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Interference channel capacity region for randomized fixed-composition
codes

Cheng Chang

Abstract— The random coding error exponents are
studied [5], [6] for the finite alphabet interference channel
(IFC) with two transmitter receiver pairs. The code words
are uniform on a fixed-composition set and the decoding
is optimum, as opposed to decoding based on interference
cancellation, and decoding that considers the interference as
additional noises. In this paper we further study the error
exponents of randomized fixed-composition coding, some
simple lower bounds are derived for universal decoding rules.
Furthermore, we give a complete characterization of the
capacity region of this coding scheme that is first proposed
in [5] and [6]. It is shown that even with a sophisticated
time-sharing scheme among randomized fixed-composition
codes, the capacity region of the randomized fixed-composition
coding is not bigger than the known Han-Kobayashi capacity
region first appeared in [12]. This suggests that the average
behavior of random codes are not sufficient to get new capacity
regions.

Index Terms— interference channels, randomized coding,
capacity region

I. I NTRODUCTION AND PROBLEM SETUP

In [12], the capacity region of interference channel is
studied for both discrete and Gaussian cases. In this paper
we study the discrete interference channels with2 pairs of
encoders and decoders as shown in Figure 1. The two channel
inputs arexn ∈ Xn andyn ∈ Yn, outputs arezn ∈ Zn and
z̃n ∈ Z̃n respectively, whereX , Y, Z and Z̃ are finite sets.
We study a simpler channel model where each encoder only
has a private message to the correspondent decoder while
in [12], a more complicated case is studied while allowing
public messages.

The capacity regions for general interference channels
are generally unknown. We focus on the capacity region
for a specific coding scheme– randomized fixed-composition
codes while the error probability is defined as the average
error over all code book with a certain composition. Fixed-
composition coding is a useful technique in proving classical
information theoretical problems, especially error exponent
results [7]. In [5] and [6], randomized fixed composition
coding is used to drive a lower bound on the error exponent
for discrete interference channels. Some numerical results on
this error exponents are presented, this is the first attempt in
investigating the error exponents for interference channels as
we know. In this paper, we derive the interference channel
capacity region for randomized fixed-composition codes. We
show that the fixed composition coding scheme does not
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achieve new capacity regions known as the Han-Kobayashi
region first appeared in [12].

The outline of the paper is as follows, we first formally
define randomized fixed-composition codes and its capacity
region. In Section II we present the main result of this paper:
the interference channel capacity region for randomized fixed
composition code in Theorem 1. The proof is later shown in
Section III with some details in the appendix.

A. Randomized fixed-composition codes

In this section, we introduce the randomized fixed compo-
sition code. This is a subset of all coding schemes that can
be used by the coding system. However, the understanding
of this particular kind of codes may help us to understand
the nature of the interference channels. First we introduce
the notion of type set [1].

A type setT n(P ) is a set of all the stringsxn ∈ Xn with
the same typeP whereP is a probability distribution [1]. A
sequence of type setsT n ⊆ Xn has compositionPX if the
types ofT n converges toPX , i.e. lim

n→∞
N(a|T n)

n = PX(a)
for all a ∈ X and PX(a) > 0 and N(a|T n) = 0 for all
a ∈ X and PX(a) = 0, whereN(a|T n) is the number of
occurrence ofa in type T n.

We ignore the nuisance in the integer effect and assume
that nPX(a) is an integer for alla ∈ X , this is indeed a
reasonable assumption since we study long block lengthn
and all the information theoretic quantities studied in this
paper are continuous on the distributionsPX . We will simply
denote byT n(PX) the length-n type set which has “asymp-
totic” type PX , later in the appendix we abuse the notations
by simply writing xn ∈ PX instead ofxn ∈ T n(PX).
Similarly, we assume thatnRx andnRy are integers.

In this paper, we are concerned with the randomized fixed-
composition codes, where a code word for messagei is
uniformly i.i.d distributed on the type setT n(PX), formally
defined as follows.

Definition 1: Randomized fixed-composition codes: for a
probability distributionPX on X , a rate Rx randomized
fixed-composition-PX encoder picks a code book with the
following probability, for any fixed-composition-PX code
book θn = (θn(1), θn(2), ..., θ(2nRx)), where θn(i) ∈
T n(PX), i = 1, 2, ..., 2nRx , and θn(i) and θn(j) may not
be different for i 6= j, the code bookθn is chosen, i.e.
xn(i) = θn(i), i = 1, 2, ..., 2nRx , with probability

(
1

|T n(PX)|
)2nRx
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WZ|XY (z|x, y)xn(mx)

yn(my)

mx ∈ {1, 2, ...2nRx}

WZ̃|XY (z̃|x, y)Encoder Y

Encoder X Decoder X

Decoder Ymy ∈ {1, 2, ...2nRy}

m̂x(zn)

m̂y(z̃n)

zn

z̃n

Fig. 1. A discrete memoryless interference channel of two users

In other words, the choice of the code book is a ran-
dom variablecX uniformly distributed on the index set
of all the possible code books with fixed-compositionPX :
{1, 2, 3, ..., |T n(PX)|2nRx }, while cX is shared between the
encoderX and the decodersX andY .

The key property of the randomized fixed-composition
code is that for any message subset{i1, i2, ...il} ⊆
{1, 2, ..., 2nRx}, the code words for these messages are
identical independently distributed on the type set ofPX .

For randomized fixed-composition codes, the average error
probability Pn

e(x)(Rx, Ry, PX , PY ) for X is the expectation
of decoding error over all code books and all channel
behaviors.
Pn

e(x)(Rx, Ry, PX , PY )

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy

∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

(1)

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx)

wherexn(mx) is the code word of messagemx in code
bookcX , similarly for yn(my), m̂x(zn) is the decision made
by the decoder knowing the code bookscX andcY .

B. Randomized fixed-composition coding capacity for inter-
ference channels

Given the definitions of randomized fixed-composition
coding and the average error probability in (1) for such codes,
we can formally define the capacity region for such codes.

Definition 2: Capacity region for randomized fixed-
composition codes: for a fixed compositionPX and PY , a
rate pair(Rx, Ry) is said to be achievable forX, if for all
δ > 0, there existsNδ < ∞, s.t. for all n > Nδ,

Pn
e(x)(Rx, Ry, PX , PY ) < δ (2)

We denote byRx(PX , PY ) the closure of the union of the all
achievable rate pairs. Similarly we can define the achievable

region forY ,Ry(PX , PY ) and(X,Y ),Rxy(PX , PY ) where
both decoding errors are small and obviously

Rxy(PX , PY ) = Rx(PX , PY )
⋂
Ry(PX , PY ). (3)

We only need to focus our investigation onRx(PX , PY ).

II. CAPACITY REGION FOR FIXED-COMPOSITION CODE

The main result of this paper is the complete characteriza-
tion of the capacity region for randomized fixed-composition
codes:Rx(PX , PY ). The region is illustrated in Figure 2.
Rx(PX , PY ) is the union of RegionI andII.

