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Interference channel capacity region for randomized fixed-composition
codes

Cheng Chang

Abstract—The random coding error exponents are achieve new capacity regions known as the Han-Kobayashi
studied [5], [6] for the finite alphabet interference channel region first appeared in [12].

(IFC) with two transmitter receiver pairs. The code words The outline of the paper is as follows, we first formally

are uniform on a fixed-composition set and the decoding defi domized fixed iti d d it it
is optimum, as opposed to decoding based on interference eline randomized fixed-compositon codes and IS capacity

cancellation, and decoding that considers the interference as region. In Section Il we present the main result of this paper:
additional noises. In this paper we further study the error the interference channel capacity region for randomized fixed
exponents of randomized fixed-composition coding, some composition code in Theorem 1. The proof is later shown in
simple lower bounds are derived for universal decoding rules. Section 11l with some details in the appendix

Furthermore, we give a complete characterization of the ’
capacity region of this coding scheme that is first proposed ; : _ s
in [5] and [6]. It is shown that even with a sophisticated A. Randomized fixed-composition codes

time-sharing scheme among randomized fixed-composition  In this section, we introduce the randomized fixed compo-

codes, the capacity region of the randomized fixed-composition sition code. This is a subset of all coding schemes that can
coding is not bigger than the known Han-Kobayashi capacity pe sed by the coding system. However, the understanding

region first appeared in [12]. This suggests that the average . - .

behavior of random codes are not sufficient to get new capacity of this particular k!nd of codes may help U,S to understand

regions. the nature of the interference channels. First we introduce
the notion of type set [1].

Index Terms—interference channels, randomized coding, A type set7"(P) is a set of all the strings™ € X" with

capacity region the same typd® where P is a probability distribution [1]. A
sequence of type seB” C X" has compositionPy if the
[. INTRODUCTION AND PROBLEM SETUP types of 7™ converges taPy, i.e. lim % = Px(a)

In [12], the capacity region of interference channel idor all a € & and Px(a) > 0 and N(a|7™) = 0 for all
studied for both discrete and Gaussian cases. In this page€ & and Px(a) = 0, where N(a|7™) is the number of
we study the discrete interference channels Witpairs of ~occurrence ot in type 7.

encoders and decoders as shown in Figure 1. The two channelye ignore the nuisance in the integer effect and assume

inputs arex™ € X" andy™ € V", outputs are:™ € Z" and  that nPx (a) is an integer for alla € X, this is indeed a

zZ" € Z" respectively, wheret, Y, Z and Z are finite sets. reasonable assumption since we study long block length

We study a simpler channel model where each encoder ordyd all the information theoretic quantities studied in this

has a private message to the correspondent decoder Whjlgper are continuous on the distributidhg. We will simply

in [12], a more complicated case is studied while allowin@enote by7”(Px) the lengthn type set which has “asymp-

public messages. totic” type Py, later in the appendix we abuse the notations
The capacity regions for general interference channelg/ simply writing 2» € Py instead ofz™ € 7"(Px).

are generally unknown. We focus on the capacity regiogimilarly, we assume thatR, andnR, are integers.

for a specific coding scheme— randomized fixed-composition In this paper, we are concerned with the randomized fixed-

codes while the error probability is defined as the averaggmposition codes, where a code word for message

error over all code book with a certain composition. Fixeduniformly i.i.d distributed on the type s&t"(Px ), formally
composition coding is a useful technique in proving classicalefined as follows.

information theoretical problems, especially error exponent ) ] N

results [7]. In [5] and [6], randomized fixed composition Defln_ljuon 1 Ram_jomlzed fixed-composition codes_: for a
coding is used to drive a lower bound on the error exponeRfobability distribution Px on t, a rate 1t, randomized
for discrete interference channels. Some numerical results §%ed-compositionPx encoder picks a code book with the
this error exponents are presented, this is the first attempt f{lowing probability, for any fixed-compositiof%y code
investigating the error exponents for interference channels 880K 0" = (6"(1),0"(2),....6(2""*)), where 6"(i) €
we know. In this paper, we derive the interference channdl”(Px), @ = 1,2,...,2"%= and " (i) and 6"(j) may not
capacity region for randomized fixed-composition codes. Wee different fori 7 j, the code boold, is chosen, i.e.
show that the fixed composition coding scheme does naf (i) =0"(i), i=1,2,..,2"% , with probability

2711?,;,,
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mg € {1,2,..2"%}  __ JEncoder X |, n(p,) — W xy (22, ) Decoder X — Ma(2")

my € {1,2,..2"%}  __ | Encoder Y |, y™(m,) W xy (2lz,y) Decoder Y — i, (")

B

Fig. 1. A discrete memoryless interference channel of two users

In other words, the choice of the code book is a ranregion forY’, R,(Px, Py)and(X,Y), R, (Px, Py) where
dom variablecx uniformly distributed on the index set both decoding errors are small and obviously

of all the possible code books with fixed-compositifi : B

{1,2,3, ..., |T"(Px)|?""™ }, while cx is shared between the Ray(Px, Py) _Rx(PX’PY)mRy(PX’PY)' )
encoderX and the decoder&” andY'. We only need to focus our investigation ®),(Px, Py ).

The key property of the randomized fixed-composition ||. CAPACITY REGION FOR FIXED-COMPOSITION CODE

code is that for any message subsfl,iz,..ii} C The main result of this paper is the complete characteriza-

nR,
,{1’2’,""2, 1, the codg vv_ords for these messages argy, of the capacity region for randomized fixed-composition
identical independently distributed on the type setxf.

X g c codes: R, (Px, Py). The region is illustrated in Figure 2.
For randomized fixed-composition codes, the average errgy (Px, Py) is the union of Regior and 1.

probability PY) (R, Ry, Px, Py) for X is the expectation  ‘Theorem 1:Interference  channel  capacity  region

of decoding error over all code books and all Cha””%x(PXfy) for randomized fixed-composition codes

bihaViOFS- with compositionPy and Py
Pe(x)(szRy’PX7PY) Ra(Px, Py)

_( 1 ) ( 1 )Q”Ry = {(Ru,R,):0<R,<I(X;2),0<R,} |J
— \I7T"(Px)| [T (Py)| {(Ra,Ry) : 0 < R, < I(X; Z|Y),

ZZ%Z%ZZ ) Ry + Ry < I(X,Y;2)} (@)

o o - . where the random variables in (4)(X,Y,Z) ~
WZ\XY(Z |z (ma), y (my))]-(mﬂﬁ<z ) # my) PXPYWZ\X,Y-

on R

wherez"(m,) is the code word of message, in code  The achievable part of the theorem states that: for a rate
bookcx, similarly forg_/"(my), mz(2") is the decision made pajr (R., R,) € R.(Px, Py), the union of Regiol and 1
by the decoder knowing the code boaks andcy . in Figure 2, for all§ > 0, there existsN; < oo, s.t. for all

