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1 Introduction

Compression is the coding of data to minimize its representation. The compression of images is

motivated by the economic and logistic needs to conserve space in storage media and to save band-

width in communication. The compression process is termed lossless (also reversible or noiseless) if

the reconstructed image is identical to the original; otherwise, it is called lossy compression (also ir-

reversible or noisy). One can expect to be able to losslessly compress images since the data contains

redundancies, in the sense that it can be efficiently modeled using non-uniform distributions.

Lossless image compression is required (or desired) in applications where the pictures are subject

to further processing (e.g., for the purpose of extraction of specific information), intensive editing,

or repeated compression/decompression. It is generally the choice also for images obtained at great

cost, or in applications where the desired quality of the rendered image is yet unknown. Thus,

medical imaging, pre-press industry, image archival systems, precious art works to be preserved,

and remotely sensed images, are all candidates for lossless compression.

Images are defined in [17] simply as a set of two-dimensional arrays of integer data (the sam-

ples), represented with a given precision (number of bits per component). Each array is termed a

component, and color images have multiple components, which usually result from a representation

in some color space (e.g., RGB, YUV, CMYK). A continuous-tone image, in turn, is an image whose

components have more than one bit per sample. However, this wide definition is not meant to im-

ply that the JPEG-LS standard specified in [17] (or any other state-of-the-art lossless compression

algorithm for continuous-tone images) was designed to handle any such array. As discussed later

in this section, most successful schemes build on certain assumptions about the image data, and

may perform poorly in case these assumptions do not hold. For example, palletized images (which

have a single component, representing an array of indices to a palette table, rather than multiple

components as in the original color space representation), qualify as continuous-tone according to

the above definition. However, the compression results using JPEG-LS might be poor unless the

palette table is appropriately arranged prior to compression.

While many modern applications of lossless image compression deal mainly with color images,

our discussions will generally be confined to a single component. The tools employed in the com-

pression of color images are derived from those developed for each component, and their integration

is discussed in Section 7.

State-of-the-art lossless image compression schemes can be subdivided into two distinct and
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independent phases, modeling and coding, which are often interleaved. An image is observed sample

by sample in some pre-defined order (normally raster-scan), and the modeling phase is aimed at

gathering information about the data, in the form of a probabilistic model, which is used for coding.

Modeling can be formulated as an inductive inference problem, in which at each time instant t, and

after having scanned past data xt = x1x2 · · ·xt, one wishes to make inferences on the next sample

value xt+1 by assigning a conditional probability distribution P (·|xt) to it. Ideally, the code length

contributed by xt+1 is − logP (xt+1|xt) bits (logarithms are taken to the base 2), which averages to

the entropy of the probabilistic model. This code assignment is implemented in the coding phase.

In a sequential (or on-line) scheme, the model for encoding xt+1 is adaptive and uses the values of

the previously coded samples xt. Thus, it can be mimicked by the decoder as it decodes the past

string, sequentially. Alternatively, in a two-pass scheme, a model is learned from the whole image

in a first pass, and must be described to the decoder as header information.

The conceptual separation between the modeling and coding operations [41] was made possible

by the advent of the arithmetic codes [38] (see, e.g., [60] for an overview of arithmetic coding),

which can realize any model P (·|·) to a preset precision. These two milestones in the development

of lossless data compression allowed researchers to view image coding merely as a probability

assignment problem, concentrating on the design of imaginative models for images. However, when

the complexity axis is considered, the above separation between modeling and coding becomes less

clean. This is because the use of a generic arithmetic coder, which enables the most general models,

is ruled out in many low complexity applications, especially for software implementations.

Modern lossless image compression, which is based on the above modeling/coding paradigm,

can be traced back to the Sunset algorithm [51] in the early 1980’s. Moreover, most state-of-the-

art schemes are still based on a modeling strategy pioneered by Sunset, in which the adaptive

probability assignment is broken into the following components:

a. A prediction step, in which a value x̂t+1 is guessed for the next sample xt+1 based on a finite

subset (a causal template) of the available past data xt.

b. The determination of a context in which xt+1 occurs. The context is, again, a function of a

(possibly different) causal template.

c. A probabilistic model for the prediction residual (or error signal) εt+1
∆= xt+1 − x̂t+1, condi-

tioned on the context of xt+1.
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Figure 1: Labeling of neighboring samples in a causal template

The prediction residual is coded based on the probability distribution designed in Step 3 above.

The same prediction, context, and probability distribution are available to the decoder, which can

then recover the exact value of the encoded sample. A causal template is shown in Figure 1, where

locations are labeled according to their location with respect to the current sample. Henceforth,

the sample intensity value at a generic position a is denoted Ia.