Theorem 1:Interference channel capacity region
Rx(PX , PY ) for randomized fixed-composition codes
with compositionPX andPY :
Rx(PX , PY )

= {(Rx, Ry) : 0 ≤ Rx < I(X;Z), 0 ≤ Ry}
⋃

{(Rx, Ry) : 0 ≤ Rx < I(X;Z|Y ),
Rx + Ry < I(X, Y ; Z)} (4)

where the random variables in (4),(X,Y, Z) ∼
PXPY WZ|X,Y .

The achievable part of the theorem states that: for a rate
pair (Rx, Ry) ∈ Rx(PX , PY ), the union of RegionI andII
in Figure 2, for allδ > 0, there existsNδ < ∞, s.t. for all
n > Nδ, the average error probability (1) for the randomized
code from compositionsPX and PY is smaller thanδ for
X:

Pn
e(x)(Rx, Ry, PX , PY ) < δ

for some decoding rule. RegionII is also the multiple-access
capacity region for fixed composition codes(PX , PY ) for
channelWZ|XY .

The converse of the theorem states that for any rate pair in
the interior of the complement ofRx(PX , PY ), regionIII,
IV andIV in Figure 2, there existsδ > 0, such that for all
n,

Pn
e(x)(Rx, Ry, PX , PY ) > δ

no matter what decoding rule is used.
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I
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I(X; Z)

I(Y ; Z)

I(Y ; Z|X)

I(X; Z|Y )

Fig. 2. Randomized fixed-composition capacity regionRx(PX , PY ) for X, the achievable region is the union of RegionI andII.

The proof of Theorem 1 is in Section III.
In the achievability part of Theorem 1, we prove that

the average error probability for decoderX is small for a
randomized fixed-composition code if the rate pair(Rx, Ry)
is inside the capacity regionRx(PX , PY ). For interference
channels, it is desired to have error probabilities small for
both userX andY . It is obvious that the rate region for this
problem is

Rxy(PX , PY ) = Rx(PX , PY ) ∩Ry(PX , PY ),

where Ry(PX , PY ) is defined in the same manner as
Rx(PX , PY ) but the channel isWZ̃|XY instead ofWZ|XY as
shown in Figure 1. A typical capacity regionRxy(PX , PY )
is shown in Figure 3. It is not necessarily convex.

However, by time sharing between different rate pairs
for the same composition, we can convexify the capacity
region. Then the convex hull of the union of all such capacity
regions for different compositions gives the biggest known
achievable capacity region from our coding scheme. i.e. the
capacity region of the interference channel is a superset of

CONV EX


 ⋃

PX ,PY

Rxy(PX , PY )


 .

A more thorough discussion of time sharing and the
achievable error exponent and capacity region is detailed in
Section IV.

A. Existence of a good code for the interference channel

In this paper we are concerned with the average error
probability over the code book ensemble with the same
composition. This is in contrast to the case where only the
existence of a code book is needed. The achievability of
the randomized coding implies the existence ofa good code
book. This can be proved as a simple corollary of Theorem 1.

Similar to the error probability forX defined in (1), we
define the average error

Pn
e(xy)(Rx, Ry, PX , PY )

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy

∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

(5)

{ ∑
zn

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx)

+
∑

z̃n

WZ̃|XY (z̃n|xn(mx), yn(my))1(m̂y(z̃n) 6= my)
}

For a rate pair (Rx, Ry) ∈ Rxy(PX , PY ) =
Rx(PX , PY )

⋂Ry(PX , PY ). We know that for allδ > 0,
there existsNδ < ∞, s.t. for all n > Nδ, the average error
probability is smaller thanδ for userX and userY :
Pn

e(x)(Rx, Ry, PX , PY ) < δ and Pn
e(y)(Rx, Ry, PX , PY ) <

δ. It is easy to see that the average error probability for user
X andY can be bounded by:

Pn
e(xy)(Rx, Ry, PX , PY )

= Pn
e(x)(Rx, Ry, PX , PY ) + Pn

e(y)(Rx, Ry, PX , PY )
≤ 2δ (6)

From (5), we know thatPn
e(xy)(Rx, Ry, PX , PY ) is the

average error probability ofall fixed-composition codes.
With (6), we know that there exists at leasta codebook such
that the error probability is no bigger than2δ.

The existence of a code book that achieves the error
exponents can also be shown. The proof is similar to that
in [9] and Exercise 30 (b) on page 198 [3]. This is quite
obvious.

The converse of the randomized coding does not guarantee
that there is not a single good fixed-composition code book.
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Fig. 3. A typical randomized fixed-composition capacity region
Rxy(PX , PY ) = Rx(PX , PY ) ∩ Ry(PX , PY ), this capacity region is
not necessarily convex.

Our converse does not claim that no such code book exists.
Instead, we claim that, the average decoding error probability
does not converge to0 if the rate pair is outside the capacity
region in Theorem 1.

III. PROOF OFTHEOREM 1

There are two parts of the theorem, achievability and
converse. The achievability part is proved by applying
the classical techniques in point to point channel coding
and multiple access channel coding for randomized fixed-
composition code. The converse is proved by contradiction
and using a technique first developed in [4].

A. Achievability

We show that in the interior of the capacity region,
i.e. the union of RegionI and II in Figure 2, a positive
error exponent is achieved by applying the randomized
fixed-composition coding defined in Definition 1. We
present the error exponent results in Lemmas 1 and 2 that
covers RegionI andII respectively. Then in Lemma 3, we
show that these error exponents are positive in the interior
of the capacity regionRx(PX , PY ) and hence conclude the
proof of the achievability part in Theorem 1.

1) RegionII: In Region II, we show that decoderX
can decode both messagemx and my with small error
probabilities. This is essentially a multiple-access channel
coding problem. We use the technique developed in [3] to
derive the positive error exponents that parallel to those
in [11]. The decoder is a simple maximum mutual infor-
mation1 decoder [3], this decoding rule is universal in the
sense that the decoder does not need to know the multiple
access channelWZ|XY . We describe the decoding rule here,

1A more sophisticated decoding rule based on minimum conditional
entropy decoding for multiple-access channel is developed in [10], it is
shown that this decoding rule achieves a bigger error exponent in low rate
regime. The goal of this paper is, however, not to derive the tightest lower
bound on the error exponent. We only need a coding scheme to achieve
positive error exponent in the capacity region in Theorem 1. Hence we use
the simpler decoding scheme in [11].

the estimate of the joint message is the message pair such
that the input to the channelWZ|XY and the output of the
channel have the maximal empirical mutual information. i.e.:
(m̂x(zn), m̂y(zn))

= arg max
i∈{1,2,...,2nRx},j∈{1,2,...,2nRy}

I(zn; xn(i), yn(j)) (7)

where zn is the channel output andxn(i) and yn(j)
are the channel inputs for messagei and j respectively.
I(zn;xn, yn) is the empirical mutual information between
zn and (xn, yn), the point to point maximal mutual mutual
information decoding is studied in [3].

If there is a tie, the decoder can choose an arbitrary winner
or simply declare error. In Lemma 1, we show that by using
the randomized fixed composition encoding and the maximal
mutual information decoding, a non-negative error exponent
is achieved in RegionII.