B. Randomized fixed-composition coding capacity for intef? = Ns, the average error probability (1) for the randomized

ference channels code from composition®’x and Py is smaller than for
X:
Given the definitions of randomized fixed-composition "oy (Ro, Ry, Px, Py) <0
coding and the average error probability in (1) for such codes, ) o )
capacity region for fixed composition codé®x, Py-) for
Definition 2: Capacity region for randomized fixed- channell xy-.

composition codes: for a fixed compositidty and Py, a

rate pair(R,, R,) is said to be achievable faX, if for all The converse of the theorem states that for any rate pair in
5 > 0, there existsN; < oo, s.t. for alln > Nj, the interior of the complement &, (Px, Py ), regionIII,
IV andIV in Figure 2, there exist§ > 0, such that for all
Pl (Re, Ry, Px, Py) <6 (2) n,

We denote byR, (Px, Py) the closure of the union of the all e(w) (B By, Px, Pr) > 0
achievable rate pairs. Similarly we can define the achievabi® matter what decoding rule is used.



1(Y; Z|X)

1(Y;2)

Ra:

1(X;2) I(X; Z|Y)

Fig. 2. Randomized fixed-composition capacity regi®n(Px, Py ) for X, the achievable region is the union of Regibrand /1.

nRg

The proof of Theorem 1 is in Section Ill. Similar to the error probability forX defined in (1), we
is inside the capacity regioR . (Px, Py). For interference 1 2
channels, it is desired to have error probabilities small for — 1T (Px)]|

In the achievability part of Theorem 1, we prove thatefine the average error
the average error probability for decod&r is small for a Pg(xy)(Rm,Ry,PX,Py)
randomized fixed-composition code if the rate g, R,) .

onity

1
both userX andY'. It is obvious that the rate region for this (|Tn(PY)|)
. 1 1

problem is Z Z onR. Z onR, Z ®)
Cx Cy My My

ny(an PY) = Rm(PXa PY) N Ry(PX,PY)v { Z WZ|Xy(z”|w”(mw),y"(my))l(ﬁzw(z") 75 mz)
where R, (Px, Py) is defined in the same manner as zn
R.(Px, Py) butthe channel iV ., instead oV xy as + Y Wy (" (), y" (my) 1(7y (27) # my) }
shown in Figure 1. A typical capacity regidR,, (Px, Py) zn
is shown in Figure 3. It is not necessarily convex. For a rate pair (Ro,R,) € Ruy(Px,Py) =

However, by time sharing between different rate pairs, (Px, Py)(\R,(Px, Py). We know that for alls > 0
. . . T 9 Y 9 . ’
for the same composition, we can convexify the capacityere existsV; < oo, s.t. for alln > Nj, the average error
region. Then the convex hull of the union of all such Capad%robability is smaller tham for userX and usef’:
regions for different compositions gives the biggest knowrpn( )(R R,,Px,Py) < 6 and Pn( )(R Ry, Px,Py) <
. . . . . e(x Xy LY ’ e(y Xy LY ’
achievable capacity region from our coding scheme. i.e. the'|t'i easy to see that the average error probability for user
capacity region of the interference channel is a superset of 4,4y can be bounded by:

Pen(my)(RrvRy7PX7PY)
CONVEX Ray(Px, Py) . .
PHY Y :Pe(ﬂ)(RT,Ry,Px,Py)Jr e(y)(R’E7Ry7PX’PY)
<26 (6)

A more thorough discussion of time sharing and the
achievable error exponent and capacity region is detailed From (5), we know thatP )(Rx,Ry,PX,Py) is the
Section V. average error probability o%ali] fixed-composition codes.

) . With (6), we know that there exists at leastodebook such
A. Existence of a good code for the interference channel {5t the error probability is no bigger thaa.

In this paper we are concerned with the average error The existence of a code book that achieves the error
probability over the code book ensemble with the samexponents can also be shown. The proof is similar to that
composition. This is in contrast to the case where only thia [9] and Exercise 30 (b) on page 198 [3]. This is quite
existence of a code book is needed. The achievability afbvious.
the randomized coding implies the existenceaafood code The converse of the randomized coding does not guarantee
book. This can be proved as a simple corollary of Theorem that there is not a single good fixed-composition code book.



R A the estimate of the joint message is the message pair such
Y that the input to the channél; xy and the output of the
channel have the maximal empirical mutual information. i.e.:

(M (27), My (2"))

- e max 1(z"2"(0),y" (7))  (7)
i€{1,2,....2nR= } je{1,2,...,2" v }

where 2™ is the channel output and™(i) and y™(j)
are the channel inputs for messageand ; respectively.
I(z™;2™,y™) is the empirical mutual information between
R 2™ and (z™, ™), the point to point maximal mutual mutual
& information decoding is studied in [3].
Fig. 3. A typical randomized fixed-composition capacity region If_there is a tie, the decoder can choose an arbitrary winner
Ray(Px, Py) = Ra(Px, Py) N Ry(Px, Py), this capacity region is Of Simply declare error. In Lemma 1, we show that by using
not necessarily convex. the randomized fixed composition encoding and the maximal
mutual information decoding, a non-negative error exponent

0 q laim th h code book . is achieved in Regiod!.
ur converse does not claim that no such code boo eX|sts.2) Region!: In Region, decoderX only estimatesr,

Instead, we claim that, the average decoding error probabili% treating the input of encoddr as a source of random
does not converge 0 if the rate pair is outside the capacity noise. This is a point to point channel coding problem. The

region in Theorem 1. channel itself has memory since the input of encddés not
I1l. PROOF OFTHEOREM 1 memoryless. Similar to the multiple access channel coding

There are two parts of the theorem, achievability angroblem studied in Region!, we use a maximal mutal

converse. The achievability part is proved by applymdnformanon decoding rule:
the classical techniques in point to point channel coding
and multiple access channel coding for randomized fixed-
composition code. The converse is proved by contradiction
and using a technique first developed in [4].

