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1 Introduction

Workflows processes are complex activities involving the coordinated execution of several
tasks by different executing agents, in order to reach a common objective [18]. Workflow
Management Systems (WfMSs) are software applications that support both the design of
workflows and their execution. Workflow processes are inherently distributed, and are co-
operatively executed by users and applications, possibly spanning beyond organizational
boundaries. Consequently they are characterized by general security requirements of such
kind of processes. Discretionary models, based on the notion of task-based authorization,
have been studied [30] to provide a flexible and adaptable access control paradigm for dis-
tributed processes. In addition to these aspects, workflows present some peculiar security
requirements that have to be considered. In particular, a security-relevant aspect of work-
flows is related to the assignment of tasks to (human or automated) agents in the system,
which is automatically performed by the WfMS, according to properly defined models and
rules [5]. A basic role-based authorization model [31] is commonly adopted in most commer-
cial and research workflow systems, to comply with general requirements of organizational
security policies. In fact, these policies often express task assignment in terms of roles (i.e.,
job functions or characteristics of the required application) rather than in terms of specific
individuals, reducing the number of authorizations necessary in the system and simplifying
their maintenance. However, a role-based model alone is not sufficient to meet all the re-
quirements of security policies of the organization. In particular, such policies often demand
capabilities of expressing and enforcing authorization constraints, such as the well known
separation of duties [31].

Therefore, more advanced role-based models are necessary, together with supporting
technology, in order to enable the definition of authorization constraints in the WfMS, and
to be able to implement the many different security policies of an organization.

In this paper, we present an advanced authorization model for the assignment of tasks
to roles, organizational levels, and agents. Roles and organizational levels are organized
into hierarchies, to facilitate the assignment of tasks to agents. Authorizations for agents
to play roles/levels and for roles/levels to execute tasks can be defined for all instance of
a given workflow process,independent of time and history in the system. In addition, the
model enables the definition of instance-dependent, time-dependent, and history-dependent
authorizations in the form of constraints: authorizations can be modified depending on the
state or history of a workflow instance, on time, or on the content of process-specific data.
Authorization constraints are expressed as Event-Condition-Action (ECA) rules, where the
event part denotes when an authorization may need to be modified, the condition part verifies

that the occurred event actually requires modifications of authorizations, and determines



the involved agents, roles, tasks, and processes, while the action part enforces authorizations
and prohibitions. Indeed, ECA rules are a very flexible mean for defining authorization
constraints, since they enable the definition of when and how an authorization should be
modified.

Besides being a natural mean for defining authorization constraints, active rules and
active database technology can be exploited for the implementation of the model. In our
approach, authorization constraints are defined and implemented by means of ECA rules,
executed on top of a suitable authorization base, where play and execute authorizations
as well as role and level hierarchies are stored. Active database technology supports the
definition and execution of ECA rules which are sensitive to several different event types
(such as data or temporal events, as well as notifications from external applications), query
the database in the condition part and, depending on the result of the query, modify the
database state or activates external applications. Active rules introduce a significant increase
of the expressive power of database languages, resulting in the enhancement of processing
capabilities within the database servers [13, 36]. They are supported by most relational
database systems, including DB2, Tllustra, Informix, Ingres, Oracle, RDB, Sybase and others.
Active rules in these systems support basic functionality and are inspired by the SQL3
standard [16]. Since the majority of WIMS are developed on top of a commercial DBMS with
active capabilities, ECA rule-based authorization constraints can be implemented within
most existing WfMSs.

Besides authorization constraint enforcement, active rules can be exploited for managing
authorization inheritance along the role and level hierarchies of the model: as an autho-
rization for a role or level is granted (revoked), suitable active rules ensure that the same
authorization is granted (revoked) to their ancestors. In this paper, we propose the use of
active rules both for the definition of the operational semantics of authorization inheritance
and as a suitable implementation mechanism.

Hence, active rules suitably maintain the authorization base: at run-time, when a task is
scheduled for execution, the WfMS accesses the authorization base and determines which are
the roles, organizational levels, and eventually the agents authorized to execute the newly
activated task, and assign it to those agents. In order to better illustrate the model and
concepts included in the paper and to demonstrate the feasibility of the approach, we will
also present the implementation of the proposed model within the WIDE W{MS [20].

The paper is organized as follows. Section 2 introduces basic workflow concepts and
presents a reference example, used throughout the paper. Section 3 presents the advanced
role-based authorization model, based on authorization constraints. Section 4 shows how

ECA rules can be exploited to define and enforce authorization constraints and to manage



derivation of authorization; Section 5 presents the implementation of the models and concepts
introduced in the paper on top of the WIDE W{MS; Section 6 discusses the related work,

and finally Section 7 outlines concluding remarks and future research directions.

2 Basic workflow concepts

This section introduces basic workflow concepts, according to the model and terminology
defined by the Workflow Management Coalition [24, 34, 33].

A workflow process definition (or simply workflow schema) is the formal representation
of a business process. A workflow schema is composed of subprocesses and of elementary
activities (tasks) that collectively achieve the business goal. Activities are organized into a
directed graph (the flow structure), that defines the order of execution among the activities in
the process. Arcs in the graph may be labeled with transition predicates defined over process
data, meaning that as an activity is completed, tasks connected to outgoing arcs are executed
only if the corresponding transition predicate evaluates to true. A process instance or case
is an enactment of a workflow schema. A schema may be instantiated several times, and
several instances may be concurrently running. WfMSs support case execution by scheduling
tasks (as defined by the flow structure) and by assigning them for execution to human or
automated agents.

A sample process, related to the evaluation of a medical insurance request, is depicted in
Figure 1. An instance (or case) of this workflow is started as a new medical insurance request
is received. First, data are collected and inserted in electronic format (Data collection
task). Then, the Evaluation task checks whether a medical advice is needed, and in this
case the request is routed to an insurance doctor, who will write a medical report on the
applicant’s physical conditions (Medical Examination task). Otherwise, the request is di-
rectly forwarded to the evaluation manager for the final decision on the customer’s request
(Decision task). If the request is accepted (status="accepted"), a dossier is prepared for
the new customer (Customer dossier preparation task), otherwise the rejection is noti-
fied to the applicant (Notification of rejection task). Finally, the insurance documents
are issued to the interested offices and filed (Issuing and Filing tasks).

A process may create and access several types of data. The WEMC identifies three types

of workflow data:

e workflow relevant data includes typed data created and used by a process instance;
these data can be made available to subprocesses and activities, and can be accessed

by the WEMS in order to evaluate transition predicates.
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e Application data are application specific, must be processed with external tools (such
as Microsoft Word(©) and cannot be accessed by the WfMS, although the system may

control and restrict accesses to them.

e System and environmental data are maintained by the local system environment or by

the WEMS itself, and can be used to evaluate transition predicates.

Activities are typically executed atomically with respect to workflow relevant data, and

data modifications are made visible as the task is completed.

A critical issue in workflow management is the assignment of tasks and cases to the
appropriate agent (also called workflow participant), in order to execute activities or to
supervise their execution. The approach adopted by most WfMSs consists in allowing the
definition of an organization schema that describes the structure of the organization relevant
to workflow management. In the organization schema, agents are grouped in several ways,
according for instance to their skills or to the organizational unit they belong to.

In the definition of the workflow schema, processes and activities are (statically) bound
to elements of the organization schema (e.g, to roles or organizational units) rather than to
individual agents. This approach decouples the definition of the process from the definition
of the agents, and provides more flexibility, since changes in the organization schema do not
affect process definitions.