2) RegionI: In RegionI, decoderX only estimatesmx

by treating the input of encoderY as a source of random
noise. This is a point to point channel coding problem. The
channel itself has memory since the input of encoderY is not
memoryless. Similar to the multiple access channel coding
problem studied in RegionII, we use a maximal mutual
information decoding rule:

m̂x(zn) = arg max
i∈{1,2,...,2nRx}

I(zn;xn(i)) (8)

In Lemma 2, we show that the by using the randomized
fixed composition encoding and the maximal mutual infor-
mation decoding, a non-negative error exponent is achieved
in RegionI.

We use the method of types [2] in both proofs.

Lemma 1: (RegionII) Multiple-access channel error ex-
ponents (joint error probability). For the randomized coding
scheme described in Definition 1, and the decoding rule
described in (7), the decoding error probability averaged over
all messages, code books and channel behaviors is upper
bounded by an exponential term:
Pr((mx,my) 6= (m̂x, m̂y))

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy

∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

(9)

WZ|XY (zn|xn(mx), yn(my))
1 ((m̂x(zn), m̂y(zn)) 6= (mx,my))

≤ 2−n(E−εn). (10)

εn converges to zero asn goes to infinity, and

E = min{Exy, Ex|y, Ey|x}, where



Exy = min
QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY )

+D(QXY ‖PX × PY )
+|IQ(X, Y ; Z)−Rx −Ry|+

Ex|y = min
QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY )

+D(QXY ‖PX × PY ) + |IQ(X; Z|Y )−Rx|+
Ey|x = min

QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY )

+D(QXY ‖PX × PY ) + |IQ(Y ;Z|X)−Ry|+

where |t|+ = max{0, t} and the random variables
(X, Y, Z) ∼ QXY Z in IQ(X;Z|Y ), IQ(Y ;Z|X) and
IQ(X, Y ; Z).

Remark: it is easy to verify thatD(QZ|XY ‖W |QXY ) +
D(QXY ‖PX × PY ) = D(QXY Z‖PX × PY × W ), so the
expressions for the error exponents can be further simplified.
We use the expressions similar to those in [11] because they
are more intuitive.

Remark: The proof parallels to that in [11] which is in turn
an extension to the point to point channel coding problem
studied in [3]. The method of types is the main tool for
the proofs. The difference is that we need to show the lower
bound to the average error probability instead of showing the
existence of a good code book in [11]. Without giving details,
we follow Gallager’s proof in [9] and claim the existence of
a good code with the same error exponent as that in [11].
This is a simple corollary of Lemma 1.

Proof: First we have an obvious upper bound on the
error probability
Pr((mx,my) 6= (m̂x, m̂y))

= Pr(mx 6= m̂x,my 6= m̂y) + Pr(mx 6= m̂x,my = m̂y)
+Pr(mx = m̂x,my 6= m̂y)

≤ Pr(mx 6= m̂x,my 6= m̂y) + Pr(mx 6= m̂x|my = m̂y)
+Pr(my 6= m̂y|mx = m̂x)) (11)

The inequality is true becauseP (A,B) = P (A|B)P (B) ≤
P (A|B). Now we upper bound each individual error proba-
bility in (11) respectively by exponentials. By symmetry, we
only need to show that

Pr(mx 6= m̂x,my 6= m̂y) ≤ 2−n(Exy−εn) (12)

and Pr(mx 6= m̂x|my = m̂y) ≤ 2−n(Ex|y−εn).(13)

We leave the proof of (12) and (13) to Appendix A, where
a standard method of type argument is used. ¤

Lemma 2: (RegionI) point to point channel coding error
exponent (decodingX only). For the randomized coding
scheme described in Definition 1, and the decoding rule
described in (8), the decoding error probability averaged over
all messages, code books and channel behaviors is upper
bounded by an exponential term:

Pr(mx 6= m̂x)

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy

∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

WZ|XY (zn|xn(mx), yn(my))
1 (m̂x(zn) 6= mx)

≤ 2−n(Ex−εn). (14)

εn converges to zero asn goes to infinity, and

Ex = min
QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY )

+D(QXY ‖PX × PY ) + |IQ(X;Z)−Rx|+

Proof: We give a unified proof for (12), (13) and (14)
in Appendix A. ¤

With Lemma 1 and Lemma 2, we know that some non-
negative error exponents can be achieved as long as the
rate pair (Rx, Ry) ∈ Rx(PX , PY ) for randomized fixed-
composition code. This is because both Kullback-Leibler
divergence and| · |+ are always non-negative. Now we only
need to show the positiveness of those error exponents when
the rate pair is in the interior ofRx(PX , PY ).

Lemma 3:Positiveness of the error exponents, for rate
pairs (Rx, Ry) in the interior ofRx(PX , PY ) defined in
Theorem 1, we have:

max{min{Exy, Ex|y, Ey|x}, Ex} > 0.

More specifically, we will show two things. First, if
Rx < I(X,Z), where(X, Z) ∼ PX × PY ×WZ|XY , then
Ex > 0. This covers RegionI. Second, ifRx < I(X,Z|Y ),
Ry < I(Y,Z|X) and Rx + Ry < I(X,Y ; Z),
where (X,Y, Z) ∼ PX × PY × WZ|XY , then
min{Exy, Ex|y, Ey|x} > 0, this covers RegionII.

Proof: First, suppose that for someRx < I(X, Z),
Ex ≤ 0. Since both Kullback-Leibler divergence and| · |+
are non-negative functions, we must haveEx = 0 and there
exists a distributionQXY Z , s.t. QX = PX , QY = PY and
all the individual non-negative functions are zero:

D(QXY ‖PX × PY ) = 0
D(QZ|XY ‖W |QXY ) = 0
|IQ(X; Z)−Rx|+ = 0

The first equation tells us thatQXY = PX × PY . Then
the second equation becomesD(QZ|XY ‖W |PX × PY ) =
0, this means thatQZ|XY × PX × PY = W × PX ×
PY , so IQ(X;Z) = I(X; Z) where the random variables
(X, Y, Z) ∼ PX ×PY ×WZ|XY in I(X; Z). Now the third
equation becomes|I(X; Z)−Rx|+ = 0 which is equivalent
to I(X;Z) ≤ Rx, this is a contradiction to the fact that
Rx < I(X,Z).



Secondly, suppose that for some rate pair(Rx, Ry) in
Region II, i.e. Rx < I(X, Z|Y ), Ry < I(Y, Z|X) and
Rx + Ry < I(X,Y ; Z) and min{Exy, Ex|y, Ey|x} ≤ 0,
then min{Exy = 0 or Ex|y = 0 or Ey|x} = 0. Following
exactly the same argument as that in the first part of the
proof of Lemma 3, we can get contradictions with the fact
that the rate pair(Rx, Ry) is in the interior of capacity region
Rx(PX , PY ). ¤

From the above three lemmas, we know that the error
probability for decoding messageX is upper bounded by
2−n(E−εn) for all (Rx, Ry) ∈ Rx(PX , PY ), whereE > 0
and lim

n→∞
εn = 0. Hence the error probability goes to zero

exponentially fast for largen. This concludes the achievabil-
ity part of the proof for Theorem 1.

B. Converse

We show that the average decoding error of DecoderX
does not converge to0 with increasingn if the rate pair
(Rx, Ry) is outside the capacity regionRx(PX , PY ) shown
in Figure 2. There are two parts of the proof.