My (Zn) = arg max I(z"; " (’L)) (8)
i€{1,2,...,2n Rz }

A. Achievability In Lemma 2, we show that the by using the randomized
' fixed composition encoding and the maximal mutual infor-

~ We show that in the interior of the capacity regionmation decoding, a non-negative error exponent is achieved
i.e. the union of Region and /7 in Figure 2, a positive j, Region .

error exponent is achieved by applying the randomized
fixed-composition coding defined in Definition 1. We
present the error exponent results in Lemmas 1 and 2 that . ]
covers Regiorf and T respectively. Then in Lemma 3, we ~Le€mma 1:(RegionIl) Multiple-access channel error ex-
show that these error exponents are positive in the interiPnents (joint error probability). For the randomized coding

of the capacity regiorR, (Px, Py) and hence conclude the scheme described in Definition 1, and the decoding rule
proof of the achievability part in Theorem 1. described in (7), the decoding error probability averaged over

all messages, code books and channel behaviors is upper

1) RegionII: In RegionII, we show that decodek Pounded by an eAxpoDentiaI term:
can decode both message, and m, with small error Fr((me,my) # (e, my))
] onRy
<|T”(PY)>

We use the method of types [2] in both proofs.

probabilities. This is essentially a multiple-access channel )
coding problem. We use the technique developed in [3] to _ ( 1 )

nRy

derive the positive error exponents that parallel to those |7"(Px)|

in [11]. The decoder is a simple maximum mutual infor- 1 1

mationt decoder [3], this decoding rule is universal in the ZZ onR, Z onR, ZZ ©)

sense that the decoder does not need to know the multiple exooy . nmz N My 2"

access channél’; vy . We describe the decoding rule here, Wz xy (2" [a" (m2), y" (my))
L((ma(2"), My (2")) # (e, my))

1A more sophisticated decoding rule based on minimum conditional
entropy decoding for multiple-access channel is developed in [10], it is
shown that this decoding rule achieves a bigger error exponent in low rate
regime. The goal of this paper is, however, not to derive the tightest lower €, converges to zero as goes to infinity, and
bound on the error exponent. We only need a coding scheme to achieve
positive error exponent in the capacity region in Theorem 1. Hence we use
the simpler decoding scheme in [11]. E = min{E,y, By, E,,}, where

< 2—"(E—€n). (10)



Pr(m, # my)

nRg

. 2 277,Ry

Fw = _ min _ D@QuxvIW@xy) - (A ) (o
Qxyz:Qx=Px,Qy=Py \T”(PX)| ITn(PY)‘
+D(Qxy | Px x Py)

1 1
+HIQ(X,Y:2) = Ry — Ry[* DD X 22

Ew — min D W cx Cy My my zn

Iy Qxvz:Qx=Px,Qyv=Py (QZ‘XY” |QXY) WZ|XY(Zn|xn(m»L)7yn(my))
+D(Qxvy||Px X Py) + |Io(X; Z|Y) — Ry| " 1 (Mg (2™) # my)

E T = 1 D W _n(El_e'L)

yl: Qxyz:QxH:nglx,QYZPY (QZ‘XY” |QXY) s 2 ' (14)

+D(Qxvy||Px x Py) + |Io(Y; Z|X) — R,|T €, converges to zero as goes to infinity, and

where [f* = max{0,t} and the random variables F. = . min D(Qzxy W|Q@xy)

XY, Z) ~ in Io(X; Z|Y),Io(Y; Z|X ’

g s Ly ) QXYZ In Q( 3 ‘ )a Q( ) ‘ ) and +D(QXYHPX XPy)—‘ruQ(X;Z)—Rm‘-’—

Q(X,Y;2).

Proof: We give a unified proof for (12), (13) and (14)

Remark: it is easy to verify thab(Qz xy |[W|Qxy) + in Appendix A. O

D(QxyHPX X Py) = D(QXYZ”PX X PY X W), so the
expressions for the error exponents can be further simplified. With Lemma 1 and Lemma 2, we know that some non-
We use the expressions similar to those in [11] because thaggative error exponents can be achieved as long as the
are more intuitive. rate pair(R,,R,) € R.(Px,Py) for randomized fixed-

Remark: The proof parallels to that in [11] which is in turn composition code. This is because both Kullback-Leibler
an extension to the point to point channel coding problerdivergence and- |* are always non-negative. Now we only
studied in [3]. The method of types is the main tool fomeed to show the positiveness of those error exponents when
the proofs. The difference is that we need to show the lowte rate pair is in the interior gk, (Px, Py).
bound to the average error probability instead of showing the Lemma 3:Positiveness of the error exponents, for rate
existence of a good code book in [11]. Without giving details, . L X . o
we follow Gallager’s proof in [9] and claim the existence ofpalrs (R, Ry) in the. interior of R,(Fx, Fy) defined in

. . Theorem 1, we have:

a good code with the same error exponent as that in [11].

This is a simple corollary of Lemma 1.
P y max{min{ E, E,,, Eys}, E.} > 0.

Proof: First we have an obvious upper bound on th

error probability Fore specifically, we will show two things. First, if

P . R, < I(X,Z), where(X,Z) ~ Px x Py x Wy xy, then
r((ma, my) # (Ma, 7y)) E, > 0. This covers Regiod. Second, ifR, < I(X, Z|Y),
R, < IY,Z|X) and R, + R, < I(X,)Y;Z),

= Prime # Ma,my # My) + Pr(mg 7 i, my =y where (X,Y,Z) ~ Px x Py x Wyyxy, then

+Pr(mg = Mg, my 7 my) min{E,,, E,,, Ey.} > 0, this covers Regiod .
< Pr(my # My, my # my) + Pr(mg # mg|m, = my)
+Pr(my # fy|m, = my)) (12) Proof: First, suppose that for somg, < I(X,Z2),

E,. < 0. Since both Kullback-Leibler divergence ahd|™
The inequality is true because(A, B) = P(A|B)P(B) < are non-negative functions, we must have = 0 and there
P(A|B). Now we upper bound each individual error probaexists a distributiorQxy z, s.t. Qx = Px, Qy = Py and
bility in (11) respectively by exponentials. By symmetry, weall the individual non-negative functions are zero:
only need to show that

Pr(my, # g, my, # ) < 27" Fme) (12) D@Qxy|[Px x Py) = 0
and  Pr(my # fg|m, = m,) < 27" Felv=e) (13) D(QzixyW|Q@xy) = 0
[Io(X;Z) — R.|* 0

We leave the proof of (12) and (13) to Appendix A, where i .
a standard method of type argument is used. 0 The first equation tells us tha)xy = Px x Py. Then
the second equation becom&¥Qz xy||W|Px x Py) =

Lemma 2:(RegionI) point to point channel coding error 0, this means thalQ; xy x Px x Py = W x Px x
exponent (decoding only). For the randomized coding Py, so Io(X;Z) = I(X;Z) where the random variables
scheme described in Definition 1, and the decoding ruleX,Y, Z) ~ Px x Py x Wz xy in I(X;Z). Now the third
described in (8), the decoding error probability averaged ovequation becomeld (X; Z) — R, |™ = 0 which is equivalent
all messages, code books and channel behaviors is upper/(X;Z) < R,, this is a contradiction to the fact that
bounded by an exponential term: R, <I(X,Z).



