ iswell
advised to use an OTS CCw@hen possible; fromthe viewpoints of time-to-market,
engineering effort and project risk, this is clearly the preferable approach.



And yet, SPVs routiely design custom CCCprocessor&nd acceleratordVhat are the
circumstances that force them tostw? Why is ithat what theSPV needs is navailable
OTS, and that using something OTS would fall far short of his needs?

3.1 Why Customize?

Our view is thatthree conditions, in conjunction, create #i@ation that forces 8PV to

have to customizkis CCC.Firstly, the smarproduct musthavechallenging requirements
which can only be met by specializing tystem or processarchitecture, aslescribed in
Section 2. Else, th8PV could justuse an OTS general-purpose deskgecondly for the

given application, the performance, perhaps even the usability, of designs within the space of
meaningful, special-purpose designs musvdag disparateFor thisparticular application,

all the OTS designs must fall short to such an extent that it is Wa®PV'swhile to pay

the costs of custmization: longetime-to-market, greater engineeriaffort and increased
project risk. Lastly, the space of worthwhile special-purpose designs must be so large, that it
is not possible, or not economical, for someone to make them all available, on an OTS basis.

This last criterionraises a further question. If wtas worth theSPV'swhile to create a
custom design, why was it not so for a manufacturéd B designs ttiavedesigned and
offered the same thing? There are at least three reasons that serve as explanations. The most
frequent reason is th#éte application, or @ortion of it, representghe product-defining
functionality that providescompetitive differentiation to the smart producte., it
incorporates algorithm¢hat areproprietary. If the performance requirements on these
algorithms are sufficiently demanding, t68€C architecturenust bespecialized to reflect
these proprietary algorithms; it must be customized. Secahelyynitvolumerepresented

by a given smart product may be too low to make it worthwbile supplier to provide an
OTS system. A final possibility, is that the diversity of special-purpose solutemanded

by SPVs is just todarge for every one of hem to be provided a®TS solutions,even
though neither of the other two reasons is applicable. The SPV must fend for himself.

3.2 Customization Strategies

Customization incurs two types of design cosishitecturaldesign cost and physical
design cost. The former includése design costsassociatedvith architecting thecustom
system and any custoprocessorghat it may containperforming hardware-software
partitioning, logic synthesis, desigrverification and, subsequently, systermtegration.
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Physical design cost includes the design casseciatedvith the floorplanning,placement
and routing, as well as the cost of creating a mask set.

While customization can be used to provide the very highest performancevatyth@wvest
cost,SPVsemploy avariety of strategieswhich span a spectrum. At orend, acustom
architecture providesery high peformance, but at verpigh architectural and physical
design costs. Athe other end of the spectrum, @i'S architecture provides mudbwer
performancewith the low design costsassociatedwith software programming. A third
choice, theOTS customizable system, provides an increasingly important compromise: the
ability to use OTSparts, but requiring-PGA programming that is more complex and
similar to physical design. Although the architectw@dt and a part dhe physicadesign

cost must be borne, the mask set cost is avoided.

Minimizing architectural design cost. The key to minimizing architectural design cost is

to reuse pre-existing designsthe extenfpossible. One stragy is to fix thesystem-level
architecture, but to customize at th#bsystenevel. For instance, thesystemarchitecture

may consist of a some specific interconnect topology, containing one or more specific OTS
microprocessors plus one or more unspecified accelerators. The accetemtiefned by

the application andnust, therefore, be stom designsHowever, only the architectural
design cost ofhe accelerators is incurrethis strategycan be applied onlevel down, to

the processors. Most of a processor's architecture can béxkeptout certain of th&Us,

for instance, may be customized [2].

Minimizing physical design cost. An embedded systemay either fit on a singlehip,

or be spreadver multiplechips. Forevery part of a chip thahasbeen customized, one

must necessarily bear the cost of placement and routing. One can avoid tfos twstest

of the chip byusingwhat is known ashard IP, i.e., subsystems thabave been taken
through physical design. Although the floorplannipzcementaind routing forthe chip as

a wholemust still be performedhe hard IPblocks are treated as atomic components,
greatly reducing the complexity dahis step.However for every chip thathas been
customized, even to a small extent, the entire cost of creating the mask sets for the chip must
be borne.