First, we show that in RegionV the average error prob-
ability does not go to zero as block length goes to infinity.
This is proved by using a modified version of the reliability
function for rate higher than the channel capacity [4].

Lemma 4:Region V , the average error probability for
X does not converge to0 with block length n if Rx >
I(X; Z|Y ), where(X,Y, Z) ∼ PX × PY ×WZ|XY .

Proof: It is enough to show the case where there is
only one message forY and encoderY sends a code word
yn with compositionPY . The code book for encoderX is
still uniformly generated among all the fixed-composition-
PX code books. In the rest of the proof, we investigate the
typical behavior of the codewordsxn and modify the Lemma
3 and Lemma 5 from [4] to show that

Pr(m̂x 6= mx) = Pn
e(x)(Rx, Ry, PX , PY ) >

1
2

(15)

for largen. The details of the proof are in Appendix I-B.¤

The more complicated case is in RegionIV . We show
that the decoding error probability for userX does not
converge to zero with block lengthn by constructing a
decoder that decodes both messagemx and messagemy

correctly with high probability. Then again by using the
reliability function for rate higher than channel capacity [4],
we get a contradiction.

Lemma 5:Region IV , the average error probability for
X does not converge to0 with block length n if Rx <
I(X; Z|Y ), Ry < I(Y ;Z|X) and Rx + Ry > I(X,Y ;Z)
where(X, Y, Z) ∼ PX × PY ×WZ|XY .

Proof: Suppose that

Pr(m̂x 6= mx) = Pn
e(x)(Rx, Ry, PX , PY ) ≤ δn

whereδn goes to zero withn. Now let decoderX decode
my by the same decoding rule devised in (7):

m̂y(zn) = arg max
j∈{1,2,...,2nRy}

I(zn; xn(m̂x(zn)), yn(j)). (16)

The decoding error for either message at decoderX is now:
Pr((m̂x, m̂y) 6= (mx,my))

= Pr(m̂x 6= mx) + Pr(m̂x = mx, m̂y 6= my)
≤ Pr(m̂x 6= mx) + Pr(m̂y 6= my|m̂x = mx) (17)

Given m̂x = mx, (18) becomes

m̂y(zn) = arg max
j∈{1,2,...,2nRy}

I(zn; xn(mx), yn(j)). (18)

So the second term in the RHS of (17) can be bounded by
exactlythe same way as that in the proof of (13). From (17)
we know:

Pr((m̂x, m̂y) 6= (mx,my)) ≤ δn + 2−n(Ey|x−εn) (19)

This upper bound goes to zero asn goes to infinity. However
in Appendix I-B, we show that

Pn
e(xy)(Rx, Ry, PX , PY )

= Pr((m̂x, m̂y) 6= (mx,my)) >
1
2

(20)

This is contradicted to (19). ¤

As a corollary of Lemma 5, the decoding error for encoder
X does not converge to0 with n if the rate pair(Rx, Ry)
is in RegionIII. For a(Rx, Ry) decoder, we can construct
a new decoder for(Rx, R′y) whereR′y < Ry, by revealing a
random selection of a(Rx, Ry) code book that is the superset
of the (Rx, R′y) code book to the(Rx, Ry) decoder and
accept the estimate of the(Rx, Ry) decoder as the estimate
for the (Rx, R′y) decoder. If the average error probability
is small for the (Rx, Ry) code books, the average error
probability is small for this particular(Rx, R′y) decoder as
well, this is a contradiction to Lemma 5.

This concludes the converse part of the proof for Theo-
rem 1.

IV. B EYOND FIXED-COMPOSITION

There are two parts in this section. First we investigate
the error exponent performance for simple time sharing
among different rate pairs for the same randomized fixed-
composition codes, and time sharing among different com-
positions. In the second part, we study the necessity of more
sophisticated time-sharing coding schemes.

A. Simple time sharing exponents

The simple idea of time sharing is well developed and
understood for multi-user information theory, especially in
the capacity region results for multiple-access channel coding
and broadcast channel coding.

Definition 3: Time-sharing randomized code: for
a positive vector (ξ1, ...ξL) and

∑
i ξi = 1, a(

(ξ1, R
(1)
x , R

(1)
y , P

(1)
X , P

(1)
Y ), ..., (ξL, R

(L)
x , R

(L)
y , P

(L)
X , P

(L)
Y )

)
randomized code is such that a map for sourceX, Ex:

{1, 2, ..., 2nRx} → {1, 2, ..., 2nξ1R(1)
x } × ...× {1, 2, ..., 2nξLR(L)

x }

Ex(mx) = (m(1)
x , ...m(L)

x )



wherem
(1)
x is the firstnξ1R

(1)
x bits of mx and so on. Then

for eachm(i)
x , we use the randomized fixed-composition code

with compositionP
(i)
X defined in Definition 1. The rate for

this encoder isRx whereRx =
∑L

i=1 ξiR
(i)
x .

Similarly for Ey.
The decoder simply decodes(m(i)

x ,m
(i)
y ) individually for

i = 1, ..., L. And put them back to form the whole estimation
m̂x, m̂y.

The decoding error probability is upper bounded by the
union bound of the error probability of individual messages.

Pr(m̂x 6= mx) ≤ L max
i∈{1,2,...,L}:R(i)

x >0

Pr(m̂(i)
x 6= m(i)

x )

L is a fixed number, so letn goes to infinity, the overall
error exponents is

Ex = min
i∈{1,2,...,L}:R(i)

x >0

ξiEx(R(i)
x , R(i)

y , P
(i)
X , P

(i)
Y ) (21)

where Ex(R(i)
x , R

(i)
y , P

(i)
X , P

(i)
Y ) is the randomized fixed-

composition error exponent for rate(R(i)
x , R

(i)
y ) with fixed

compositions(P (i)
X , P

(i)
Y ) defined in Lemma 3. Similarly:

Ey = min
i∈{1,2,...,L}:R(i)

y >0

ξiEy(R(i)
x , R(i)

y , P
(i)
X , P

(i)
Y ) (22)

With (21) and (22), we know that a positive error exponent
pair can be achieved by properly time-share among different
fixed-composition codes(Rx, Ry, PX , PY ) for rate pairs in
the interior of

CONV EX
(⋃

PX ,PY
Rxy(PX , PY )

)
=

CONV EX


 ⋃

PX ,PY

Rx(PX , PY )
⋂

Ry(PX , PY )


 . (23)

The last equality is by the definition ofRxy(PX , PY ).

The order of the union and intersection operators cannot be
changed in (23). We further our discussion on the achievable
capacity region (23). Fix the composition of the two encoders
at PX and PY , the region where a positive error exponent
can be achieved byX is defined asRx(PX , PY ). The convex
hull (time sharing region) of all such regions over all possible
input compositions is

CONV EX


 ⋃

PX ,PY

Rx(PX , PY )




= MAC(WZ|XY )
⋃

P2PX(WZ|XY )

whereP2PX(WZ|XY ) =

{(Rx, Ry) : Rx ≤ max
(X,Z)∼QXY WZ|XY

I(X;Z)}

is the point-to-point capacity region for userX.
MAC(WZ|XY ) is the multiple access channel capacity

region for W . In the analysis of the capacity region for

multiple-access channels in [1], the authors give two inter-
pretations of the same capacity region. First

CONV EX(
⋃

PX×PY ×WZ|XY

{(Rx, Ry) : Rx ≤ I(X;Z|Y ),

Ry ≤ I(Y ; Z|X), Rx + Ry ≤ I(X, Y ; Z)})
Equivalently:

CLOSURE(
⋃

PU×PX|U×PY |U×WZ|XY

{(Rx, Ry) :

Rx ≤ I(X; Z|Y,U), Ry ≤ I(Y ; Z|X, U),
Rx + Ry ≤ I(X,Y ; Z|U)})

whereU is the time-sharing auxiliary random variable and
|U | = 4.