Secondly, suppose that for some rate pda#,,R,) in The decoding error for either message at decddés now:
RegionII, i.e. R, < I(X,Z|Y), R, < I(Y,Z|X) and Pr((Mmg, My) # (Mg, my))
R, + R, < I(X,Y:;Z) and min{E,,, E,,, E,,} < 0, n N N
then mig{Exy =0 or E,, =0 or E;m} v O.yl‘zollowing = Pr(ie # ma) + Pr(ing = me, iy #my)
exactly the same argument as that in the first part of the < Pr(mg # mg) + Pr(iy, # my|m, =mg) (17)
proof of Lemma 3, we can get contradictions with the fac
that the rate paitR, R,) is in the interior of capacity region
R.(Px, Py). O my(z") = argmax I(z";2"(mg),y"(j5)). (18)
From the above three lemmas, we know that the error j€{1,2,...2" v}
probability for decoding messag¥ is upper bounded by So the second term in the RHS of (17) can be bounded by
27n(E=e) for all (R,,R,) € Ro(Px,Py), whereE > 0 exactlythe same way as that in the proof of (13). From (17)
and lim ¢, = 0. Hence the error probability goes to zerowe know:
expgr?eﬁtially fast for large. This concludes the achievabil-
ity part of the proof for Theorem 1.

ESiven Mg = mg, (18) becomes

Pr((ﬁzw,ﬁzy) # (mmmy)) <0y + 27 (Eylz=en) (19)

This upper bound goes to zeromagoes to infinity. However

B. Converse _ .
We show that th decodi f Decatler Appendix I-B, we show that
e show that the average decoding error of Decaller Pe”(xy)(Rz,Ry,Px,Py)

does not converge t0 with increasingn if the rate pair
R,, R,) is outside the capacity regioR, (Px, Py) shown B o~ A
i(n Figuyr)e 2. There are two parts of the ;()roof. : = Pr((Mmg, my) # (ma,my)) >
First, we show that in Regiol” the average error prob- This is contradicted to (19). O
ability does not go to zero as block length goes to infinity.
This is proved by using a modified version of the reliability AS & corollary of Lemma 5, the decoding error for encoder
function for rate higher than the channel capacity [4]. X does not converge t0 with n if the rate pair(R,, R,)
Lemma 4:Region V, the average error probability for is in RegionI/I. For a(R,, R,) decoder, we can construct
X does not converge t0 with block lengthn if R, > @& new decoder fofR,, k) whereR, < R,, by revealing a
I(X;Z|Y), where(X,Y, Z) ~ Px x Py x Wy xy- random selection of &R, R,) code book that is the superset
Proof: It is enough to show the case where there i€f the (2;, R,) code book to the(R,,?,) decoder and
only one message far and encodel” sends a code word accept the estimate of the?,, i) decoder as the estimate
y™ with compositionPy. The code book for encodeY is  for the (R, R)) decoder. If the average error probability
still uniformly generated among all the fixed-compositionis small for the (R., R,) code books, the average error
Px code books. In the rest of the proof, we investigate therobability is small for this particula(R,, 1?;) decoder as

typical behavior of the codewords® and modify the Lemma Well, this is a contradiction to Lemma 5.
3 and Lemma 5 from [4] to show that This concludes the converse part of the proof for Theo-

rem 1.

(20)

| =

- n 1
Pr(im 7 mae) = Pia) (R, Ry, Px, Py) > 2 (15) IV. BEYOND FIXED-COMPOSITION
for largen. The details of the proof are in Appendix I-Bl There are two parts in this section. First we investigate
the error exponent performance for simple time sharing
among different rate pairs for the same randomized fixed-
composition codes, and time sharing among different com-
positions. In the second part, we study the necessity of more
sophisticated time-sharing coding schemes.

The more complicated case is in Regidi. We show
that the decoding error probability for uséf does not
converge to zero with block length by constructing a
decoder that decodes both messagge and messagen,
correctly with high probability. Then again by using the
reliability function for rate higher than channel capacity [4],A. Simple time sharing exponents

we get a contradiction. The simple idea of time sharing is well developed and

Lemma 5:Region IV, the average error probability for understood for multi-user information theory, especially in
X does not converge t0 with block lengthn if R, < the capacity region results for multiple-access channel coding
I(X;Z|Y), R, < I(Y;Z|X) andR, + R, > I(X,Y;Zz) and broadcast channel coding.
where(X,Y, Z) ~ Px x Py x Wz xy.

Proof: Suppose that Definition 3: Time-sharing randomized code: for

a positive vector (&1,..6) and Y .& = 1, a
Pr(iy # ma) = Pl (Res Ry, Px, Py) < 6, (€, RS, RD, PO P, . (6, RS RV, P, PIMY)

. i i h th f .~
whered,, goes to zero withw. Now let decoderX decode randomized code is such that a map for soutGet

m, by the same decoding rule devised in (7): (1,2, 278y 5 (1,2, ., 270 B (1,2, L, 2nse By

my(2") = argmax I(z";2" (M. (2")),y"(5)). (16)
! jef1.2,...27 R} : Ex(mz) = (mV,..m{H)



wherem{" is the firstnglRS) bits of m, and so on. Then multiple-access channels in [1], the authors give two inter-
for eachm(f), we use the randomized fixed-composition cod@retations of the same capacity region. First
with compositionP)(;) defined in Definition 1. The rate for
this encoder iR, whereR, = Zle &RY.

Similarly for &,.

The decoder simply decodés:”, m!) individually for
i =1,..., L. And put them back to form the whole estimationEquivalently:

CONVEX(  |J  {(Re,Ry):R. <I(X;2]Y),
PxXPy xWz xy

R, <I(Y;Z|X),R; + R, < I(X,Y;Z)})

Mgy My
! CLOSURE( U {(Ro, R,) -
The decoding error probability is upper bounded by the Pux Py ju % Py o x W xy
union bound of the error probability of individual messages. R, < I(X; Z|Y,U),R, < I(Y; Z|X,U)
T = ) ) y tly = 9 9 9
Pr(m, # mg) < L max Pr(m() # m) R, + R, <I(X,Y;Z|U)})

i€{1,2,....L}:R{? >0
) ) . where U is the time-sharing auxiliary random variable and
L is a fixed number, so let goes to infinity, the overall U] =4

eIror exponents Is All the above discussions in this subsection is Joonly.