At lower levels ofVLSI integration, asystem used to consist ofultiple chips, of which
only afew might haveneeded to be custom. Furthermdhe cost of creating amask set
was relatively low. The advent @GOC greatly reduceshe cost of a complex embedded
system.However, itcomeswith a disadvantagegny customization of the systerhpwever
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tiny, requires anew mask set. Worseet, the cost of creating amask set isnow in the
hundreds of thousands of dollars, and rising.

Avoiding mask set costs.This is a powerfuincentive to avoid/LSI designcompletely,
motivating the notion of OTS, customizal8©Cs or'reconfigurable hardware". The basic
idea, as before, is to fix certain aspects of the system's and procasdviettures,and to
allow therest to be custom. The difference I&tt instead of implementing the custom
accelerators anBUs usingstandardcells, they are implemented lmgapping them, after
performing logic synthesis, on EPGAs. Acordingly, theOTS SOCcontains the fixed
portions ofthe systemarchitecture, implemented asandardcells, butprovides FPGAs
instead of the custormprocessorsaccelerators anéFUs. By programming theFPGAsS
appropriately, the OTS SOC can be customizaethfsement anumber of different custom
system architecture§he entire architecturalesign cost forthe customsubsystems is
incurred, as are theosts of programminthe FPGAs (similar in many ways t@lacement
and routing), but the VLSI design costs are eliminated.

This is anextremelyattractiveapproachwhen the desired custosystem fitsthe system-
level arclitecture of the OTS, customizab®OC. If rot, the SPV must design austom
SOC. Forhigh volume products, wherapplicationneedsare well understood, anavhere
high design cost and desigime can be tolerated, customiz&DCs providehigher
performance at a lower cost than EBGAS. However,its programmability allows an OTS
FPGA to serve afar greatervariety of immediateproduct needs andllows complex
products toget to market more quickly and tevolve with changing application
requirements. Further benefits of this approamie quick prototyping and field
programmability in the event that the nature of the customization needs to be changed.

Note that our discussion of OTS customizable system here and in Section 2.3 desvéno
of the same thing. There, our view of it was asalégrnativestyle of architectureere, our
view of it is the more traditional one, as a way of implementing a hardware design.

4 Automation of Computer Architecture

Embedded computing, with its distinct set of requirements and constraints, is generating the
needfor largenumbers of custom embeddsygstems. Whether thegre implemented as
custom SOCs or by usin@TS, customizableSOCs,the architecturalcosts must be
incurred. Webelieve thathe needor mass custoization,and its associatedrchitectural
costs,havebrought intoexistence anew theme in @amputer architecture-the automation of
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computer architecture. Weall this architecturesynthesis in order to distinguish it from
other forms of high-level synthesis such as behavioral syn3e<i$ and, todistinguish it
from low-level synthesis such as logic synthesis [5].

4.1 When is Automation Important?

One could argue thafor the foreseeable future, an automatically architected computer
systemcan be expected to Besswell-designed than a manually architectsad tuned
design. This statement is not as obviously true as it might sound; the abilitypofoamated
system toevaluatethousands oflisparatedesignscould quiteconceivably yield auperior
design. But if we accept thistatement as true, thguestion that arises is undesat
circumstances it is desirable ugseautomation. Webelieve hat there are at least threets

of circumstances that argue for automation.

The first one is when théesiredvolume of cutom designs, stimulated by amplosion in
the number of smart products, exceedsatvalabledesign mapower. The demand might
be due to a large number of either application-specific or domain-spesdigns. Iltmight
also be due to shortened prodlit# cycles, eitherbecause theelevantstandards are
evolving, or because ofcompetitive pressures in a consumer businessitomation
addresses the problem by sharply increasing the aggregate design bandwidth.

Automation isalso usefuwhen time-to-market or time-to-prototype is crucial. Often, the
product definition could not be anticipatiad enoughahead oftime to usemanualdesign
methodologies, phaps becauseralevantstandard had ngtet converged, or peaps the
functionality of anew productwas not yet clearlynderstood. In sucbases, thepeed of
automated techniques is of great value.

A third motivation for automation occurs when the expected volume of the cdstign is

too small to permit theproduct to be economical using raanual design process.
Automation reduces the design c@shich must beamortized over themall volume), and

can make such a product viable.