All the above discussions in this subsection is forX only.
For interference channels,Y has to be reliably communicated
simultaneously, hence the intersection operator in (23). The
order of the intersection operator and the time sharing
operator cannot be changed due to this.

Remark 1: It is interesting that we not only need to time-
share between different compositions but also need to time-
share between different rate pairs even for the same fixed-
composition! This is due to the non-convexity of the capacity
regionRx(PX , PY ) for randomized fixed-composition code
shown in Figure 3. ClearlyEx is positive as long as each
Ex(R(i)

x , R
(i)
y , P

(i)
X , P

(i)
Y ) is positive. FromX ’s point of view,

the best chance to get the message decoded correctly is to
spread the codewords uniformly in the code space{xn :
xn ∈ PX}. But this might have a negative impact onY . By
the simple time-sharing technique among different rate pairs
with the same composition, we randomly sample codewords
from a subset of the fixed-composition set which is clearly
less optimal than sampling over the whole fixed-composition
set forX. This however helps the decoding of the other user
as now the capacity region (with positive error exponents)
is the convex hull of those not necessarily convex regions
Rxy(PX , PY ).

B. Beyond simple time-sharing

The error exponent achieved by simple time-sharing is
determined by two factors, the fraction of time a particular
randomized code(R(i)

x , R
(i)
y , P

(i)
X , P

(i)
Y ) is used and the

error exponents achieved by such code. This simple time-
sharing technique is also used in achieving the multiple
access channel capacity region [1]. After all, part of the
achievablity is proved by reducing the interference channel
coding problem into a multiple access channel problem.
However, the difference between interference and multiple-
access channels is the number of receivers. Now there are
two receivers, the achievable region for a particular fixed-
composition is theintersectionof two non-convex regions.

In this section we give a time sharing coding scheme that
was first developed by Gallager [8] and later further studied
for universal decoding by Pokorny and Wallmeier [11]. This
type of randomized time-sharing schemes not only achieves



better error exponents, more importantly, we show that this
might achieve bigger capacity region than the simple time-
sharing scheme does! Unlike the multiple-access channels
where the simple time-sharing achieves the whole capacity
region, this is unique to the interference channels, due to
the fact that the capacity region is the convex hull of the
intersections of pairs of non-convex regions (convex or not
is not the issue here, the real difference is the intersection
operation).

The organization of this section parallel to that for the
fixed-composition. We first introduce the randomized time-
sharing coding scheme, then give the achievable error expo-
nents and lastly drive the achievable rate region for such cod-
ing schemes. The proofs are omitted since they are extremely
similar to those for the randomized fixed-composition codes.

Definition 4: Randomized time-sharing codes: for a prob-
ability distribution PU on U , whereU = {u1, u2, ..., uK}
with

∑K
i=1 PU (ui) = 1, and a pair of conditional in-

dependent distributionsPX|U , PY |U . We define the two

codeword sets2 as Xc(n) = {xn : x
nPU (u1)
1 ∈

PX|u1 , x
n(PU (u1)+PU (u2))
nPU (u1)+1 ∈ PX|u2 , ..., x

n
n(1−PU (u1))

∈
PX|uL

} i.e. the i’th chunk of the codewordxn with
length nPU (ui) has compositionPX|ui

, and similarly

Yc(n) = {yn : y
nPU (u1)
1 ∈ PY |u1 , y

n(PU (u1)+PU (u2))
nPU (u1)+1 ∈

PY |u2 , ..., y
n
n(1−PU (u1))

∈ PY |uL
}. A randomized time shar-

ing code(Rx, Ry, PUPX|UPY |U ) encoder picks a code book
with the following probability: for any messagemx ∈
{1, 2, ..., 2nRx}, the code wordxn(mx) is uniformly dis-
tributed inXc(n), similarly for encoder Y.

After the code book is randomly generated and revealed to
the decoder, the decoder uses a maximum mutual information
decoding rule. Similar to the fixed-composition coding, the
decoder needs to either decode both messageX andY jointly
or simply treatsY as noise and decodeX only, depending
on where the rate pairs are in RegionI or II, as shown in
Figure 4. The error probability we investigate is again the
average error probability over all messages and codebooks.

Theorem 2:Interference channel capacity region
Rx(PUPX|UPY |U ) for randomized time-sharing codes
with compositionPUPX|UPY |U :
Rx(PUPX|UPY |U )

= {(Rx, Ry) : 0 ≤ Rx < I(X; Z|U), 0 ≤ Ry}
⋃

{(Rx, Ry) : 0 ≤ Rx < I(X; Z|Y,U),
Rx + Ry < I(X, Y ;Z|U)} (24)

where the random variables in (24),(U,X, Y, Z) ∼
PUPX|UPY |UWZ|X,Y .

The rate region defined in (24) itself does not give any new
X-capacity regions forX, since this region is a subset of the
convex hull(time-sharing) of the capacity regions in (4). But
for the interference channel capacity, we will argue in next
section that this coding scheme might give a strictly bigger

2Again, we ignore the nuisance of the non-integers here.

capacity region than that given by the simple time-sharing
of fixed composition codes in (23).

The proof of Theorem 2 is extremely similar to that of
Theorem 1. We omit the details here. We only point out that
the achievability part is proved by deriving a positive error
exponent for rate pair in the interior of the capacity region
defined in Theorem 2. As shown in [11] and also detailed in
this paper for the randomized coding, the error exponents in
RegionII of in Figure 4 is:

E = min{Exy, Ex|y, Ey|x}, where

Exy = min
QXY Z|U :QX|U=PX|U ,QY |U=PY |U

D(QZ|XY ‖W |QXY U )

+D(QXY |U‖PX|U × PY |U |U)
+|IQ(X, Y ;Z)−Rx −Ry|+

Ex|y = min
QXY Z|U :QX|U=PX|U ,QY |U=PY |U

D(QZ|XY ‖W |QXY U )

+D(QXY |U‖PX|U × PY |U |U) + |IQ(X; Z|Y )−Rx|+
Ey|x = min

QXY Z|U :QX|U=PX|U ,QY |U=PY |U
D(QZ|XY ‖W |QXY U )

+D(QXY |U‖PX|U × PY |U |U) + |IQ(Y ; Z|X, U)−Ry|+

This is the error exponents in Lemma 1 with a conditional
auxiliary random variableU .