At run-time, as a task is scheduled for execution, the WEMS determines all the agents
allowed to execute it, and inserts the task into their worklists. As an agent pulls the task
from his/her worklist in order to start working on it, the task is removed from the worklists
of the other agents. For simplicity, we assume to have an organization model based on roles
and agents; the extension to more complex organization models is straightforward.

In the following sections, we introduce the authorization model for the assignment of
agents to roles and of tasks to roles, and a rule-based paradigm for its specification and

enforcement.

3 An advanced role-based authorization model for work-

flows

In this section, we present an advanced role-based access control model for the assignment
of tasks to agents for workflow execution. A basic role-based authorization model [31] is
commonly adopted in most commercial and research workflow systems, to comply with

organizational security policies. In fact, these policies are often expressed in terms of roles
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rather than in terms of specific individuals. Roles are job functions describing the authority
and responsibility conferred to the individuals that are assigned to them. According to
this basic model, authorization to execute tasks are associated with roles, and agents are
authorized to play one or more roles. We extend this basic model by introducing: i) the
concept of organizational level, and ii) authorization constraints.

In the following sections, we first describe roles, organizational levels, agents and autho-
rizations for the assignment of tasks to authorized agents. Then, we describe the extension

of the model with authorization constraints.

3.1 Elements of the model

Elements of the authorization model are shown in Fig. 2, using the Entity-Relationship
notation. The model considers agents and tasks, roles and organizational levels (from now

on called level for simplicity), and authorizations.

Agents and tasks
Agents and tasks are the active entities of the model [20], causing the data to flow among

tasks or change the workflow system state.

e An agent, denotes a processing entity of the organization to which tasks can be assigned
for execution. An agent can be a human user or an application. We denote by A the

set of agents in the workflow system.

e A task, corresponds to an execution unit of a workflow. We denote by T the set of
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tasks in the workflow system.

Roles and levels
Roles and levels are the organizational elements of the model, describing capabilities of agents

to execute tasks according to organizational assets.

e A rolerepresents a job function. We denote by R the set of roles defined in the workflow

system.

e A level represents a functional level of the organization according to the organization

chart. We denote by L the set of levels defined in the workflow system.

As in conventional role-based authorization models [31], roles and levels are organized
in hierarchies. The role hierarchy RH C R x R is a partial order relation on R, denoted
by <g, also called “role dominance” relation. Given r,7’ € R, r <g 7’ holds if r precedes
r" in the order, graphically represented by an edge going from 7' to r in the hierarchy.
An example of role hierarchy for the Medical Insurance workflow of Fig. 1, is shown in
Fig. 3. With reference to the figure, we have that Evaluation Manager<pData Collection
Responsible. The role hierarchy relation implies inheritance of authorizations between
roles. If r <p 7', authorizations specified for r’ (e.g., Data Collection Responsible) are
inherited by r (e.g., Evaluation Manager). Analogously, a level hierarchy, LH C L x L, is
defined for levels which is a partial order relation <; on L. Given [,I' € L, [ < I’ holds if
[ precedes I' in the order. The graphical notation for the level hierarchy follows the same
conventions of the role hierarchy. The availability of a hierarchical model also allows the
definition of authorization rules based on X.509 certificates or LDAP directories, which have
a hierarchical structure analogous to the one presented in this paper. However, support for

digital certificates is not included in our prototype implementation.



Authorizations
Authorizations define privileges for task assignment and execution. A task can be assigned
only to agents that are authorized based on the role and level they have in the organization.

To regulate task assignment, in the model we introduce the two kinds of authorizations:

e Play authorizations

e FEurecute authorizations

Play authorizations determine the roles (R-play authorizations) and the levels (L-play
authorizations) to which agents have to be assigned. We denote by RPA and LPA the set
of R-play and L-play authorizations, respectively, and by PA = RPA U LPA the whole set

of play authorizations defined in the workflow system.

Definition 1 (R-play authorization) An R-play authorization rpa € RPA is a triple:

(a,play,7)
where a € A and r € R, stating that agent a is assigned to role 7.

For example, authorization ( John,play,Evaluation Manager ) specifies that John is

assigned to the Evaluation Manager role.
Definition 2 (L-play authorization) An L-play authorization lpa € LPA is a triple:

(a,play,l)

where a € A and [ € L, stating that agent a is assigned to level (.

For example, authorization (Mary,play,Secretary) specifies that Mary is assigned to the
Secretary level.

Execute authorizations determine the tasks that roles (R-ezecute authorizations) and
levels (L-execute authorizations) can execute in a workflow. We denote by REA and LEA
the set of R-erecute and L-execute authorizations, respectively, and by FEA = REAULFEA

the whole set of execute authorizations defined for in the workflow system.

Definition 3 (R-execute authorization) An R-execute authorization rea € REA is a

triple:
(r,execute, t)

where r €¢ Rand t e T.



An authorization (r, execute, t) states that role r is authorized to execute task t.
For example, authorization (Evaluation Manager,execute,Evaluation) is a permission for

role Evaluation Manager to execute the Evaluation task.

Definition 4 (L-execute authorization) An L-execute authorization lea € LEA is a

triple:
(I, execute, t)

wherel € L and t € T.

An authorization (I, execute,?) states that level [ is authorized to execute task ¢. For
example, authorization (Secretary,execute,Issuing) is a permission for role Secretary to
execute the Issuing task.

Following conventional role-based authorization models, inheritance of execute authoriza-
tions occurs in role and level hierarchies, respectively. Authorizations inherited by a certain

role/level are dynamically derived using the following derivation rules:

(R1) Rule 1. For any t € T, op = execute if r <g 1’ then (r’, execute,t) — (r, execute,t)

(R2) Rule 2. For any t € T, op = execute if | <, I’ then (I', execute, ) — (/, execute, )

Consider the Medical Insurance workflow depicted in Fig. 1 and the role and level hierar-
chies of Fig. 3. If authorization (Evaluation Manager, execute, Evaluation) is defined for
role Evaluation Manager, then authorization ( Insurance WF Responsible, execute,
Evaluation ) is derived for role Insurance WF Responsible (rule R1). Analogously, if
authorization (Junior Manager, execute,Evaluation) is defined for level Junior Manager,
then authorization (Senior Manager, execute,Evaluation) is derived for role Senior Manager
(rule R2).

3.2 Authorization constraints

Authorizations in PA U E A constitute a “basic” set of authorizations capable of satisfying
some of the requirements of security policies of an organization. In particular, associating
authorizations with roles and levels has the advantage of reducing the complexity of au-
thorization management, since the number of roles is smaller than the number of agents
and it is not necessary to update authorizations when agents change position and duties in
the organization. Authorizations in PA U EA are also of static nature, that is, once they
are defined, they apply to all instances of a workflow schema, in any instant of time, and

independent of the activity execution history. Consequently, they are not flexible enough to
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Figure 4: The advanced workflow authorization model with authorization constraints

capture all possible security policy requirements of an organization on workflow execution,
which require the capability of expressing and enforcing constraints. Examples of constraints
that can be required on a workflow are the following: “two different roles/agents must ex-
ecute two tasks 77 and Ty in a given workflow W F” (separation of duties); “a role R can
execute a task T in a given workflow W F only for a given period of time” (restricted task
execution); “at the least K roles must be associated with a workflow W F' in order to start
its execution” (cooperation); “a case is inhibited to all agents for a given period of time”
(inhibition). Constraints require the capability of specifying authorizations that are of dy-
namic nature, either because they are bound only to a specific workflow instance (e.g., the
inhibition constraint above) or because they are time-dependent (e.g., the restricted task
execution constraint) or because they are related to the activity execution status (e.g., the
separation of duties constraint). To specify authorizations of dynamic nature and make the
model more advanced and compliant with organizational policies, we introduce authorization
constraints.