4.2 A Philosophy of Automation

A typical reaction to the notion of automating compuggstem design is that it is a
completely unrealistic endeavor. Typically, gesumption underlying thisaction isthat
the automatiaesign systemvould emulate thdauman design methodologyhat would,
indeed, be a very hard problem in artificial intelligence, since human designers tevehto in
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new solutions to problems they encounter during design. We do not believe that one should
try to build an architecture synthesis systéat dloes thisinstead,our approach picks the

most suitable design out oflarge, possiblyunbounded, denumerabtiesign space. This
spacehas to bdarge anddiverseenough to ensuréhat there is a sufficient repertoire of
good designs sthat abest designselectedrom the space, wiltlosely match application
needs.

Framework and Parameters.Since it isimpractical to explicitly enumerate evdeasible
design, the space afesigns isdefined by a set of rules and constraints that must be
honored by each design in the space. We call thayaework. Within aframework,some
aspects of the design, such as the presence of certain modules and the manicarthey

are connected are predetermined. Other aspects designare leftunspecified. Otthese,

some can be derived once the rest have been specified. We refer to the fetameers
Thespecification of a design consists of binding the valueshef parameterg:rom these,

the derived aspects of thaesignare computed. Togetheand in the context of the
framework, they constitute a completely specified design. We dadimsruction to be the
process of deriving the detailed, completely specified design once the parameters are given.

Our philosophy fordeciding what is a parameterand what is not, is determined
operationally.When webelievethat wehave analgorithmic way ofdetermining certain
design details in aoptimal or near-optimal manner, wew their definition as part of
implementation. When we have no clear way of determining important attributes of a design,
and we use heistic search to determine well-choseadues, weview them asparameters.

After all design parametei@e bound, aesign is completely specified atlte design can

then be constructed. In the specification of a given design, it is often the case theatryot
combination of parameters valid. For a system design to balid, certain parameters of

one subsystem mustatch thecorresponding parameters of anotiebsystemThese are
expressed as validity constraints involving the parameters that must match [6].

Components.Designs are constructed by assembling lower-level components, picked from

a component library. Sometimes, these components are parameterized with respect to certain
of their attributes; once the parameters are specified, a component constructor can be used to
instantiate thecorresponding componenthe components, or their constructors, are
designed anadptimized manually. The componemisistfit into the frameworkand, must
collectively provide all of the building blocks needed to construct any design.
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In addition to its detailed design, each compomeusthaveassociated information needed
during the construction of theystem design. Information needed to propémtgrface
components into a broader design context includes a description of a component's
functional capability, adescription of a component's input and output wiring needs, and a
description of a component's externalgsible timing and resource requirements.
Components are often described as a netwotkvedr-level compoents forming a design
hierarchy.

A Paradigm for Automation. Typically, one hasmultiple evaluation metrics in mind
(such ascost, performancand power)when picking agood design.Thus, finding an
optimal design involves a multi-objective optimization task. A design is said td°besto-
optimal design or a Pareto design fehort, if there is no othatesign that is deast as
good as itwith respect teevery evaluation metrignd better than ivith respect to at least
one evaluation metric. The set of all Pareto designs Rateto set or the Pareto for short.

We automaticallyfind a Pareto set usinthree interactingnodules. Thespacewalker
exploresthe space opossible designs, lookingr the Pareto-optimabnes.The space of
possible designs is specified to the spacewalker by the user, who provides a nraigesof
for each parameter. Tliesign spacas the Cartesiaproduct ofthe sets ofvaluesfor the
various parameters. It defindse space oflesigns hat the spacewalkenust explore. At
eachstep inthe search, the spacewalkgpecifies a design by binding parameters. A
constructor can take a design, as specified by spacewalkerand construct dardware
realization of the chosen design. The effects of a component biadireyaluatedsing an
evaluator that determines the suitability of the spacewalker's ch&ealuation ismost
accuratelyperformed by first executinthe constructor for adesign,with appropriately
bound parameters, to produce a detailed design. Then the evalisstirs detaileddesign

to compute the evaluation metrics. When the cost of constructing cardiimteddesigns

is excessive, approximate evaluation metrics s@mmetimes be quickly estimated directly
from design parameter3he evaluatiorprocess usemultiple tools includingcompilers,
simulators, and gate count estimators.