BT — min @-Em(R?% R;i)7 P)((}')’ Px(/i)) 1) F.or interference channelg, has to be .reliably communicated
i€{1,2,....L}:R{) >0 simultaneously, hence the intersection operator in (23). The
, , , , order of the intersection operator and the time sharing
where E, (RS, Ry, PY, P{) is the ‘randomized fixed- operator cannot be changed due to this.
composition error exponent for ratl”, R\") with fixed

compositions(P)((Z), Py)) defined in Lemma 3. Similarly: Remark 1: It is interesting that we not only need to time-

share between different compositions but also need to time-
EY — min &Ey(Rg)’RSj)’P)(g),p)(j)) (22) share between different rate pairs even for the same fixed-
i€{1,2,....,L}:R{)>0 ‘ composition! This is due to the non-convexity of the capacity

With (21) and (22), we know that a positive error exponent:2'o" Ra(Px, Py) for randowm.|zed fixed-composition code
pair can be achieved by properly time-share among diﬁereﬁpow?i)m l(:;)gur%)& %eng)E S positive ?S ang as.each
fixed-composition codegR,, R,, Px, Py) for rate pairs in Ly (Rs”, Ry, Py, Py”) is positive. FromX's point of view, .
the interior of the best chance to get the message decoded correctly is to
spread the codewords uniformly in the code spdeé& :
a™ € Px}. But this might have a negative impact &n By
the simple time-sharing technique among different rate pairs
with the same composition, we randomly sample codewords
CONVEX U R;p(Px,Py)mRy(Px,Py) . (23) from a §ubset of the fix'ed—composition set. which is cIe_quy
Py Py ' less optimal than sampling over the whole fixed-composition
set for X. This however helps the decoding of the other user
The last equality is by the definition dt,,(Px, Py). as now the capacity region (with positive error exponents)

: . . is the convex hull of those not necessarily convex regions
The order of the union and intersection operators cannot (Px, Py)

changed in (23). We further our discussion on the achievable™
capacity region (23). Fix the composition of the two encoderg. Beyond simple time-sharing

at Py and Py, the region where a positive error exponent The error exponent achieved by simple time-sharing is

can be achieved by is defined a&t.(Px, Py). The convex determined by two factors, the fraction of time a particular

hull (time shar_mg re_gmn) of all such regions over all poss'bl?andomized code(Réi),Réi),Pg),Py)) is used and the
input compositions is

error exponents achieved by such code. This simple time-
sharing technique is also used in achieving the multiple
CONVEX U R.(Px, Py) access channel capacity region [1]. After all, part of the
Px Py achievablity is proved by reducing the interference channel

_ coding problem into a multiple access channel problem.
= MAC(Wzxy) UP2Px(WZ|xY) However, the difference between interference and multiple-

CONVEX (UPX,PY Ray(Px, Py)) -

where P2Px (W xy) = access channels is the number of receivers. Now there are
two receivers, the achievable region for a particular fixed-
{(Re,Ry) : Ry < max I(X;2)} composition is theéntersectionof two non-convex regions.
(X, Z2)~Qxy Wz xv . . . . . .
In this section we give a time sharing coding scheme that
is the point-to-point capacity region for us#f. was first developed by Gallager [8] and later further studied

MAC(Wy xy) is the multiple access channel capacityfor universal decoding by Pokorny and Wallmeier [11]. This
region for W. In the analysis of the capacity region fortype of randomized time-sharing schemes not only achieves



better error exponents, more importantly, we show that thisapacity region than that given by the simple time-sharing
might achieve bigger capacity region than the simple time- of fixed composition codes in (23).

sharing scheme does! Unlike the multiple-access channelsThe proof of Theorem 2 is extremely similar to that of
where the simple time-sharing achieves the whole capaciftheorem 1. We omit the details here. We only point out that
region, this is unique to the interference channels, due the achievability part is proved by deriving a positive error
the fact that the capacity region is the convex hull of thexponent for rate pair in the interior of the capacity region
intersections of pairs of non-convex regions (convex or natefined in Theorem 2. As shown in [11] and also detailed in
is not the issue here, the real difference is the intersectighis paper for the randomized coding, the error exponents in

operation). RegionII of in Figure 4 is:
The organization of this section parallel to that for the
fixed-composition. We first introduce the randomized time- E = min{Eyy, By, By, }, where

sharing coding scheme, then give the achievable error expo-
nents and lastly drive the achievable rate region for such cod-

ing schemes. The proofs are omitted since they are extremely,, = min D(Qzxy |W|Qxvyuv)
similar to those for the randomized fixed-composition codes. CxvzwQxiu=Fxiv,@viv=Fyiv

Definition 4: Randomized time-sharing codes: for a prob- +D(QxvyulPxjv % Pyu|U)
ability distribution P, on U, whereld = {uy,us,...,ux} +Io(X,Y;Z) — R, — Ry|T
with Zfil PU_(u?) = 1 and a pair of cqnditional in- B,y = min D(Qzxy||W|Qxvv)
dependent distributions’x s, Py ;. We define the two Qxvziv:@xju=Pxjv.Qviv=Priv
codeword sefs as X.(n) = {a" LA = +D(QxvyullPxjv x PriolU) + [1o(X; Z|Y) — R.|*

PX|u1’$:5)[;U(EL’Z1)l‘|1PU(U2)) € PX|u27 ey wZ(l*PU(ul)) € E’L/\JS = min D(QZ\XY||W|QXYU)

Px|,,} ie. the i'th chunk of the codewordz™ with Qv z1v:Qx 1o =Pxju Qviv=Friv .
length nPy(u;) has composition Px/,,, and similarly +DQxywlPxju x Pyiu|U) + (Y Z|X,U) — Ry

Y.(n) = {y" : nyU(“U € Py|ul,y2g€$;ﬁp”(”2)) € This is the error exponents in Lemma 1 with a conditional

Py |y, s Yn(1— Py (ur)) € Py |y, }- A randomized time shar- auxiliary random variablé/.
ing code(R,, Ry, Py Px|u Py|v) encoder picks a code book  The error exponent in Regiohis

with the following probability: for any message:, < E, =
{1,2,...,2"%= the code words"(m,) is uniformly dis- : D W
tributed in X.(n), similarly for encoder Y. QXYZ‘UzQX‘ULnFl’EW,QY‘U:PY‘U (Qz1xv [W]Qxvu)

. +
After the code book is randomly generated and revealed to +D(@xyviulPxy x Pyiu|U) + Ho(X; Z|U) — Rl
the decoder, the decoder uses a maximum mutual informati@ Why the coding scheme in Theorem 2 is useful in studying
decoding rule. Similar to the fixed-composition coding, thehe capacity regions

decoder needs to either decode both messagadY” jointly It is obvious that the time-sharing fixed-composition cod-

or simply treatsY” as noise and decod¥ only, depending 4 gives a bigger error exponent than the simple time
on where the rate pairs are in Regiéror /1, s Shown in  gparing coding does. More interestingly, we argue that it
Figure 4. The error probability we investigate is again theyighyt gives a bigger interference channel capacity region.
average error probability over all messages and codebooks gt e write down the capacity region for the time-sharing