The advanced authorization model is shown in Fig. 4, where authorization constraints
are graphically represented as grey relationships. By means of authorization constraints, it

is possible to specify instance, temporal, and history authorizations.

Instance authorization constraints. Authorizations in PAUFE A are defined at the work-
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flow /task schema level, and are valid for all corresponding instances. An instance authoriza-
tion constraint expresses an authorization that has validity only for specific workflow/task
instances. To model instance authorizations, an entity named Task/Workflow instance is
defined in the model.

Temporal authorization constraints. Authorizations in PA U FA are always valid, in-
dependent of the time they are considered. A temporal authorization constraint expresses
an authorization that has a validity limited in time. To model temporal authorizations, an

attribute temporal validity is specified for authorization constraints.

History authorization constraints. Authorizations in PAUFE A do not take into account
information on past execution of activities in a workflow. An history authorization constraint
expresses an authorization which depends on the status of the system at a certain point in
time, during the activity flow execution (e.g., separation of duties for tasks). To take into
account history authorizations, an attribute execution state is added to task/workflow
instances, keeping track of the state of the instance in the system (i.e., running or completed).

We denote by AC' the set of authorization constraints defined for in the workflow system.
Consequently, the set of authorizations that are defined in the system is given by PA U
EAU AC. For the advanced model the close system assumption holds, that is, each task
assignment operation is rejected unless an authorization for it is defined in PAU FAU AC.
A security manager, or workflow administrator, is responsible for granting and revoking
authorizations in the system.

In the next section, we describe how to implement authorizations in PAU FAU AC using

the active database technology.

4 Active rule support to authorization constraint man-

agement

The previous section has outlined the main characteristics of authorization constraints for
workflows. Some of them result in demanding requirements for an authorization constraint
language and for the system implementation enforcing them. These requirements suggest
the adoption of a rule-based approach to the definition and enforcement of authorization
constraints. In fact, authorizations should be granted or revoked at the occurrence of spe-
cific events (e.g., specific points in time, modifications to system or workflow relevant data,
activations of tasks or cases), and as certain conditions over system or workflow relevant

data are verified (e.g., when workflow relevant datum has a given, critical value). Thus, a
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constraint may be described by an ECA rule, where:

e the event part defines when new authorizations/prohibitions may need to be enforced

(in addition to the ones of the reference model);

e the condition part verifies that the occurred event actually requires the modification

of authorizations, and determines the involved agents, roles, tasks, and cases;

e finally, the action part enforces authorizations and prohibitions.

This section will show how ECA rules may be exploited for defining and enforcing au-
thorization constraints.

ECA rules can also support derivation of authorizations. The advanced authorization
model is based on role and level hierarchies, where authorizations defined for a given role
(respectively, level) are propagated to (i.e., inherited by) its parents. Consequently, a deriva-
tion mechanism is necessary to derive propagated authorizations along the hierarchies. ECA
rules are a very well suited paradigm for managing authorization derivation, and we will
show how they can be adopted to implement the derivation mechanism.

An additional motivation that suggests the use of active rules as a modeling and im-
plementation paradigm is that many commercial WfMSs (such as Changengine by Hewlett-
Packard [22] and MQ Workflow by IBM [25]), and several research prototypes (such as
WIDE [20] and TriGSflow [26]) execute on top of an active database, that offers rule defini-
tion and execution support.

In the following, we first present the structure of the authorization base on the top of
which active rules are executed. Then, we introduce a few assumptions and a notation for
active rules and we discuss the use of active rules for defining and enforcing authorization
constraints and for managing derivation of authorizations. Finally, we show how the WfMS

may determine the set of agents authorized to execute a given task instance.

4.1 Schema of the authorization base

Figure 5 shows the schema of the authorization base, in terms of relations. In the figure,
underlined attributes for each relation denote the primary key. For ease of presentation, we
assume that names of tasks, levels, and roles are unique within the WfMS.

Relations RoleHierarchy and LevelHierarchy define the hierarchies of roles and levels, by
specifying which are the parents of each role or level. The hierarchies are shared by all
workflows. Note that the pair (Role, Parent) is the primary key, meaning that we allow
multiple parents for each role or level. These relations are populated as the organization

schema is defined; relation RoleHierarchy is also typically updated as a new workflow schema
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RoleHierarchy (Role, Parent)
LevelHierarchy (Level, Parent)
R-Play (Agent, Role)

L-Play (Agent, Level)

R-Execute (TaskName, Role, Type)
L-Execute (TaskName, Level, Type)
Force (TaskName, Case, Agent)
Revoke (TaskName, Case, Agent)

Figure 5: Relational schema of the workflow authorization base

is defined, since often new roles need to be introduced for the newly specified schema. For
instance, in our sample workflow system that includes the Medical Insurance workflow of

Fig. 1, the authorization base relations are populated as follows:

RoleHierarchy | Role Parent

Data Collection Responsible | Evaluation Manager

Medical Insurance Secretary | Evaluation Manager

Evaluation Manager Insurance WF responsible
Insurance Doctor Insurance WF responsible
LevelHierarchy | Level Parent
Secretary Junior Manager
Junior Manager Senior Manager
Medical Consultant | Senior Manager

Relations R-Play and L-Play define play authorizations. These relations are populated
as the organization schema is defined; relation R-Play is also typically updated as a new
workflow schema is defined. In our sample workflow system the above relations are populated

as follows:

R-Play | Agent | Role

Judy | Evaluation Manager

John | Insurance WF responsible

14



L-Play | Agent | Level

Brenda | Secretary

Mary Secretary

Judy Junior Manager

Due to the close system assumption, we only need to store authorizations, and the absence

of an authorization corresponds to a prohibition.

Relations R-FEzecute and L-Fzxecute defines execute authorizations. They are populated
as a new workflow schema is defined, and can be later modified at the occurrence of spec-
ified events on time or workflow data. Attribute Type defines whether the authorization is
explicitly specified for the role/level or if it has been derived by means of derivation rules.

In our sample workflow system, these relations are populated as follows':

R-Execute | TaskName Role Type

Data collection Data collection explicit
Responsible

Evaluation Evaluation Manager | explicit

Decision Evaluation Manager | explicit

Medical examination Insurance Doctor explicit

Customer dossier preparation | Medical Insurance explicit
Secretary

Notification of rejection Medical Insurance explicit
Secretary

Issuing Medical Insurance explicit
Secretary

Filing Medical Insurance explicit
Secretary

'For ease of presentation, we only show explicitly assigned authorizations; derived authorizations, also
stored in tables R-Fzxecute and L-FEzxecute, can be computed on the basis of explicit ones, as shown in
Section 4.4.
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L-Execute | TaskName Level Type
Data collection Secretary explicit
Evaluation Junior Manager explicit
Decision Junior Manager explicit
Medical examination Medical Consultant | explicit
Customer dossier preparation | Secretary explicit
Notification of rejection Secretary explicit
Issuing Secretary explicit
Filing Secretary explicit

Finally, relations Force and Revoke allow the definition of instance-dependent authoriza-
tions or prohibitions. Relation Force specifies that the next execution of a given task within
a given case must be assigned to the agent specified in the relation. Note that the pair
(task, case) is the primary key (see Figure 5), meaning that the assignment to a task of a
given case can only be forced to one agent. Relation Revoke defines prohibitions for an agent
to execute a given task of a given case. For this relation, the primary key is formed by all
the three attributes, meaning that the authorization to execute a task of a given case may be
revoked to several agents. The choice of explicitly storing case-specific prohibitions, despite
the close system assumption, is motivated by the observation that case-specific prohibitions
are usually a small set, and thus it is surely more convenient to store prohibitions rather
than storing the complementary set, i.e., explicitly defining all authorizations for every task

in every case, which would be a very large set.