The error exponent in RegionI is
Ex =

min
QXY Z|U :QX|U=PX|U ,QY |U=PY |U

D(QZ|XY ‖W |QXY U )

+D(QXY |U‖PX|U × PY |U |U) + |IQ(X; Z|U)−Rx|+

C. Why the coding scheme in Theorem 2 is useful in studying
the capacity regions

It is obvious that the time-sharing fixed-composition cod-
ing gives a bigger error exponent than the simple time
sharing coding does. More interestingly, we argue that it
might gives a bigger interference channel capacity region.
First we write down the capacity region for the time-sharing
fixed-composition coding:

CONV EX
( ⋃

PX|U PY |U PU

(25)

[Rx(PX|UPY |UPU )
⋂

Ry(PX|UPY |UPU )]
)
.

U is a time sharing auxiliary random variable. Unlike
the MAC coding problem, where simple time sharing of
fixed composition codes achieve the full capacity region, it
is not guaranteed for interference channels. The reason is the
intersection operator in the achievable capacity regions (4)
and (24). In the following example, we illustrate why (24)
might be bigger than (4).

Suppose we have a symmetric interference channel, i.e.
Rx(PX , PY ) = RT

y (PY , PX) whereT is the transpose oper-
ation. The comparison of simple timesharing capacity region
and the more sophisticated time-sharing fixed composition
capacity region are illustrated by a toy example in Figure 5.
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IV V

I(X; Z|U)

I(Y ; Z|U)

I(Y ; Z|X, U)

I(X; Z|Y, U)

Fig. 4. Randomized time-sharing capacity regionRx(PUPX|UPYU
) for X, the achievable region is the union of RegionI andII. This region is very

similar to that for fixed-composition coding shown in Figure 2, only difference is now there is an auxiliary time-sharing random variableU .

For a distribution (PX , PY ), the achievable region
for the fixed composition code is illustrated in Fig-
ure 5,Rx(PX , PY ) andRy(PX , PY ) respectively, these are
bounded by the red dotted lines and red dash-dotted lines re-
spectively, so the interference capacity regionRxy(PX , PY )
is bounded by the pentagonABEFO. By symmetry,
Rx(PY , PX) andRy(PX , PY ) are bounded by the blue dot-
ted lines and blue dash-dotted lines respectively, the capacity
regionRxy(PY , PX) is bounded by the pentagonHGCDO.
So the convex hull of these two regions isABCDO.

Now consider the following timesharing fixed-composition
codingPX|UPY |UPU whereU = {0, 1}, PU (0) = PU (1) =
0.5 and PX|0 = PY |1 = PX , PX|1 = PY |0 = PY . The
interference capacity region is obviously bounded by the
black pentagon in Figure 5. This toy example shows why (25)
might be bigger than (23).

V. D ISCUSSIONS

In this paper we investigate the randomized fixed-
composition coding error exponents for interference chan-
nels. We derive the standard random coding error exponents
for interference channels. A better error exponent can be
achievable by using more sophisticated coding schemes, as
in the multiple access channel coding problem [10]. The
capacity regions for such randomized coding are completely
characterized. It is clear that this region is a subset of
the well-known Han-Kobayashi region [12]. As a simple
corollary, the existence ofa good code is also proved. By
time sharing between different rates and code compositions,
a convex achievable rate region is derived for interference
channels. The relation of this achievable capacity region and
the Han-Kobayashi region [12] is unknown. An interesting
future direction is to incorporate an auxiliary random variable
into the code book generation. This coding scheme will

Ry

Rx

E

D

C

BA

F

GH

Fig. 5. Simple timesharing of fixed composition capacityABCDO VS
time-sharing fixed composition capacity(0.5) ( the black pentagon)

certainly gives new error exponent results and possibly new
achievable capacity region results.

ACKNOWLEDGMENTS

The author thanks Raul Etkin, Neri Merhav and Erik Or-
dentlich for introducing the problem and helpful discussions
along the way.

REFERENCES

[1] Thomas M. Cover and Joy A. Thomas.Elements of Information
Theory, 2nd Edition. John Wiley and Sons Inc., New York, 2006.
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APPENDIX

A. Proof of (12), (13) and (14)

The expectation of the error probabilities in (12), (13) and (14) are taken over all messages, code books and channel
behaviors. Because of the symmetry of the code book selection, we can fix the message pair(mx,my) = (1, 1).
We examine the object function to be minimized in (12), (13) and (14). First, thecommonpart of the three error exponents
Exy, Ex|y andEx: D(QZ|XY ‖W |QXY ) + D(QXY ‖PX × PY ). D(QXY ‖PX × PY ) is the logarithm of the inverse of the
probability that typeQXY is the empirical distribution of the code pairxn(1), yn(1) individually generated from fixed-
compositionsPX andPY . D(QZ|XY ‖W |QXY ) is logarithm of the inverse of the conditional probability that the input to
the channelW is QXY , while the empirical type of the input/output isQXY Z = QXY × QZ|XY . For the individual part
of the error exponents in (12), (13) and (14):|IQ(X, Y ; Z) − Rx − Ry|+, |IQ(X; Z|Y ) − Rx|+ and |IQ(X;Z) − Rx|+
respectively, each one is the logarithm of the inverse of an upper bound on the probability that there exists another message
(pair) with higher mutual information with the channel output, while the channel inputs/ouput has typeQXY Z . This is
derived by a union bound argument.
First we write the error probability (12) in the following way:

Pr(mx 6= m̂x,my 6= m̂y)

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy ∑

cX

∑
cY

(26)

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx, m̂y(zn) 6= my)

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy ∑

cX

∑
cY

∑
zn

WZ|XY (zn|xn(1), yn(1))1(m̂x(zn) 6= 1, m̂y(zn) 6= 1)

=
∑

QXY :QX=PX ,QY =PY

{
Pr

(
(xn(1), yn(1)) ∈ QXY

) ∑

QZ|XY

Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

Pr(m̂x(zn) 6= 1, m̂y(zn) 6= 1)
}

(27)

≤
∑

QXY :QX=PX ,QY =PY

{
Pr

(
(xn(1), yn(1)) ∈ QXY

) ∑

QZ|XY

Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

min{1,

2nRx∑

i=2

2nRy∑

j=2

Pr (I(zn;xn(1), yn(1)) ≤ I(zn;xn(i), yn(j))|(xn(1), yn(1), zn) ∈ QXY Z))}}

≤ |T n
XY Z | max

QXY Z :QX=PX ,QY =PY

Pr
(
(xn(1), yn(1)) ∈ QXY

)
Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

min{1,

2nRx∑

i=2

2nRy∑

j=2

Pr (I(zn;xn(1), yn(1)) ≤ I(zn;xn(i), yn(j))|(xn(1), yn(1), zn) ∈ QXY Z))} (28)

(26) and (27) are two different interpretations of the same error probability. In (26), we first randomly pick a fixed composition
codebook paircX andcY , then sum over the all probabilities that the output of the channel causes a decoding error for the
chosen codebook pair. (27) is an equivalent interpretation of the above error probability because the codewords for each
message is independently generated. We interpret (27) as follows, we first randomly pick a codeword pair for message1 in
X and message1 in Y , then the codeword pair is transmitted to through the channel. Then we randomly generate the rest
of the codebook and investigate the probability that other message pairs maximize the mutual information with the channel
output.
We upper bound the four components in (28) as follows. The number of type sets of lengthn:

|T n
XY Z | ≤ (n + 1)|X×Y×Z| = 2n(

log(n+1)
n |X×Y×Z|) = 2nan . (29)