Theorem 2:Interference  channel capacity  regionfixed-composition coding:
R.(PyPxjyPyjy) for randomized time-sharing codes

with compositionPy Py i Py |v: convex (| (25)
Re(PuPxuPyv)

Px v Py uPu
= {(Re,Ry): 0< R, <I(X;Z|U),0< R} | J [Rz(Px|u Py Pu) () Ry(Px v Pyju Po)))-
{(R:,Ry) : 0 < R, < I(X; Z|Y,U), U is a time sharing auxiliary random variable. Unlike
R, + R, < I(X,Y;Z|U)} (24) the MAC coding problem, where simple time sharing of

) ) fixed composition codes achieve the full capacity region, it
where the random variables in (24JU,X,Y,Z) ~ s not guaranteed for interference channels. The reason is the
PuPxjuPyiuWzixy- intersection operator in the achievable capacity regions (4)

The rate region defined in (24) itself does not give any ne@"d (24). In the following example, we illustrate why (24)
X-capacity regions foiX, since this region is a subset of theMight be bigger than (4). o _
convex hull(time-sharing) of the capacity regions in (4). But SUPPOse we have a symmetric interference channel, i.e.
for the interference channel capacity, we will argue in next=(Px; Py) = Ry (Py, Px) whereT is the transpose oper-

section that this coding scheme might give a strictly bigge‘?tiO”- The comparison of simple timesharing capacity region
and the more sophisticated time-sharing fixed composition

2Again, we ignore the nuisance of the non-integers here. capacity region are illustrated by a toy example in Figure 5.



I(Y; Z|X,U

1(Y; Z|U)

Ra:

I1(X; Z|U) I(X; Z|Y,U)

Fig. 4. Randomized time-sharing capacity regis (Py Px | Py, ) for X, the achievable region is the union of Regibmnd 1. This region is very
similar to that for fixed-composition coding shown in Figure 2, only difference is now there is an auxiliary time-sharing random variable

For a distribution (Px,Py), the achievable region Ry‘
for the fixed composition code is illustrated in Fig-
ure 5,R.(Px, Py) andR,(Px, Py) respectively, these are
bounded by the red dotted lines and red dash-dotted lines re-
spectively, so the interference capacity regi®py(Px, Py)
is bounded by the pentagodl BEFO. By symmetry,

R (Py, Px) andR,(Px, Py) are bounded by the blue dot-
ted lines and blue dash-dotted lines respectively, the capacity
regionR,y(Py, Px) is bounded by the pentagdhGC DO.

So the convex hull of these two regionsA88C' DO.

Now consider the following timesharing fixed-composition
coding Px |y Py |y Py wheretd = {0,1}, Py(0) = Py(1) =
0.5 andPX‘O = Py‘l = Px, PX\l = Py‘o = Py. The
interference capacity region is obviously bounded by the
black pentagon in Figure 5. This toy example shows why (25)
might be bigger than (23).

Rx

V. DISCUSSIONS
Fig. 5. Simple timesharing of fixed composition capacty3C' DO VS

In this paper we investigate the randomized fixedtime-sharing fixed composition capacity(0.5) ( the black pentagon)
composition coding error exponents for interference chan-
nels. We derive the standard random coding error exponents = | ) )
for interference channels. A better error exponent can &grt_alnly gives new error exponent results and possibly new
achievable by using more sophisticated coding schemes, %gmevable capacity region results.
in the multiple access channel coding problem [10]. The ACKNOWLEDGMENTS

capacity regions for such randomized coding are completely The author thanks Raul Etkin, Neri Merhav and Erik Or-

characterized. It is clear that this region is a subset (%I . : ; . :
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APPENDIX
A. Proof of (12), (13) and (14)

The expectation of the error probabilities in (12), (13) and (14) are taken over all messages, code books and channel
behaviors. Because of the symmetry of the code book selection, we can fix the messdge, paiy) = (1,1).

We examine the object function to be minimized in (12), (13) and (14). Firstcdh@nmonpart of the three error exponents

By, Eyy and E;: D(Qz1xy [W|Qxy) + D(Qxvy||Px x Py). D(Qxy||Px x Py) is the logarithm of the inverse of the
probability that type@ xy is the empirical distribution of the code paif*(1),y™(1) individually generated from fixed-
compositionsPx and Py. D(Qz xy ||W|Qxy) is logarithm of the inverse of the conditional probability that the input to

the channelV is Qxy, while the empirical type of the input/output @xyz = Qxy X Qz xy. For the individual part

of the error exponents in (12), (13) and (14)o(X,Y;Z) — R, — Ry|", |Io(X; Z|Y) — R,|*T and |Io(X;Z) — R, "
respectively, each one is the logarithm of the inverse of an upper bound on the probability that there exists another message
(pair) with higher mutual information with the channel output, while the channel inputs/ouput ha®)type. This is

derived by a union bound argument.

First we write the error probability (12) in the following way:

Pr(mg # Mg, my # my)
nRy

- <|T(1PX)>2 (lTﬂ(leﬂ)any 2.0 (26)

CcCx Cy
1 1 _ _
o D g D D Wy (M (), 7 (mg ) L (27) # iy (27)  1y)
My my, z"
onRa onRy

~ () () Z TS Waier (e 00 (D100 # Ly () £ 1)

= > {Pr((@"(1).y" (1) €Qxy) Y Pre"|(z"(1).y"(1) € Qzixy)

Qxv:Qx=Px,Qy=Py Qz|xy

Pr(n, (2") # 1,y (") # 1)} (27)
< > {Pr((«"(1),y"(1)) € Qxy) Y Pr(z"|(="(1),y"(1)) € Qz)xv)

Qxv:Qx=Px,Qy =Py Qz|xy

min{1, Z Z Pr(I(z";:2"(1),y" (1)) < I(z";2"(i),y" ())|(a"(1),y"(1),2") € Qxvz))}}
< [Tovol | omax Pe((0),5"(0) € Q) PrGI (1),5"(1) € Qpxy)

onRa gniy
min{1, Z Z Pr(I(z";2"(1),y"(1)) < I(z";2"(i),y"(5)|(«"(1),y"(1),2") € @xvz))} (28)

(26) and (27) are two different interpretations of the same error probability. In (26), we first randomly pick a fixed composition
codebook paiex andcy, then sum over the all probabilities that the output of the channel causes a decoding error for the
chosen codebook pair. (27) is an equivalent interpretation of the above error probability because the codewords for each
message is independently generated. We interpret (27) as follows, we first randomly pick a codeword pair for message

X and message in Y, then the codeword pair is transmitted to through the channel. Then we randomly generate the rest
of the codebook and investigate the probability that other message pairs maximize the mutual information with the channel
output.