Many other relations are necessary to operate a workflow in an actual implementation.
In particular, the WfMS database will include information about tasks, cases, and agents. In
the following, we assume the existence of a TaskInstance table, that stores generic attributes

related to task executions:

TaskInstance(TaskInstanceld, TaskName,Case,Executor)

This table stores one tuple for every task instantiation, including the task identifier, the
name, the case to which the task belongs, and the executing agent. Note that we are not
concerned with the exact schema of TaskInstance and of other support relations: analogous
authorization rules can be written, depending on the actual database schema describing the
workflow structures and enactment. The TaskInstance relation we propose here has only the

purpose of demonstrating the feasibility of our approach.
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4.2 Assumptions and notation for active rules

We need very few assumptions about active rules, which therefore apply to most products
and research prototypes of active databases [28, 36]. For the ease of specification, in this
paper we use the relational model and high-level, Datalog-like active rules. An analogous
approach can be devised for object-oriented databases and object-oriented rule languages,
and indeed in Section 5 we will show an object-oriented implementation of our approach
within the WIDE W{MS.

We assume that rules follow the ECA paradigm, that is, they are triggered by specific
events, include a declarative condition and a sequence of procedural actions.

In the following, we use a simple notation for active rules, borrowed from [3]. Rules have

the following syntax:

rule ( rule-name )
when ( events )
if ( condition )

then ( action )

e The event part contains a list of events, which are restricted to instant or periodic

temporal events, insertions, deletions, and qualified updates (on specific attributes).

e The condition part contains a boolean expression of predicates. Predicates can be either
simple comparisons between terms (variables or constants), or database predicates
with the usual Datalog [35] interpretation; the special predicates inserted, updated, and
deleted unifies with newly inserted and deleted tuples.

e The action part contains a sequence of commands. Bindings are passed from conditions
to actions by means of shared variables (denoted by capital letters): variables in the
action are bound to the values that are computed for them by the condition. Bindings
are not changed by the actions’ evaluation, which consists of a sequence of set-oriented

primitives.
Several examples of active rules will be provided in the remainder of the section.

A rule is triggered when one of its associated events occurs. Rule processing is started

whenever a rule is triggered, and consists in the iteration of rule selection and rule execution.

e Rule selection may be influenced by static, explicitly assigned priorities: whenever two
or more rules are triggered, the one with the maximum priority is executed (ordering
among rules with the same priority is non-deterministic). When a rule is selected, it

is also detriggered.
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e Rule execution consists of evaluating the condition and next executing the action only
if the condition is true. Action execution may cause events and therefore trigger other

rules.

We assume that rule processing initiates immediately after events are detected, and termi-
nates when all triggered rules have been executed. We assume that the rate at which events
are generated is lower than the actual rate at which events are processed, thus avoiding

backlogs.

4.3 ECA rules for authorization constraint enforcement

Earlier in this section we have motivated the use of active rules as a suitable paradigm for
modeling and enforcing authorization constraints. In the following we provide some examples
of such rules. The examples show triggers belonging to the different categories introduced
in Section 3.2, and are defined for the sample Medical Insurance workflow schema shown

in Figure 1.

Example 1: Binding of duties.
This rule enforces the BindingOfDuties constraint for agents between tasks
Data_Collection and Issuing. This constraint is triggered as an agent pulls a task in order
to execute it, since in that instant all the BindingOfDuties constraints involving the pulled
task become “defined”, i.e., it is known who the executing agent is. We assume that pulling
a task corresponds, from a database perspective, to the update of attribute Ezecutor in a
tuple of relation TaskInstance. The value of attribute Executor is initially set to NULL, until
the task is pulled by an agent for execution.

In the condition part, the rule identifies the executor of the Data_Collection task and
the involved case and task instance, while the action part inserts a tuple in the database that
specifies that task Issuing must be assigned to the agent who executed task Data_Collection

in the same case. The definition of the rule is as follows:

rule  bindingOfDuties

when updated(TaskInstance.Executor)

if updated[TaskInstance(-, "Data Collection",CASE,AGENT)],
then insert[Force("Issuing",CASE,AGENT)]

Example 2: Separation of duties.
This rule enforces the Separation OfDuties constraint between tasks Evaluation and Decision.

It is triggered as a task is pulled by an agent: once it is known who the executor of a task
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Evaluation is, the rule can revoke to him/her the permission to execute task Decision in

the same case. The semantics of the condition part is analogous to that of the previous rule.

rule separationOfDuties

when updated(TaskInstance.Executor)

if updated[TaskInstance(-,"Evaluation",CASE,AGENT)],
then insert[Revoke("Decision",CASE,AGENT)]

Example 3: Restricted task execution.

This example shows a rule (actually a pair of rules) enforcing the time-dependent constraint
Restricted TaskFxecution. The first rule grants the permission to all agents playing role
Secretary to execute task Filing every day at 8 a.m. The second rule revokes the same
permission every day at 6 p.m. Note that, unlike the previous example, these rules define
a case-independent constraint, which holds for every instance of the Medical Insurance

schema.

rule temporalGrant
when @8:00
if true

then insert[R-Execute("Filing","Secretary","explicit")]

rule  temporalRevoke
when ©18:00
if true

then delete[R-Execute("Filing","Secretary","explicit")]

4.4 ECA rules for authorization management

One of the key concepts of our approach is the notion of derived authorization in the role/level
hierarchies, defined by rules R1 and R2 of Section 3.1. If the workflow administrator au-
thorizes a role/level to execute a given task T, then a derived authorization to execute T is
implicitly defined for its ancestors in the role or level hierarchy. For instance, an execute au-
thorization granted to role Insurance Doctor for a given task causes the same authorization
to be derived for role Insurance WF responsible.

This section defines a set of active rules, operating on the authorization base defined
above, that specifies the operational semantics of the derivation mechanism. Rules are

activated as explicit authorizations are granted or revoked (corresponding, from a database
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perspective, to insertions into and deletions from the authorization tables, respectively), and
compute derived authorizations.
We first present rules that manage insertions of new execute authorizations for roles and

levels, and then we describe rules managing deletions.

rule deriveRoleAuthorization
when inserted(R-Execute)
if inserted|R-Execute(TASK,ROLE,-)],
RoleHierarchy(ROLE,PARENT)
not (R-Execute(TASK,PARENT,“derived”))
then insert|R-Execute(TASK,PARENT,“derived” )]

rule deriveLevel Authorization
when inserted(L-Execute)
if inserted[L-Execute(TASK,LEVEL,-)],
LevelHierarchy(LEVEL,PARENT)
not (L-Execute(TASK,PARENT,“derived”))
then insert|L-Execute(TASK,PARENT, “derived”)]

The rules are analogous for roles and levels. In the following, we describe how rule
derivelevelAuthorization operates (rule deriveRoleAuthorization operates analogously):
as a new (explicit or derived) authorization is granted to a level (event inserted(L-Execute)),
the condition part determines the parent levels for which the authorization has been defined
(predicate inserted[L-Execute (TASK,LEVEL, -

)], LevelHierarchy(LEVEL,PARENT)), and verifies that a derived authorization has not
already been granted for the same task (predicate not (L-Execute(TASK,

PARENT, "derived"))), in order to propagate it to the parents. If the condition is verified,
the action part is executed, inserting the (derived) authorization into the L-FEzecute table
(action insert[L-Execute (TASK,PARENT, "derived")]).