At eachstep inthe search, the spacewalker invokes ¢bestructor and ewuators to
determine whether, in the context of tthesignsevaluatedthus far, the latestdesign is
Pareto-optimal. If the design spacesisall, thespacewalker mayse anexhaustivesearch.
Otherwise, at each step, it uses the evaluation metrics, possibly other statistics relating to the
design, and appropriate heuristics to guide it in taking the next step in its search. The goal in
this case is to find all, or most, of the Pareto-optidedignswhile havingexamined a very
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small fraction of thedesign spaceSpacewalking is hierarchical when an optimizgdtem
is designed using a spacewalking search and components syfsteenare treated as sub-
systems that are in turn optimized using lower-level spacewalking searches.

A framework restricts the generated design soilset ofall possible designs that a human
might have created. However, it is precisely from this tthetpower of a frameworérises.

It is difficult to conceive of howone couldcreateconstructors and ewtors capable of
constructing anevaluatingany possible desigryet, without constructors anevaluators,
automation would be impossible. The limits placed by a framework, aiygks of designs
that have to be evaluatetid constructed, arerucial to making automatiopossible. The
challenge, when designing a framework, is to choose one that is largeversgenough to
containgood designswhile at thesametime retaining the ability t@valuateand construct
every design in that framework.

5 The PICO Architecture Synthesis System

In order toillustrate our automation philosophy, we briefly descriBéCO (Program In,

Chip Out), our research prototype of an architectgggthesis system foautomatically
designing custom, embedded computer systems. It employs our paradigm for automation, in
a hierarchical fashion, four times over. PICO takes an application writtenaimtdadyatically
architects a set of Pareto-optimal system designseiauitd the structura/HDL for them.
Currently, optimality is defined by two evaluation metrics: cost (gate count or chip area) and
performance (execution time). PICO explores tradetm#taeen the ways in which silicon
area can be utilized isuch asystem, presenting to thuser a set of Pareto-optimal system
designs. Inthe processPICO doeshardware-software co-design-partitioning thigen
application between hardware (one or morstamm NPAs) and software(on a custom
EPIC/VLIW processdr [7]). PICO also retargets aompiler to each custonvLIW
processor; we call this processor-compiler co-design.

5.1 System Synthesis

At the system level, PICO's task is to identify the Pareto-optimal setstdm, application-
specific, embedded system designs fginan application. Eaclsystem that PICO designs
consists of a custom VLIW processor anduatom,two-level cachénierarchy. Thecache

1 EPIC (Explicitly Parallel Instruction Computing) is a generalization of VLIW. &amvenience, irthe rest of
this report we use the term VLIW to include EPIC as well.

-16 -



hierarchy consists of a first-level data cache (Dcache), a first-level instruction(lczcine),
and a unified second-level cache (Ucache). In addition, the system may contain one or more
custom NPAsthat work directly out of the second-level cachdCO exploits the
hierarchical structure athis design space. WithiRICO's framework, asystem design
consists of a VLIW processor, one more NPAs, and a che hierarchy.Accordingly,
PICO decomposethe system design space into smaller desipaces, onéor each of
these majosubsystemsThe components th&ICO uses tareate a system-levelesign
are the custom, application-specific VLIW processhif8As and cache hierarchies that are
yielded by the spacewalkers aodnstructors forthe varioussubsystems, as discussed
below. The system-level parameters are dmgon of the parametergor the VLIW
processor, the NPAs, and the cache hierarchy.

The system design spadgpically contains millions of designeachrequiring an hour or
more of profiling, compilationsynthesis andimulation time. An exhaustiveearch of the
design space is infeasibkastead,PICO exploits the hierarchical structure of tdesign
space. The basic intuition is that Pareto-optisydtemsare composed out of Pareto-
optimal componensubsystems [6]. Awrdingly, the system-level spacewalker invokes the
subsystem-level spacewalkers to get the Pareto-opgietsilof subsystem designs. The set
of all combinations of Pareto-optimalbsystems igar smaller that the originadlesign
space. In the simplestase, the system-levedpacewalker wouldconsider all these
combinations, evaluate them, and discard all that are not Pareto-aptsteah designs. But
due to védity constraints, notll combinations arevalid. Therefore, the system-level
spacewalker requires that each subsystem-level spacewetlier not just a single Pareto
set, but rather a set of parameterized Pareto sets. When composing subgysysigm-
level spacewalker enforces validity constraints by only combitésijgns fromcompatible,
parameterized Pareto sets. For such compatible Pareto setssidersall combinations of
subsystems, evaluates them, and discards all that are not Pareto-optimal system designs.