We upper bound the four components in (28) as follows. The number of type sets of tength

Ty 7] < (n+ 1)IFXV*E] = gn(EEERIX 2D - gnan (29)

_logn

ForanyQxy, s.t.Qx = Px andQy = Py, from the method of types [1] and [2], we know tiat 7 (Pv) === VD) < |py| <
onH(PY) | similar bounds applies t®x |. And for a fixedX -sequencey™(1) € Px = Q, we have2r(H(Qyx) =<5 1XY]) <
Hy™ € Y (2™(1),y™) € Qxy}| < 2" (@vix) 27(1) andy™(1) are independently distributed in type set and Py
Hence,

n n " e yn: ™ (1 5 n) e n _ logn
Pr((a"(1).4" (1) € Quey) = EILRVD EQ0 )] oty i@ i )




Notice thatH (Qy|x) — H(Qy) = —D(Qxv||Qx x Qy) = —D(Qxy||Px x Py) and letb, = losn) x|, we have:

Pr ((ac"(l), y"(l)) c QXY) < 9—n(D(Qxy | Px X Py)=bn) (30)

For (2z"(1),y"(1)) € Qxy, for any empirical channel behavid} | xy:

Pr(z"(z"(1),y"(1)) € Qzixy) = Hz":(2"(1),y"(1),2") € Qxyvz}Wzxy(Qzxy)
onH(Qzixy) « on(=D(Qzxy W[Qxy)—H(Qzxy))

IN

2—”D(QZ\XYHW\QXY) (31)

Finally, for (z™(1),y"(1),2") € Qxvyz, we investigate the probability that there existsj), i # 1,5 # 1, s.t. the mutual
information betweer{z"(i),y"(j)) andz™ is at least as much as the mutual information betweér{1),y"(1)) andz".
For all # # 1, the codewordz™(i) is uniformly distributed on the fixed-composition sét, same forY. Given
(2™(1),y"(1),2") € Qxvz, we havel(z™;2"(1),y"(1)) = Io(Z; X,Y), so:

onRg gnRy
min{1, Y > Pr(I(z"2"(1),y" (1) < I(z"2™(0),y" (7)) (@"(1),y" (1), 2") € Qxvz)}
i=2 j=2
< min{1, 2" (=) > Pr((("(i),y"(4),2") € Vxvz]2" € Qz)}
Vxyz:Vx=Qx,Vy=Qvy,Vz=Qz,1q(Z;X,Y)<Iv(Z;X,Y)
[{(z",y") € Px x Py : (a",y",2") € Vxyz}|

= min{1, 2"t H)

" 2 @ e Bl €AY
Vxvyz:Vx=Qx,Vy=Qv,Vz=Qz,1q(Z;X,Y)<Iv(Z;X,Y)

< min{1 on(Re+Ry) Z 2n(HV(X,Y\Z)—HV(X)—HV(Y)+M)}
Vxyz:Vx=Qx ,Vy=Qv,Vz=Qz,1q(Z;X,Y)<Iv(Z;XY)

< min{1 on(Ra+Ry) Z 2n(HV(X,Y\Z)7HV(X,Y)+w)}
Vxyz:Vx=Qx ,Vy=Qv,Vz=Qz,Iq(Z;X,Y)<Iv(Z;XY)

= min{1, 2"(F=+Ry) 3 oIy (X,Y;2)+ (Tl )y
Vxvyz:Vx=Qx,Ww=Qv,Vz=Qz,1¢(Z;X,Y)<Iv(Z;X,Y)

< min{1, 2n(Rm+Ry)n|X><y><Z|2n(—lQ(X,Y;Z)+7l°g"(":‘+‘yl))}

— 9~ n(Q(X.Y;2)~Rys—Ry|" —cy) (32)

Combining (29), (30), (31) and (32), and noticing that b,, and ¢,, converges to zero when goes to infinity, we have

just proved (12).

(13) and (14) can be proved by following the same argument. Similar to the way we upper bound the LHS of (12) in (28),
we bound the LHS of (13) as follows:

Pr(my # Mg|m, = my)

<

< |T¥yzl Q Pr ((xn(l)ayn(l)) € QXY) Pr(z"|(="(1),y" (1)) € QZ|XY)

max
Xy z:Qx=Px,Qy=Py
onRa

min{1, Z Pr(I(z";2"(1),y" (1)) < 1(z";2"(0),y" (1)|(=z" (1), 4" (1), 2") € Qxvz))}- (33)

Similarly, we upper bound the LHS of (14) by
Pr(mg # my)

< Tyl QXYZZQXIIlaP)i7QY:PY Pr ((95"(1)79”(1)) € QXY) Pr(z"|(z"(1),y" (1)) € Qzxv)

gnRa

min{1, Z Pr(I(z";2"(1)) < I(z"; 2" (0)[(«"(1),y" (1), 2") € @xvz))}- (34)

The common parts (first line) in (28), (33) and (34) are proved in (29) (30) and (31). The individual part of (28) is proved
in (31). The proof for the individual part of (33) and (34) follow similar argument. We omit the details here.



B. Proof of (15) and (20)
To prove (15), we give an upper bound of tberrect probabilityPr(m, = m,).

PI‘(’ﬁ\’li :ml) = Erl(w)(Ra;aRyaPX7PY)

~ (imre) S X Wy (Ml ma) )1 () = m)

The codewords:™(m,.) is uniformly distributed on the type sély, so the probability that the joint type ¢&"(m..),y")
is close toPx x Py with high probability [1], i.e. for alloc > 0, for largen,

Pr(D((z"(ms),y")||Px x Py)) > 0) < 0. (35)

We denote byl (y") = {z™ : D((«™,y")||Px x Py)) < o}, the typical set give™. Now we look at individual codebooks
cx, We say a codebooky is good if

lex (75 (™) < % (36)

where |cx| = 2"+ The set of all good codebooks is denoted@yat mostdo of the codebooks are not i@ because of
(35). For a good codeboaky, we use the technique from [4] to upper bound the correct probability for the good codebook

Cx.