Note that the condition (and the primary key of relations R-Execute and L-Execute) en-
sures that only one explicit and one derived authorization are defined for a given (task, role)
or (task,level) pair, in order to avoid redundancy. Note also that the action part re-triggers
the same rule, thereby iterating the derivation process. Triggering terminates either when
all parents of the newly authorized role or level are themselves already authorized to execute

the task, or when the derived authorization is granted to the root of the hierarchy.

We now describe rules deleteRole Authorization and deleteLevel Authorization, that man-

age deletions of derived authorizations.
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rule deleteRoleAuthorization
when deleted(R-Execute)
if deleted[R-Execute(TASK,ROLE,-)],
RoleHierarchy(ROLE,PARENT),
not (RoleHierarchy(SIBLING,PARENT),
R-Execute(TASK,SIBLING,-))
then delete[R-Execute(TASK,PARENT,“derived”)]

rule deleteLevel Authorization
when deleted(L-Execute)
if deleted|[L-Execute(TASK,LEVEL,-)],
LevelHierarchy(LEVEL,PARENT),
not (LevelHierarchy(SIBLING,PARENT),
L-Execute(TASK,SIBLING,-))
then delete[L-Execute(TASK,PARENT,“derived” )]

The semantics of rule deleteLevelAuthorization are as follows (the semantics for rule
deleteRole Authorization is analogous): the rule is triggered by a revocation of an explicit or
derived authorization related to a given (TASK, LEV EL) pair. The condition part deter-
mines whether derived authorizations to execute T'ASK should be revoked to its parents
as well. A derived authorization is revoked to a given level only if none of its descen-
dants holds an authorization to execute the same task. Thus, the condition verifies that no
immediate descendant has the authorization?® (not (LevelHierarchy(SIBLING,PARENT),
L-Execute (TASK,SIBLING,-))), and, if so, the action part revokes the authorization to the

parents.

Note that if an explicit authorization was granted to PARENT, it still holds, that is,
the parent is still authorized to execute the task. The motivation that led to the adoption of
these semantics is explained by the following example: suppose that an execute authorization
is explicitly granted to level Secretary, and an execute authorization for the same task is
also explicitly granted to level Junior Manager: the adopted semantics guarantees that if we
revoke the authorizations to level Secretary, the junior manager still has the authorization

to execute the task.

Thus, derived authorizations are computed in advance, and are stored in the authorization
base. Although this implies the need for a larger storage space, it provides two significant

advantages that suggest the adoption of this approach:

2There is no need of checking all the descendants: the derivation mechanism ensures that if a given level

or role does not have a derived authorization, then none of its descendants will.
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1. reduced computational overhead: derivations have to be computed when explicit au-
thorizations are modified rather than each time is task is activated. We expect modi-

fications of authorizations to be significantly less frequent than task activations.

2. reduced delay between task scheduling and assignment: all authorizations are pre-

computed and a simple query determines the set of agents allowed to execute the task.

4.5 Assigning tasks to agents

The previous sections have detailed the workflow authorization model and presented how
active rules can be used for defining the operational semantics of the model and as an imple-
mentation mechanism. Active rules appropriately modify the authorization tables (R-Play,
R-FEzecute, L-Play, L-Ezecute, Revoke and Force), so that the WIMS can always determine
the set of agents authorized to execute a task of a given case.

We first observe that the authorization base can be divided into a case-independent part
and a case specific part.

The case-independent part is composed of relations R-Play, R-FEzecute, L-Play, and
L-FExecute. These relations enable the maintenance of a case-independent view, Case-

indipExecutor(TaskName, Agent), that defines which are the agents authorized to execute

a given task. The view is defined as follows:

Case-indipExecutor (TASKNAME,AGENT):- R-Play(AGENT,ROLE),
R-Execute(TASK,ROLE,-),
L-Play(AGENT,LEVEL),
L-Execute(TASK,LEVEL-)

Since the view is case-independent, it requires a reduced storage space. Therefore, for the
same motivations stated above, it should be materialized, to achieve better system perfor-
mance at the cost of a (relatively small) increase in the storage space. View materialization
can also be performed by means of active rules. The derivation of active rules for materialized
view maintenance has been discussed in several papers (see, e.g., [15]).

We are now ready to present how the set of agents authorized to execute a task is
determined. Consistently with the approach presented in this paper, the semantics will be
defined in terms of active rules.

We assume that the activation of a new task corresponds, from a database perspective,
to the insertion of a new tuple in the TaskInstance table. As the new tuple is inserted,

the authorized agents are determined; a set of active rules, triggered by the insertion in
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the TaskInstance table, examines the contents of tables Force and Revoke, as well as the

content of view Case-indipFEzecutor, and fills in table Authorized(TaskInstanceld,Agent),

that defines the agents authorized to execute the newly activated instance®. Insertions in

the Authorized table are managed by two rules: authorizeForcedAgents and authorizeAgents.
Rule authorize ForcedAgents checks whether the task must be assigned to a specific agent, due
for instance to a binding of duties authorization constraint. The rule, in the condition part,
checks that an entry in the Force table exists for the task in the case under consideration,
and that the authorization has not been revoked. If the condition holds, then the action
part inserts a tuple in the Awuthorized table, in order to notify that the agent involved is

authorized to execute the task for that case. Rule authorizeForcedAgents is defined below:

rule authorizeForcedAgents

when inserted(TaskInstance)

if inserted[TaskInstance (TASKID, TASKNAME,CASE,-)],
Force (TASKNAME, CASE, AGENT) ,
not (Revoked (TASKNAME, CASE, AGENT) )
Case-indipExecutor (TASKNAME, AGENT)

then insert[Authorized(TASKID,AGENT)]

As detailed in the definition of table Force, only one agent can be forced as the ex-
ecutor of a task, therefore only one tuple is inserted. Note also that it may be pos-
sible that the authorization, possibly due to erroneous or conflicting authorization con-
straints, has been revoked, or even that it was never granted (this is checked by predicate
not (Revoked (TASKNAME, CASE, AGENT) ,Case-indipExecutor
(TASKNAME, AGENT) ). In this case, no entry is made in the Authorized table. This paper is
not concerned with system policies that defines the appropriate behavior when no authorized
agent exists. This is an exceptional situation, and we expect it to be managed by the work-
flow engine for instance by sending a message to the workflow responsible asking him /her to
suggest the appropriate executing agent.

Next, we present rule authorizeAgents, that determines the authorized agents in case
no agent has been forced. The rule first consider case independent authorizations (predi-
cate Case-indipExecutor (TASKNAME, AGENT) ), and then restricts the set to those agents to
whom the permission has not been revoked for the case under consideration (predicate not
(Revoked (TASKNAME, CASE, AGENT) ) ). Finally, the condition checks that no forced agent has
been defined for the task in this specific case (predicate not (Force (TASKNAME,CASE,-))). If

3We assume that the task instance identifier TaskInstanceld is unique within a given WfMS domain,

otherwise the case identifier must be included among the attributes of this relation
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the condition holds, then the action part inserts one or more tuples in the Authorized table,

defining the agents authorized to execute the newly activated instance.

rule authorizeAgents

when inserted(TaskInstance)

if inserted[TaskInstance (TASKID,TASKNAME,CASE,-)],
Case-indipExecutor (TASKNAME, AGENT)
not (Revoked(TASKNAME,CASE,AGENT)),
not (Force (TASKNAME,CASE,-))

then insert[Authorized(TASKID,AGENT)]

Once the set of authorized agents has been determined, the WEMS must select the agents
to which the task is assigned for execution (i.e., inserted in the corresponding worklists). A
possible approach consists in assigning the task to all authorized agents. While this solution is
feasible and does not violate any authorization constraint, it is inpractical, since the worklists
of high-level employees would be quickly filled-up. An alternative and more reasonable policy
consists in first trying to assign tasks to authorized agents placed in the lower positions of
the role/level hierarchies. If none of these agents is available, then tasks are assigning
to agents placed in higher positions. Many other policies are possible, such as assigning
tasks depending on the agents’ workload, following a “round-robin” approach, or selecting
a “dispatching agent” that will assign the task to a suitable agent. The definition of these
policies is outside the scope of this paper, since they are not concerned with authorization
constraints, provided that agents are selected among the set of authorized ones. For a
discussion on task assignment policies the reader is referred to [20].