For each loop nest in the application, that is a candidate to be implemehsedviiare, the
spacewalker examindsoth options. Ifthere are Nsuch loop nests, the spacewalker
explores 2N systerarchitecturesfrom those hat have noNPAs atall, to those inwhich

every loop nest has been implemented B$A. Foreachsystemarchitecture, icomes up

with the Pareto set as described above. It then forms the union of these Pareto sets and finds
the Pareto-optimadesignswithin this union. Thidfinal Pareto set contairal designs of

interest for the application. Typically, latv performancdevels,the Pareto-optimadesigns

contain noNPAs. Conversely, at sufficientiyigh levels of performance, all of the loop
nestsmay be implemented a$PAs. In thismanner, the system-level spacewalker makes
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different hardware-software partitioning decisidos Pareto optimal systenvgith varying
cost and performance.

The system-levetonstructor utilizeshe constructors forthe VLIW, NPA and cache
hierarchysubsystems t@onstruct thesubsystem designs. It then glubgsesubsystem
designs together by synthesizitig appropriate hardware and software interfhetseen
the VLIW processor anthe NPAs. Likewise, the system-level evaluators maise of the
subsystem-level evaluatorSystem designsre evaluated bydding thecosts and the
execution times, respectively, of the component subsystems.

5.2 VLIW Synthesis

PICO-VLIW is the PICO subsystemhat designs custom, application-specifi&/LIW
processorsand generates a parameterized set of Paedio [8]. Inaddition, it retargets
Elcor (PICO's VLIW compiler) to each newprocessor so that itan compile the C
application to thatprocessor. The processocsrrently includedwithin PICO-VLIW's
framework encompass a broad class of VLjp¥dcessorsvith a number of sophisticated
architectural and micro-architectural featuf@sl10]. A complete specification of ¥LIW
processor within this framework involves hundreds of detailed decisions. If all ofwhese
parameters, it wouldesult in an extremely unwieldgesign space exploration task. Our
choice of the interface between the spacewatket theVLIW constructor involves a
delicate balance between giving the spacewalker adeqaateol over the architecture,
without bogging it down by requiring it to specigll details.Our compromise is that the
parameters that the spacewalkarst specifyare limited to thesizes and types of register
files, the operation repertoire, and the requisite level of ILP concurr€heyeafter, it is the
job of the VLIW constructor to make the remaining detailed design decisions.

The number of parameters needed to specilyLBN design is still relatively large.
Consequently, even if the range for each parameter is small, the sizedekithe space can

be extremely large. Furthermore, #ealuation of thgerformance of a VLIW design is
time-consuming, since it involves compiling a potentially large application. The spacewalker,
therefore exploresthe design spacesingsophisticated search strategies and heuristics to
prune the design space based on previously evaluated processor designs.

For each set of parameters generated by the spacewalker, the VLIW condiaigos the
architecture and micro-architecture of the specifiddW processor, including the
execution datapaths, the instruction forraatl the instructiorunit, and emits structural
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VHDL. It also automatically extracts that part of timeachine-description database
(mdeg [9] that drives Elcorduring scheduling and registallocation. The VLIW
constructor useRTL componentsfrom PICO's macrocell library (such asadders,
multiplexers and register files) to synthesize W processor. Inaddition to the gate-

level design, each componehas associatedvith it information regarding itsarea, gate
count, and degree of pipelining. Functional unit macrocells also are annotated with the set of
opcodes that they can execute.