For anyQXY , s.t.QX = PX andQY = PY , from the method of types [1] and [2], we know that2n(H(PY )− log n
n |Y|) ≤ |PY | ≤

2nH(PY ), similar bounds applies to|PX |. And for a fixedX-sequence,xn(1) ∈ PX = QX , we have2n(H(QY |X)− log n
n |XY |) ≤

|{yn ∈ Yn : (xn(1), yn) ∈ QXY }| ≤ 2nH(QY |X). xn(1) and yn(1) are independently distributed in type setPX and PY .
Hence,

Pr
(
(xn(1), yn(1)) ∈ QXY

)
=
|{yn ∈ Yn : (xn(1), yn) ∈ QXY }|

|PY | ≤ 2n(H(QY |X)−H(QY )+ log n
n |X |)



Notice thatH(QY |X)−H(QY ) = −D(QXY ‖QX ×QY ) = −D(QXY ‖PX × PY ) and letbn = log n
n |X |, we have:

Pr
(
(xn(1), yn(1)) ∈ QXY

) ≤ 2−n(D(QXY ‖PX×PY )−bn) (30)

For (xn(1), yn(1)) ∈ QXY , for any empirical channel behaviorQZ|XY :

Pr(zn|(xn(1), yn(1)) ∈ QZ|XY ) = |{zn : (xn(1), yn(1), zn) ∈ QXY Z}|WZ|XY (QZ|XY )

≤ 2nH(QZ|XY ) × 2n(−D(QZ|XY ‖W |QXY )−H(QZ|XY ))

= 2−nD(QZ|XY ‖W |QXY ) (31)

Finally, for (xn(1), yn(1), zn) ∈ QXY Z , we investigate the probability that there exists(i, j), i 6= 1, j 6= 1, s.t. the mutual
information between(xn(i), yn(j)) andzn is at least as much as the mutual information between(xn(1), yn(1)) andzn.
For all i 6= 1, the codewordxn(i) is uniformly distributed on the fixed-composition setPX , same for Y . Given
(xn(1), yn(1), zn) ∈ QXY Z , we haveI(zn;xn(1), yn(1)) = IQ(Z;X,Y ), so:

min{1,

2nRx∑

i=2

2nRy∑

j=2

Pr (I(zn; xn(1), yn(1)) ≤ I(zn; xn(i), yn(j))|(xn(1), yn(1), zn) ∈ QXY Z)}

≤ min{1, 2n(Rx+Ry)
∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

Pr(((xn(i), yn(j), zn) ∈ VXY Z |zn ∈ QZ)}

= min{1, 2n(Rx+Ry)
∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

|{(xn, yn) ∈ PX × PY : (xn, yn, zn) ∈ VXY Z}|
|{xn : xn ∈ PX}||{yn : yn ∈ PY }| }

≤ min{1, 2n(Rx+Ry)
∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

2n(HV (X,Y |Z)−HV (X)−HV (Y )+
log n(|X|+|Y|)

n )}

≤ min{1, 2n(Rx+Ry)
∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

2n(HV (X,Y |Z)−HV (X,Y )+
log n(|X|+|Y|)

n )}

= min{1, 2n(Rx+Ry)
∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

2n(−IV (X,Y ;Z)+
log n(|X|+|Y|)

n )}

≤ min{1, 2n(Rx+Ry)n|X×Y×Z|2n(−IQ(X,Y ;Z)+
log n(|X|+|Y|)

n )}
= 2−n(|IQ(X,Y ;Z)−Rx−Ry|+−cn) (32)

Combining (29), (30), (31) and (32), and noticing thatan bn and cn converges to zero whenn goes to infinity, we have
just proved (12).
(13) and (14) can be proved by following the same argument. Similar to the way we upper bound the LHS of (12) in (28),
we bound the LHS of (13) as follows:

Pr(mx 6= m̂x|my = m̂y)

≤ |T n
XY Z | max

QXY Z :QX=PX ,QY =PY

Pr
(
(xn(1), yn(1)) ∈ QXY

)
Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

min{1,

2nRx∑

i=2

Pr (I(zn; xn(1), yn(1)) ≤ I(zn; xn(i), yn(1))|(xn(1), yn(1), zn) ∈ QXY Z))}. (33)

Similarly, we upper bound the LHS of (14) by

Pr(mx 6= m̂x)

≤ |T n
XY Z | max

QXY Z :QX=PX ,QY =PY

Pr
(
(xn(1), yn(1)) ∈ QXY

)
Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

min{1,

2nRx∑

i=2

Pr (I(zn; xn(1)) ≤ I(zn; xn(i))|(xn(1), yn(1), zn) ∈ QXY Z))}. (34)

The common parts (first line) in (28), (33) and (34) are proved in (29) (30) and (31). The individual part of (28) is proved
in (31). The proof for the individual part of (33) and (34) follow similar argument. We omit the details here.



B. Proof of (15) and (20)

To prove (15), we give an upper bound of thecorrect probabilityPr(m̂x = mx).

Pr(m̂x = mx) = Pn
e(x)(Rx, Ry, PX , PY )

=
(

1
|T n(PX)|

)2nRx ∑
cX

1
2nRx

∑
mx

∑
zn

WZ|XY (zn|xn(mx), yn)1(m̂x(zn) = mx)

The codewordsxn(mx) is uniformly distributed on the type setPX , so the probability that the joint type of(xn(mx), yn)
is close toPX × PY with high probability [1], i.e. for allσ > 0, for largen,

Pr(D((xn(mx), yn)‖PX × PY )) > σ) < σ. (35)

We denote byTσ(yn) = {xn : D((xn, yn)‖PX×PY )) ≤ σ}, the typical set givenyn. Now we look at individual codebooks
cX , we say a codebookcX is good if

|cX

⋂
TC

σ (yn)| ≤ |cX |
4

(36)

where |cX | = 2nRxThe set of all good codebooks is denoted byG, at most4σ of the codebooks are not inG because of
(35). For a good codebookcX , we use the technique from [4] to upper bound the correct probability for the good codebook
cX .

Pr(m̂x = mx) ≤ |cX

⋂
TC

σ (yn)|
|cX | +

1
|cX |

∑

i:xn(i)∈Tσ(yn)

Pr(i = m̂x(zn))

≤ 1
4

+
1
|cX |

∑

i:xn(i)∈Tσ(yn)

Pr(i = m̂x(zn))

≤ 1
4

+ 2−n(E−εn)

The last inequality is proved by Lemma 6 and 7 which are extensions of Lemma 3 and Lemma 5 in [4] from memoryless
to conditional onyn, whereεn goes to zero withn, and

E = min
QXY Z :D(QXY ‖PX×PY )<σ

D(QZ|XY ‖WZ|XY |QXY ) + |Rx − IQ(X; Z|Y )|+

Following the argument in Lemma 3, it is easy to see thatE > 0 for Rx > I(X; Z|Y ) and smallσ, where(X, Y, Z) ∼
WZ|XY × PX × PY . Now we have

Pr(m̂x = mx) =
(

1
|T n(PX)|

)2nRx

(
∑

cX∈G

Pr(m̂x = mx) +
∑

cX∈GC

Pr(m̂x = mx))

≤ 1
4

+ 2−n(E−εn) + 4σ (37)

Let σ be small enough and letn goes to infinity, (15) is proved. ¤

(20) is proved in the same way. We only need to introduce the notion of good codebook pair,(cX , cY ) is good if

|cX × cY

⋂
TC

σ | ≤
|cX ||cY |

4
(38)

where the typical setTσ = {(xn, yn) : D((xn, yn)‖PX × PY ) < σ}. The rest of the proof are similar to that in the proof
for (15). We conclude that

Pr(m̂x = mx) ≤ 1
4

+ 2−n(E−εn) + 4σ (39)

whereE = min
QXY Z :D(QXY ‖PX×PY )<σ

D(QZ|XY ‖WZ|XY |QXY ) + |R− IQ(X, Y ;Z)|+ > 0, for Rx + Ry > I(X, Y ;Z).