Finally, we observe that rules may be also adopted in order to handle exceptional situa-
tions related to task assignment to agents. Examples of exceptional situations are modifica-
tions of authorizations to execute a given task occurring after the task has been scheduled,
or even when it is already in execution. Suitable rules can detect the exceptional event
and possibly notify to the WEMS that the task needs to be reassigned to a different agent.

Examples of such exception handling rules are provided in [7, 12].

5 Implementation in the WIDE workflow management

system

This section shows a concrete implementation of authorization constraints and derivation
rules within the WIDE W{MS. We first give a brief description of the WIDE rule language
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Chimera-Exc and of the rule execution engine. Then, we present the WIDE authorization
base and the Chimera-Exc rules defined for authorization constraint management; finally we

show how derivation triggers are implemented.

5.1 The Chimera-Exc language

The WIDE workflow management system provides a process model that, in addition to the
traditional modeling constructs for specifying workflow schemas, allows the definition of trig-
gers (also called rules in the following). WIDE triggers conform to the ECA paradigm and
are specified in Chimera-Ezc [8, 10], a language derived from the object-oriented database
language Chimera [14]. Triggers are a fundamental complement to the graph-based repre-
sentation of a business process (typical of most conceptual workflow models, and of WIDE),
since they allow the workflow administrator to model and react to several types of syn-
chronous and asynchronous events that may occur in a workflow execution. Chimera-Exc

triggers react to the following types of events:

e Data events, which correspond to updates to system or workflow relevant data. They
may correspond to a constraint violation, to a task or case cancellation, or to the

unavailability of an agent.

e FExternal events, that are user defined, application-specific, (such as a document arrival,

a telephone call, an incoming e-mail), and are explicitly raised by external applications.

o Workflow events, raised as a case or task is started or completed. They are ex-
pressed through predefined events such as caseStart, caseEnd, taskStart(taskName),
taskEnd(taskName).

e Temporal events, expressed as deadlines, time elapsed since a certain instant, or cyclic

periods of time.

Each rule in Chimera-Exc can monitor multiple events, with a disjunctive semantics: the
rule is triggered if any of its triggering events occurs.

The condition part of a rule is a predicate on system and workflow relevant data at
the time of the condition evaluation, which indicates whether the event must be managed.
Chimera-Exc requires that the object-oriented schema upon which rules execute is logically
defined. Chimera-Exc rules access three types of classes: WIDE classes, workflow -specific

classes, and event handling classes.

e WIDE classes include description of agents, roles, tasks, and cases. These classes are

workflow-independent, and are predefined in the system; objects are created when new
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roles, agents, tasks or cases are created. For instance, Chimera-Exc rules may refer to
WIDE attributes concerning tasks by accessing the attributes of the class task, which
has a workflow-independent structure. An object of this class is created whenever a
new task is instantiated (independently on the workflow schema it belongs to); hence,
the executor of a case can be accessed by defining a variable T ranging upon the
task class, and then by accessing T.executor. For instance, task(T), agent(A),

T.executor=A, A.name="Judy" selects the tasks whose executor is Judy.

o Workflow-specific classes store workflow relevant data. Each case will be represented

as an object within this class, created when the case is started.

e Fvent handling classes store information carried by occurred events. For instance,
the externalEvent class is referred in order to access the parameters of an occurred

external event.

A condition is a query that inspects the contents of the WIDE database. Queries consists
of a formula evaluated against the state of the database and of a list of variables, to which a set
of bindings is assigned by the evaluation of the formula. Conditions include class formulas (for
declaring variables ranging over the current extent of a class, e.g., medicalInsurance(C);
C in this case ranges upon object identifiers of the medicalIlnsurance class), type formu-
las (for introducing variables of a given type, e.g., integer(I)), and comparison formu-
las, which use binary comparison between expressions (e.g., T.executor="Mark"). Terms
in the expressions are attribute terms (e.g., C.examNeeded) or constants. The predicate
occurred, followed by an event specification, binds a variable defined on a given class to
object identifiers of that class which were affected by the event. For instance, in agent (A),
occurred(create(agent) ,A), A is bound to an object of the agent class that has been cre-
ated. If the result of a query is empty (i.e., no bindings are produced), then the condition
is not satisfied and the action part is not executed. Otherwise, bindings resulting from the
formula evaluation are passed to the action part in order to perform the reaction over the
appropriate objects.

The action (or reaction) part may consist of calls to the WfMS, requiring a particular
service, or of manipulation of workflow data (i.e., object creation, modification, or deletion).
Calls to the WfMS may request to activate or terminate cases or tasks, to reassign a task to
a different agent, or to send notification messages to workflow agents.

Rules in WIDE are defined either in the context of a specific workflow or as global.
In the first case, we say that rules are targeted to a workflow, and their side effects are

propagated only to the cases and tasks of that workflow. Global (untargeted) triggers may
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be used for generic authorization policies, shared by all schemas, while targeted triggers

define authorization constraints for a given schema.

5.2 Rule execution

Chimera-Exc rules are executed by a system called FAR (Foro Active Rules), integrated with
the WIDE engine, called FORO. The FAR system executes Chimera-Exc triggers in detached
mode, i.e., in a separate transaction with respect to the triggering one. This choice has
several motivations: Chimera-Exc actions are outside the database context, and cannot be
rolled back. Therefore, we have to be sure that the triggering event actually occurred before
processing it, which means that the triggering transaction must commit. Furthermore, the
use of the detached mode allows us to manage data events in an uniform way with respect to
the other event types, and provides considerable advantages in the performance, allowing the
processing of several events generated by different transactions with the execution of a single
rule. The semantic and performance issues that advised the use of a detached execution mode
are discussed in detail in [8]. This feature is relevant to authorization management since it
influences our approach towards the development of WIDE derivation rules, as detailed later

in this section.

The FAR system is engineered in order to be easily portable to different database plat-
forms. This is a fundamental requirement for a commercial WfMS, that typically needs
to be able to execute within heterogeneous environments. When the FAR runs on top of
relational DBMSs, then the authorization base (along with the entire WIDE database) is
stored in relational tables. A suitable SQL2Chimera application translates the relational
definitions into Chimera classes. The relational DBMS is then accessed through a layer that
maps Chimera conditions into SQL queries, thereby enabling the portability of WIDE onto
different (relational) platforms. This is also the case of the current implementation, which
runs on top of the Oracle database server, version 7.3. FAR also makes a very limited use
of database specific features, so that it can be ported to other relational or object-oriented

platforms with a reduced effort.

5.3 The WIDE authorization base

We extended the set of WIDE classes in order to enable the implementation of the authoriza-
tion mechanism defined in Section 4. The WIDE prototype already included classes agent
and role, whose objects store basic information about agents and roles, such as the agents’
names, location, vacation period, and roles’ names and descriptions. We added a class level,

analogous to class role, and we also added classes that enable the implementation of role
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and level hierarchies and the definition of play and execute authorizations. They are the
object-oriented counterpart of the relations defined in Section 4, and their schema is shown

in Figure 6.