The cost evaluator estimates the chip area and gate count ttesiiga usingparameterized
formulae for areaand gate count that are attached to each component iméuoeocell
library. These formulae are calibrated agasstaldesigns. Theperformanceevaluator
estimates the execution time of the given application on the rimgigned processor using
Elcor andPICO's réargetable assembleBoth are automatically retargeted Isypplying
them with the mdefor the targefprocessor. The scheduesated by Elcoralongwith the
profiled frequency of execution of each basic block, sufficesstimate the executidime.
The object code generated by the assembler serveshjectivesduring design space
exploration. One is to evaluate the code size andhggactuponthe cost of main memory.
The other is to permit an estimateitsf effectuponthe Icache and Ucacheissrates and
the resulting impact on execution time.

5.3 NPA Synthesis

PICO-N is the PICO subsystem fdesigning NPAs ustomized to @ivenloop nest and

for obtaining a parameterized set Béretos for such NPAs [11]. A designtire NPA
framework consists of a synchronous, one- or two-dimensiomedyaof customized
processing elements (PEs) along with their local memories and interfaces tonggotaly,

a controller, and a control and data interface to a host procé&ssbr.PE is a datapattith

a distributed registeile structure.Each register file is &IFO with random read access.
Interconnectiondetween the~IFOs and FUs exist only as needed Ithe computation,
resulting in a sparse amdegular interconnect structumth connections to only some of

the FIFOs' elements. PICO-N also synthesizes the code required to make use of the NPA.

The design parametee the number of PEs, thdtiation interval (Il) betweenstarting
successive iterations on any single PE, and the amount of memory bandwidteeoathe-
level cache. Since the number of parameters nalls the spacewalkerperforms an
exhaustivesearch througlhe design space defined ltige ranges othe three parameters.
Because the precise geometry of the arrayPBE is notspecified as a pameter, the
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spacewalkesteps througlall one-and two-dimensional array geometrighich have the
specified number oPEs. This sees as an additional parameter the constructor. The
results of this searchre used tocreate aset of Paretosgachone parameterized by the
number of memory ports that the NPA has to the second level cache.

The NPA constructor starts offiith a loop nest expressed as a sequertmhputation
working out of global memory. It firdiles theloop nest, creating aew set of sequential

outer loops, that will run on théLIW processor, alongvith aninner loop neswith fewer
iterations (the tile), that will be executed in parallel by N#A. This transformatiomllows

the constructor to not exceed the available global memory bandwidth, by performing register
promotion in the inneloop nest, while minimizing theost ofthe additionaregistersthat

this entails. Smaller tiles result lower hardwarecost but higher memory traffic. The
constructor uses constrained combinatorial optimization to minimizéle¢helume without
exceeding the memory bandwidth allocated to NIRA. Next, theconstructor transforms

the inner loop nest into multiple, identical, synchronously parallel computations, one per PE.
It does so by assigning a PE and a start time to each iterationtile tikile honoringdata
dependencebketweeniterations. Furthermore, frothe perspective of eagtrocessor, this
iteration schedule is required to start an iteration every Il cycles.alltngs theconstructor

to expresghe computation on each PE asragi loop batperformsall of the iterations
assigned to that PE.

This loop is used to synthesize a single BEing user-specified pragmasgarding the
requisite bit widths of variables, the constructor inteies minimum width requirements for
all variables, temporarieand operations. Thigllows the width of every register, FU and
datapath to be minimized. A minimum-castt of FUs are allocatecnd the operations of
the loop body are assigned to these functional units and schedtilee.iftlcor isused to
perform software-pipelining ahe loop atthe specified llusing avariety of heuristics to
minimize hardwareost. At this pointthe hardwardor one PE ismaterialized,using the
RTL components in the macrocell library. Register files, in the forfllBOs with random
read access are allocated to hold temporary values. Interconnections betwd&®Otheand
FUs are creatednly asneededresulting in a sparse andegular interconnect structure
with connections to only certain of the FIFOs' elements.

An NPA consists ofnultiple instances of th&E, configured as an array. As many copies

of the PE are created as specified by diesign pameter,and interconnected in the
specified geometry. The controller and the global memory interface are generated. The
NPA, including its registers aratray-level local memories, eccessedia alocal memory
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interface by the/LIW processor. Itmay be initializedand examinedusing thisinterface.
Finally, structural VHDL for the NPA is emitted.