T (yn 1
Pr(fy = my) < eri Z Pr(i = g (2™))
lex| lex| .
iz (i) €Ty (y™)
1 1 .~
iz (1) €Ty (y™)
1

< = 2—n(E—en)
= 3 +

The last inequality is proved by Lemma 6 and 7 which are extensions of Lemma 3 and Lemma 5 in [4] from memoryless
to conditional ony™, wheree,, goes to zero with, and

E= min D W +|R, — Io(X; Z|Y)|T
Qxyz:D(Qxyl||Px xPy)<o (QZ‘XY” Z‘XY|QXY) | Q( ‘ )‘

Following the argument in Lemma 3, it is easy to see that 0 for R, > I(X;Z|Y) and smallo, where(X,Y, Z) ~
WZ|XY x Px x Py. Now we have

1 onRz
Pr(i, =m,) = (n) (Y Pr(fie =ma)+ Y Pr(fi, =m,))
77 (Px)] ~. .
cx cx€G
< i +27UE=e) 4 gy (37)
Let o be small enough and let goes to infinity, (15) is proved. ]

(20) is proved in the same way. We only need to introduce the notion of good codebook:pairy) is good if

c C
‘CX X Cy nTUC| S # (38)

where the typical sef, = {(z™,y™) : D((z™,y™)||Px x Py) < c}. The rest of the proof are similar to that in the proof
for (15). We conclude that

1
Pr(iy =ms) < 5+ g nE=en) 4 4o (39)

where £ = D(Qzxy Wz xy|Qxy) + |R — Io(X,Y; Z)[* >0, for R, + R, > I(X,Y; Z).

min
Qxvz:D(Qxvy||PxxPy)<o
Again, we need to use an modified version of Lemma 3 and 5 from [4], the proof are extremely similar to those in Lemma 6
and 7. We omit the details here. This concludes the proof. |

The following two lemmas are simple extensions of Lemma 3 and 5 in [4]. Instead studying the upper bound on the
probability of correct decoding for memoryless channels, we give an upper bound on the correct probability for a multiple
access channel with one encoder with fixed output and the joint composition of the two encoders is fixed. That is, we fix
y" and thisy™ is known to both encoders and the decoder. The multiple access chanfig| is- and the input:™ from

X is such thatz"(i),y") € Qxv, i = 1,2,..2"F.



Lemma 6:Extension of Lemma in [4] from memoryless to condition oy, for any R > R, > 0, for any coding system
X (y™) with joint input distribution(z" (i), y") € Qxy, i = 1,2,...2"7%= and decoding rule) : Z" — {1,2,...,2"5=}  let
Qzixy (x"(i),y") = {z": (x"(i),y”,z”) € Qxvyz} (this is the V-shell notatioy used in [4]), we have:

|QZ\ "(8),y") ¢~ ( )l —n|R—Ig(X;Z|Y)—en|T
2"R Z |QZ\XY (i), y™)| =? ’ (40)

wheree,, = ¢(n,|X|,|Y|, |Z]) goes to zero as goes to infinity.
Proof: Write Qzy (y") = {2" : (y",2") € Qzy }. By the method of types [2], we know that

(n+ 1)—\2\2nHQ(Z|XY) < |Qz\xy(33”(i),y”)\ < 2nHQ(Z|XY)

and (n + 1)*\Z|27LHQ(Z\Y) < |QZ\Y(Z/H)‘ < 2nHQ(Z|Y).

So the LHS of (40) is upper bounded by

om v R . 1y 277R1‘
|Qzxy (x"(2),y™) ¢~ (3)] z
< (n+ 1)IFl2nHaZIXT)gmnk |Qz)xy (2" (4) ¢!
Q"R Z 1Qzxy (" (1), y™)| ; | ﬂ
< (4 1)l 4y (y7) (41)
S <n+ 1)‘2‘2—71HQ(Z|XY)2—'ILR(TL+ 1)|Z|2TLHQ(Z|Y)

— 9 n(R-Ig(X:Z|Y)~en) (42)

(41) is true becaus€z xy (z"(i),y™) ¢ (i), i = 1,2,...,2""= are disjoint and J; Qz|xy (z™(i),y™) € Qzy (y™).
Now notice that the LHS of (40) is at mogt(%=—1) < 1, hence the LHS of (40) is no bigger than This together with
(42), we just proved Lemma 6. O

Now we are ready to prove Lemma 7.

Lemma 7:Extension of Lemmab in F4] from memoryless to condition op™, for a good codebooky € G defined
in (36). Recall thafex N 7o (y™)| > Slex| — 3 « 9nRe then for any decoding rule (previously known @s) ¢ : 2" —

{1,2,...,2nF
1
Tex] > Pr(i=g¢(z") <27mFen) (43)
iz (1) €T, (y™)
where E = min D(Qz‘Xy||Wz‘Xy|Qxy) + |RI — IQ(X, Z‘Y)‘—i_

Qxyz:D(Qxy||Px xPy)<o

ande,, = ¢(|X|, |V, |Z[,n) which converges to zero asgoes to infinity.
Proof: We write M = {i € {1,2,...,2"%} : 2"(i) € T,(y™)} then we know that from the definition of a good
codebook:3 x 2"f= < |M| < 27Fe = |cx|. Notice that

Pr(i=¢(z") = > Wzxy("2"(0),y") = Wzixy (67" (0)|2"(i),y") (44)
zmEp1 (i)
We rewrite the LHS of (43):
= 278 Z Wixy (¢~ (0)]2" (i), y™)

:x” (1) €Ty (y™)

_ g 3 S Wax (6 Dl 0),y")

Qxvy:D(Qxvy||[PxxPy)<o \i:(z"(i),y")€Qxy

IN

LR .- ol Lot DI C R G UL R
iz (4),y")€Qxy

= (n+ 1)|X|D}| max 9" h Z Z Wz\xy ﬂQZ|XY "), y") " (1), y")

:D P P
Qxv:D(Qxyl||Px xPy)<o i (1)) EQxy Qzxy

IN

(n+ 1)|X|\y|+\xw|\2| max P Z Wz ixy (¢ mQZ|XY (@) y™) " (@), ")

:D P P o
Qv D@y [Pacx )< s (1)) EQuxy



< gren(l) max P 4% z" (@), y™) |z (), y"™
< Qxyz:D(QxyHPxxPy)<a( | Z z1xy (Qz xy (2" (i), y")|z" (i), y")
i:(z™(i),y")EQxY

|Qzxy (2" (1),y") ¢_1(i)|)
1Qzxy (2" (7),y™)|

(
n(; n -1/
< gnea(D) max (2—nD(QZ‘XYHWZ|XY|QXy)2—nRI Z |Qzxy (x (z),y.)ﬂqé (z)|)
- Qxyz:D(Qxy||Px xPy)<o |QZ|XY(‘TH(7')7yn>|

i:(zm(1),y")EQxY

< onen(l) max (2—"D(Qz\xyHWZ|xyIQxy)Q—TLIR—IQ(X;Z|Y)—en(2)|+) (45)

- Qxvyz:D(Qxyl||Px XPy)<o
27n(E75n) (46)
where (45) is true by Lemma 6. The rest are obvious by the method of types. O

The proof here for Lemma 6 and 7 are almost identical to that for Lemma 3 and 5 in [4]. The difference is here we need
to deal with the other channel inpug® and the new challenges coming from the typicalities of the codebook.