5.4 Authorization constraint enforcement in WIDE

Although WIDE triggers were initially conceived for modeling exceptional situations that
may occur during process execution [8], the capability of capturing and reacting to several
types of events and the rich expressive power of the condition and action language make them
an appropriate construct for modeling and managing authorization constraints. Since the
expressive power of Chimera-Exc includes that of the Datalog-like rules defined in Section 4.2,
and given that the authorization base of WIDE has the same structure of the one defined in
Section 4.1, a possible implementation consists in mapping each rule of Section 4.3 with a
Chimera-Exc rule that implements the same semantics: relational operations (insert, update,
delete) are mapped into their corresponding Chimera-Exc object-oriented operation (i.e.,
create, modify, delete), and Datalog conditions are replaced by Chimera-Exc predicates.
For instance, rule binding0fDuties of Section 4.3 can be implemented in Chimera-Exc by

means of the following trigger:

define trigger binding0fDuties

events modify(task.executor)

condition task(T), occurred(modify(task.executor), T),
T.name="Data_Collection"

actions create(force[(taskName:"Issuing",caseId=T.caseld,

agentId=T.executor], F)

However, WIDE users are not allowed to define rules that directly (i.e., within the rule’s
action) update the content of system data, since erroneously defined rules could harm the in-
tegrity of the system. Thus, rules notify to the workflow engine the actions to be performed,
and the engine then performs these actions as and when appropriate. For instance, while
rules are in principle capable of reassigning tasks to different agents, when a task needs to
be reassigned a rule sends a notification message to the workflow engine, that in turn selects
the new agents (according to whatever assignment policy has been defined, of which rules
may be unaware), dispatches the task to the appropriate agents, and updates the database
accordingly. Therefore, consistently with this approach, rules modeling and managing au-
thorization constraints do not directly modify the authorization base, but rather notify to

the engine the new authorizations or prohibitions.
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define

end

define

end

define

end

define

end

define

end

define

end

define

end

define

end

object class roleHierarchy
attributes roleld: role, parentld:role

constraints key (R:roleld, P:parentId)

object class levelHierarchy
attributes 1levelld: level, parentId:level
constraints key (L:levelld, P:parentId)

object class r-Play
attributes agentId: agent, roleld: role
constraints key (A:agentId, R:roleld)

object class 1-Play
attributes agentId: agent, levelld: level
constraints key (A:agentId, L:levelld)

object class r-Execute
attributes taskName: string, roleld: role, type: string

constraints key (T:taskName, R:roleId, P:type)

object class 1-Execute
attributes taskName: string, levelld: level, type: string
constraints key (T:taskName, L:levelld, P:type)

object class force
attributes taskName: string, caseld: case, agentIld: agent

constraints key (T:taskName, C:caseld)

object class revoke
attributes taskName: string, caseld: case, agentId: agent

constraints key (T:taskNam@, C:caseld, A:agentId)




In order to enable the definition of triggers modeling and enforcing authorization con-
straints, we have extended Chimera-Exc actions by adding several WIMS calls: r-Play,
r-Ezxecute, I-Play, I-Ezecute, revoke, and force. Primitives r-Play and [-Play enable the mod-
ification of play authorizations for roles and levels. They both have three parameters: the
role/level, the agent involved in the authorization, and a binary value that defines whether
the case-independent authorization is to be granted or revoked (allowed values are grant or
revoke). Similarly, r-Ezecute and [-FEzrecute enable the definition of execute authorizations,
and also have three parameters: the role/level, the task involved in the authorization, and
a parameter that defines whether the case-independent authorization is to be granted or
revoked.

Primitives revoke and force enable the modification of case-specific authorizations. The
revoke primitive revokes to an agent the authorization to execute a given task in a given
case, while force constrain the WfMS to assign a task of a given case to the specified
agent. They both have three parameters: the name of the agent, the name of the task,
and the case identifier. For instance, referring to the workflow schema of Figure 1, the
call revoke ("Judy","Issuing",medicalInsurance305) revokes to Judy the permission to

execute task Issuing in case 305 of the Medical Insurance process.

We next present examples of Chimera-Exc triggers enforcing the authorization constraints

presented in Section 4.3. Example 1: Binding of duties.

define trigger binding0fDuties for medicallnsurance

events modify(Task.executor)

condition task(T), occurred(modify(task.executor), T),
T.name="Data_Collection"

actions force(T.executor,"Issuing",T.caseld)

Example 2: Separation of duties.

define trigger separationOfDuties for medicallnsurance

events modify(Task.executor)

condition task(T), occurred(modify(task.executor), T),
T.name="Evaluation"

actions revoke(T.executor,"Decision",T.caselId)

Example 3: Restricted task execution.
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define trigger temporalGrant for medicallInsurance

events 8/hours during days
condition true
actions r-Execute("Secretary","Filing",grant)

define trigger temporalRevoke for medicallnsurance

events 18/hours during days
condition true
actions r-Execute("Secretary","Filing" ,revoke)

5.5 Derivation triggers in WIDE

Unlike triggers defining and enforcing authorization constraints, derivation triggers are global
and predefined. They are not visible to the user, and their purpose is to implement the
derivation mechanism. For this reason, we are allowed to define rules that directly modify
the database state. Furthermore, in order to enforce the semantics defined in Section 4,
derivation triggers need to be executed immediately as an explicit authorization is granted
or revoked, within the context of the same transaction, otherwise another transaction could
see a database state in which an authorization is defined for a role/level but not for their
ancestors.

Chimera-Exc rules are executed periodically, and are detached. Therefore, they are not
suited for the implementation of derivation rules. In WIDE we use instead native, immediate
Oracle triggers, which are defined in the WIDE database as the system is installed. The
implementation of WIDE onto different database platforms will require the modification of
these triggers; however, we only exploit basic active functionality, so that similar triggers
are implementable, with minor changes, on most commercial database systems, consistently
with the requirements and objectives of the WIDE project [20].

The derivation triggers defined in Oracle are analogous to the those defined in Section 4.4.
In the following, as an example, we show how rule deriveRole Authorization of Section 4.4 is
implemented as an Oracle trigger. With respect to the corresponding Datalog-like rule, the
Oracle trigger does not check previous existence of the tuple it is inserting (if a tuple already
exists, the insertion is rejected), and the value derived in the type attribute is implicitly
added as default value, so there is no need to explicitly define it in the action part of the

rule.

CREATE TRIGGER deriveRoleAuthorization
AFTER INSERT ON r-Execute

31



FOR EACH ROW

INSERT INTO r-Execute (taskName, roleld)

select distinct r-Execute.taskName, roleHierarchy.parentld
from r-Execute, roleHierarchy

where r-Execute.taskName=:new.taskName AND

roleHierarchy.roleld=:new.roleld

6 Related work

In this section, we compare our work with respect to related work on workflow authorization
constraints and with respect to triggers and security mechanisms in commercial workflow

management systems.

Workflow authorization constraints. A logic-based language for the specification and
verification of authorization constraints in workflow systems is described in [5]. Here, differ-
ent types of constraints are introduced for workflows, based on an role-based access control
model. Static, dynamic, and hybrid constraints are identified for consistency analysis pur-
poses. Static constraints can be evaluated before workflow execution. Dynamic constraints
can be evaluated only during workflow execution. Hybrid constraints are a combination of
the two and can be partially evaluated without executing the workflow. In our approach,
we employ triggers for both specification and enforcement of authorization constraints. Due
to the trigger-based mechanism, a constraint is evaluated run-time, during the execution of
a workflow. However, triggers can be statically analyzed to evaluate confluence and termi-
nation properties, using techniques analogous to the ones proposed in the active database
field. We have discussed issues related to authorization constraint analysis in [6].