The NPA constructor also performs sommeftwaresynthesis. lttakes theloop nestafter
tiling, with its additional outer loops, amgémoves the inneloop nest that hasow been
implemented as hardware. il8 place, itgenerates the code that viiiivoke theNPA after
making the appropriate initializationta the NPA's local memory interfacel his new loop
nest is inserted back inthe application in place of tHeop nest thatvas presented to
PICO-N. Instead of executirthe loop nest onthe VLIW processor,the applicationwill
now trigger the computation on the NPA.

The cost evaluator estimates the chip amagate counfor the NPA, aglescribed eder
for the VLIW processor.The performanceevaluatorfor the NPA (which executes a
predictable loop nest) is estimated using a formula instead of via simulation.

5.4 Cache Hierarchy Synthesis

The third major PICO subsystem automatically generates a parameterized set afd®areto
for cachehierarchies thahave been customized to thgiven application[12]. A design
within the cachénierarchy frameworlconsists of dirst-level Dcache, a first-level Icache
and a second-level Ucachéust as athe systemlevel, PICO decomposeshe cache
hierarchy design space into smaller design spémeshe Dcache, Icachand Ucache,
respectively. Each of the three caches-Icache, DeauthdJcache-is parameterized by the
number of sets, the degree skaciativity, the line sizgnd the number ogports. Avalid
cache hierarchy design must have parameters that are compatible as specifiechligitghe
constraints, e.g. thporting onthe Ucachamust at least be equal tioe Dcacheporting (if
data fetched from the Ucache is permitted to bypass the Dcache). A feraleer dilation,

is an attribute of the code size for each VLIW processor. Jdniameter determines not the
design of the cache hierarchy, but rather the performance of the Icache and Ucache.

The spacewalker takemdvantage of the fact that the cadherarchy design space is
decomposed into three small@esign spaces correspondingth@ Icache,Dcache and
Ucache, respectively. For each of thdssignspaces, a parameterized set of Pagete is
formed. Eachdesign space's set contamember Paretsetswhich areformed separately
for each setting of thealues of the parameters that participate in validigstraints The
recomposition stepisesthese Paretos to forparameterized Paretets forthe overall
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cache hierarchy, whileenforcing validity constraints by only considering those
combinations of Icache, Dcache and Ucache Pareto sets that are compatible.

The costs of the Icaches, Dcaches and Ucachevaketedising parameterized formulae.
Trace-driven simulation is used to evaluate the miss rates, using the Cheetah cache simulator
[13] which exploits inclusion propertiebetweencaches tosimulate, in asingle pass
throughthe addresdrace, arange of cach&esignswith a common line size. This trace-

driven cache simulation idone oncdor areference VLIWprocessor. To a first order of
approximation, the Dcache miss rate is assumed to be unaffected by the details of the VLIW
processor. But this is not the case for the Icache and Ucache misémnatgtc techniques

that usethe dilation parameter, otinedwith interpolation of the referencprocessor's

miss rate, are used to estimate the performance of these caches.

6 Conclusions

System-on-chip levels of VLSI integration are causing the centgrawity of the computer
industry to move into embedded computing. The driving applicatitor embedded
computing will be a rich diversity ahnovative smart productswvhich dependfor their
functionality, on the availability of extremelhigh-performance, low-cost embedded
computer systems.

Successfulcomputer architectureesults fromachieving a careful balance between the
opportunities afforded bthe latest technologies, on the drand,and the requirements of

the marketproduct andapplication, on th@ther. The opportunitiesieeds and constraints

of embedded computing are quite distiftom those of general-purpose computing. This
creates a new playing field and will lead to substantially different computer architectures, at
both the system anithe processottevels. Embedded architectures will fa¢ more special-
purpose, heterogeneous and irregular in their structure. hbeee wassuch athing as the

"one right architecture”,even for general-purpose&omputing. This iseven truer for
embedded computing, which will trigger a renaissance in systerprandssorchitecture.
Custom and customizable architectures will assume a new importance.

Furthermore, we believe that the very largenber of custom architectures required, due to
the expecte@xplosion inthe number of smart products, will introducenew theme into
computer architecture: the automation of computer archite€uneexperiencewith PICO

is that this is a perfectlpracticaland effective endeavor. Theesulting designsre quite
competitive with manual designs, but are obtained one or two orders of magnitude faster.
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