Again, we need to use an modified version of Lemma 3 and 5 from [4], the proof are extremely similar to those in Lemma 6
and 7. We omit the details here. This concludes the proof. ¤

The following two lemmas are simple extensions of Lemma 3 and 5 in [4]. Instead studying the upper bound on the
probability of correct decoding for memoryless channels, we give an upper bound on the correct probability for a multiple
access channel with one encoder with fixed output and the joint composition of the two encoders is fixed. That is, we fix
yn and thisyn is known to both encoders and the decoder. The multiple access channel isWZ|XY and the inputxn from
X is such that(xn(i), yn) ∈ QXY , i = 1, 2, ...2nR.



Lemma 6:Extension of Lemma3 in [4] from memoryless to condition onyn, for anyR ≥ Rx > 0, for any coding system
X(yn) with joint input distribution(xn(i), yn) ∈ QXY , i = 1, 2, ...2nRx , and decoding ruleφ : Zn → {1, 2, ..., 2nRx}, let
QZ|XY (xn(i), yn) = {zn : (xn(i), yn, zn) ∈ QXY Z} (this is the V-shell notationTV used in [4]), we have:

1
2nR

2nRx∑

i=1

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|
|QZ|XY (xn(i), yn)| ≤ 2−n|R−IQ(X;Z|Y )−εn|+ (40)

whereεn = ε(n, |X |, |Y|, |Z|) goes to zero asn goes to infinity.
Proof: Write QZ|Y (yn) = {zn : (yn, zn) ∈ QZY }. By the method of types [2], we know that

(n + 1)−|Z|2nHQ(Z|XY ) ≤ |QZ|XY (xn(i), yn)| ≤ 2nHQ(Z|XY )

and (n + 1)−|Z|2nHQ(Z|Y ) ≤ |QZ|Y (yn)| ≤ 2nHQ(Z|Y ).

So the LHS of (40) is upper bounded by

1
2nR

2nRx∑

i=1

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|
|QZ|XY (xn(i), yn)| ≤ (n + 1)|Z|2−nHQ(Z|XY )2−nR

2nRx∑

i=1

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|

≤ (n + 1)|Z|2−nHQ(Z|XY )2−nR|QZ|Y (yn)| (41)

≤ (n + 1)|Z|2−nHQ(Z|XY )2−nR(n + 1)|Z|2nHQ(Z|Y )

= 2−n(R−IQ(X;Z|Y )−εn) (42)

(41) is true becauseQZ|XY (xn(i), yn)
⋂

φ−1(i), i = 1, 2, ..., 2nRx are disjoint and
⋃

i QZ|XY (xn(i), yn) ⊆ QZ|Y (yn).
Now notice that the LHS of (40) is at most2n(Rx−R) ≤ 1, hence the LHS of (40) is no bigger than1. This together with
(42), we just proved Lemma 6. ¤

Now we are ready to prove Lemma 7.

Lemma 7:Extension of Lemma5 in [4] from memoryless to condition onyn, for a good codebookcX ∈ G defined
in (36). Recall that|cX

⋂
Tσ(yn)| ≥ 3|cX |

4 = 3
4 × 2nRx , then for any decoding rule (previously known asm̂x) φ : Zn →

{1, 2, ..., 2nRx},
1
|cX |

∑

i:xn(i)∈Tσ(yn)

Pr(i = φ(zn)) ≤ 2−n(E−εn) (43)

whereE = min
QXY Z :D(QXY ‖PX×PY )<σ

D(QZ|XY ‖WZ|XY |QXY ) + |Rx − IQ(X; Z|Y )|+

and εn = ε(|X |, |Y|, |Z|, n) which converges to zero asn goes to infinity.
Proof: We write M = {i ∈ {1, 2, ..., 2nRx} : xn(i) ∈ Tσ(yn)} then we know that from the definition of a good

codebook:34 × 2nRx ≤ |M | ≤ 2nRx = |cX |. Notice that

Pr(i = φ(zn)) =
∑

zn∈φ−1(i)

WZ|XY (zn|xn(i), yn) = WZ|XY (φ−1(i)|xn(i), yn) (44)

We rewrite the LHS of (43):

= 2−nRx

∑

i:xn(i)∈Tσ(yn)

WZ|XY (φ−1(i)|xn(i), yn)

= 2−nRx

∑

QXY :D(QXY ‖PX×PY )<σ


 ∑

i:(xn(i),yn)∈QXY

WZ|XY (φ−1(i)|xn(i), yn)




≤ (n + 1)|X ||Y| max
QXY :D(QXY ‖PX×PY )<σ


2−nRx

∑

i:(xn(i),yn)∈QXY

WZ|XY (φ−1(i)|xn(i), yn)




= (n + 1)|X ||Y| max
QXY :D(QXY ‖PX×PY )<σ


2−nRx

∑

i:(xn(i),yn)∈QXY

∑

QZ|XY

WZ|XY (φ−1(i)
⋂

QZ|XY (xn(i), yn)|xn(i), yn)




≤ (n + 1)|X ||Y|+|X ||Y||Z| max
QXY Z :D(QXY ‖PX×PY )<σ


2−nRx

∑

i:(xn(i),yn)∈QXY

WZ|XY (φ−1(i)
⋂

QZ|XY (xn(i), yn)|xn(i), yn)






≤ 2nεn(1) max
QXY Z :D(QXY ‖PX×PY )<σ

(
2−nRx

∑

i:(xn(i),yn)∈QXY

WZ|XY (QZ|XY (xn(i), yn)|xn(i), yn)

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|
|QZ|XY (xn(i), yn)|

)

≤ 2nεn(1) max
QXY Z :D(QXY ‖PX×PY )<σ

(
2−nD(QZ|XY ‖WZ|XY |QXY )2−nRx

∑

i:(xn(i),yn)∈QXY

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|
|QZ|XY (xn(i), yn)|

)

≤ 2nεn(1) max
QXY Z :D(QXY ‖PX×PY )<σ

(
2−nD(QZ|XY ‖WZ|XY |QXY )2−n|R−IQ(X;Z|Y )−εn(2)|+)

(45)

= 2−n(E−εn) (46)

where (45) is true by Lemma 6. The rest are obvious by the method of types. ¤

The proof here for Lemma 6 and 7 are almost identical to that for Lemma 3 and 5 in [4]. The difference is here we need
to deal with the other channel inputsyn and the new challenges coming from the typicalities of the codebook.