In our approach, authorization constraints also model time and history-dependent autho-
rizations. Access control models have been recently proposed specifically for workflows. In
[1], a workflow authorization model is described defined in way that the authorization flow
is synchronized with the activity flow. The model is based on the concept of “authorization
template” associated with each workflow task, to grant authorizations to a task only when
the task starts, and revoke them when it terminates. Temporal authorizations are defined
that have a validity only within the expected duration of a certain task. Analogously to this
model, in our approach, it is possible to specify authorization constraints allowing agents to
access workflow data only from within an authorized task.

More general aspects related to security and integrity requirements for business processes

implemented as interorganizational workflows are discussed in [21]. In [17], discretionary
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and mandatory access controls, object-oriented security, and the Clark and Wilson model
are revisited for evaluating their applicability to collaborative workflows. To better cope
with workflow requirements, capability of specifying and enforcing authorization constraints
is required, to be able to specify several organizational security policies on task execution
and assignment.

Research work relevant to this paper also includes task-based authorization models and
separation of duties in computerized systems, both defined in the context of distributed
applications. With task-based authorizations [30], authorizations are seen in terms of tasks
rather than individual subject and objects. The concept of “authorization-task” is introduced
as a unit to manage the authorizations in distributed applications, which can be refined
into authorization-subtasks. The separation of duties constraint in computerized system has
been introduced in [29], where transactional control expressions have to enforce computerized

controls analogous the ones in manual, paper-based systems.

Authorization constraints in commercial workflow management systems. Al-
though workflow management systems have become very popular in recent years, and hun-
dreds of commercial products presently exist on the market, only recently the workflow com-
munity has started to address the problem of providing flexible authorization mechanisms,
also pushed by the need for increased security imposed by cross-organizational interactions
and by the use of workflows for supporting e-commerce transactions. Most WfMSs only pro-
vide basic functionality for the definition of workflow authorizations: authorization models
typically allow the definition of roles and levels, and enable the definition of play and execute
authorizations which hold for all workflow instances. Furthermore, roles and levels are often
not structured in a hierarchy, thereby making authorization management more complex.
However, a few products allow the definition of limited forms of instance-, history-, and
time-dependent authorizations. For instance, IBM’s M@Q Workflow [25] allows the definition
of the binding of duties constraint: the executor of a task can be restricted to be the same
executor of another task in the same case or to be the case initiator. Staffware2000 [32] also
enables the definition of the binding of duties constraint, although this must be statically
defined, it holds for all instances, and cannot be defined in tasks that joins flows from multiple
tasks. In addition, Staffware also allows the definition of authorizations that are valid only
for a specified time period. InConcert [27], by InConcert Inc., in addition to static binding
of agents to tasks and of tasks to roles, allows the definition of external applications, that are
invoked at task assignment time to determine the role to which the task should be assigned.
COSA [2], by Baan, is the commercial WfMS that provides the greatest flexibility in defining
authorization constraints and task assignment criteria. COSA allows the definition of agent

groups and group hierarchies, analogous to the role/level hierarchies presented in this paper,
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where authorizations can be inherited along the hierarchies. With respect to authorization
constraints, COSA provides a simple language that enables the definition of the binding
and separation of duties constraints and of time-dependent authorizations. Changengine,
by Hewlett-Packard, is the commercial product with the richest and most flexible resource
model [23]. Task assignments are specified by a resource rule, executed each time a task is
scheduled by the system. The rule, written in a Changengine-specific language, may invoke
one or more methods on several business objects which encode the logic for agent selection.
Such business objects, called resource agents, may for instance query a database or an LDAP
directory in order to select the appropriate agent.

The above approaches have several limitations with respect to the approach presented
in this paper: in fact, they are less powerful in the class of time-, instance-, and history-
dependent constraints they can model, allowing only the definition of a few types of con-
straints. Furthermore, they do not allow the definition of constraints that depend on the
state of several workflow instances, and are incapable of managing global constraints, i.e.,
constraints applied to every task or case (for instance, a business policy may require that no
agent executes the same task for more than twice, regardless of the specific task or work-
flow). Global constraints can be instead modeled in WIDE with untargeted triggers. Finally,
external applications or agent expressions, defined in order to determine the set of autho-
rized agents, have to be computed each time a task is activated, rather than each time an

authorization is modified, with performance disadvantages.

Active rules and workflow enactment. Rules have been used as a mechanism to enact
workflows in a few research prototypes such as [9, 19, 26]. In fact, WfMSs basically are
event-driven engines, that react to task completions by selecting the tasks to be activated
next. Hence, in principle, the ECA paradigm is suitable for describing enactments; however,
in practice, active rules are not used for workflow enactment, due to a rather low performance
of the resulting workflow engine implementation; a drawback of the use of active rules for
workflow enactment is that they must build the current context of the workflow by inspecting
the database state, while a workflow interpreter typically maintains information about the
current context within easy-to-access state variables. However, active rules can be used for
defining a precise, albeit operational, semantics of workflow enactment.

A few commercial products, such as COSA and InConcert, provide event-action triggers
as a workflow modeling construct. However, triggers can be only exploited as a complement
to a workflow specification, in order to define how the execution flow should be modified
when specified events occur and are captured by the trigger. None of these systems provides

a trigger mechanism capable of defining and enforcing authorization constraints.
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7 Concluding remarks and future work

Authorization constraint definition and management in workflow processes should be faced
since the early phases of the workflow design. In this paper, we have illustrated an advanced
role-based model for authorization management in workflows. In our approach, authoriza-
tion constraints are defined and enforced by means of active rules, executed on top of a
suitable authorization base. We have shown that active rules are a powerful and flexible
modeling formalism for the definition of authorization constraints, and that they can be also
adopted for their enforcement . Furthermore, active rules can be also exploited in order
to manage derivations of authorizations. The integration of workflow, active database, and
security technologies is a characteristic issue of this paper; in our opinion and experience,
this integration allows for flexible reaction to changes during workflow enactment.

The advantage of the proposed approach is that rules, besides being a convenient con-
ceptual means at authorization specification time, suggest also the implementation strategy
for authorizations. We are experimenting such advantage in the WIDE workflow system,
which relies on an active database where authorization constraints are defined as triggers in
the Chimera-Exc language. We believe that the proposed approach is of general interest and
is suited for being adopted by commercial systems, which indeed execute on top of active
database platforms.

The use of triggers for authorization constraints has also the advantage of exploiting au-
thorization patterns for their specification. Authorization patterns are abstract definitions of
triggers that can be reused when designing a new workflow process by instantiating parts of
the pattern to meet the authorization requirements of the new process. A basic set of autho-
rization patterns has been presented in [12]. Authorization patterns are stored in a catalog,
together with other patterns developed in WIDE for exception modeling and handling [7].
Facilities for the workflow administrator to define, add, and delete authorizations to/from
the authorization base are under development in the framework of the GLAD tool, originally
developed for global authorization management in federated databases [11], and now being
extended to workflow authorization management. The user interface is an interesting issue
to be experimented in authorization management in cooperative work environments, as well
as the interaction between the workflow and the external applications and databases. In fact,
an open issue of our research concerns how to handle authorizations for access to application
data of a workflow process. Such issue, briefly tackled in [12], as well as the issue of accessing
distributed federated databases [11], needs further investigation in both the authorization
definition process and in the implementation aspects due to conceptual design problems and
to system performance issues. The interaction with external information systems has been

tackled in [4] and is another open issue of our research.
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