The prediction step is, in fact, one of the oldest and most successful tools in the image com-

pression toolbox. It is particularly useful in situations where the samples represent a continuously

varying physical magnitude (e.g., brightness), and the value of the next sample can be accurately

predicted using a simple function (e.g., a linear combination) of previously observed neighboring

samples. The usual interpretation of the beneficial effect of prediction is that it decorrelates the

data samples, thus allowing the use of simple models for the prediction errors.

As for the context determination, in the spirit of Occam’s Razor, the number of parameters

K in the statistical model plays a key role that was already understood in Sunset. The designer

aims at a code length that approaches the empirical entropy of the data under the model. Lower

entropies can be achieved through larger contexts (namely, a larger value of K), by capturing high-

order dependencies, but the entropy savings could be offset by a model cost. This cost captures

the penalties of “context dilution” occurring when count statistics must be spread over too many

contexts, thus affecting the accuracy of the corresponding estimates. For parametric models, and

under mild regularity conditions, the per-sample asymptotic model cost was quantified in [39] as

(K logn)/(2n), where n is the number of data samples. In two-pass schemes, the model cost

represents the code length required to describe the model parameters estimated in the first pass,

which must be transmitted to the decoder. In a context model, K is determined by the number of

free parameters defining the coding distribution at each context and by the number of contexts.
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In order to balance the above “tension” between entropy savings and model cost, the choice of

model should be guided by the use, whenever possible, of available prior knowledge on the data

to be modeled, thus avoiding unnecessary “learning” costs (i.e., overfitting). This explains the

relative failure of universal compression tools based on the Lempel-Ziv (LZ) algorithm [69, 70]

when applied directly to natural images, and the need for schemes specifically designed for image

data. For example, a fixed linear predictor reflects prior knowledge on the smoothness of the data.

Prior knowledge can be further utilized by fitting parametric distributions with few parameters per

context to the data. This approach allows for a larger number of contexts to capture higher order

dependencies without penalty in overall model cost.

Successful modern lossless image coders, such as the new JPEG-LS standard [57] and Context-

based, Adaptive, Lossless Image Coder (CALIC) [66], make sophisticated assumptions on the data

to be encountered. These assumptions are not too strong, though, and while these algorithms

are primarily targeted at photographic images, they perform very well on other image types such

as compound documents, which may also include text and graphic portions. However, given the

great variety of possible image sources, it cannot be expected from a single algorithm to optimally

handle all types of images. Thus, there is a trade-off between scope and compression efficiency for

specific image types, in addition to the trade-offs between compression efficiency, computational

complexity, and memory requirements. Consequently, the field of lossless image compression is still

open to fruitful research.

In this paper, we survey some of the recent advances in lossless compression of continuous-tone

images. After reviewing pioneering work in Sections 2 and 3, Sections 4 and 5 present state-of-

the-art algorithms as the result of underlying modeling paradigms that evolved in two different

directions. One approach emphasizes the compression aspect, aiming at the best possible com-

pression ratios. In the other approach, judicious modeling is used to show that state-of-the-art

compression is not incompatible with low complexity. Other interesting schemes are summarized

in Section 6. Section 7 discusses the compression of color and palletized images. Finally, Section 8

presents experimental results.

2 The Sunset Algorithm and Lossless JPEG

A variant of the Sunset algorithm was standardized in the first lossless continuous-tone image com-

pression standardization initiative. In 1986, a collaboration of three major international standards
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organizations (ISO, CCITT, and IEC), led to the creation of a committee known as JPEG (Joint

Photographic Experts Group), with a charter to develop an international standard for compression

and decompression of continuous-tone, still frame, monochrome and color images. The resulting

JPEG standard includes four basic compression methods: three of them (sequential encoding, pro-

gressive encoding, hierarchical encoding) are based on the Discrete Cosine Transform (DCT) and

used for lossy compression, and the fourth, Lossless JPEG [53, 36, 21], has one mode that is based

on Sunset.

In Lossless JPEG, two different schemes are specified, one using arithmetic coding, and one for

Huffman coding. Seven possible predictors combine the values of up to three neighboring samples,

(Iw, Inw, In), to predict the current sample: Iw, In, Inw, Iw + In − Inw, Iw + ((In − Inw)/2),

In + ((Iw − Inw)/2), and (Iw + In)/2. The predictor is specified “up front,” and remains constant

throughout the image.

The arithmetic coding version, a variant of Sunset, groups prediction errors into 5 categories

and selects the context based on the category for the prediction errors previously incurred at

neighboring locations w and n, for a total of 25 contexts. The number of parameters is further

reduced by fitting a probabilistic model with only four parameters per context, to encode a value

x ∈ {0, 1,−1}, or one of two “escape” codes if |x| > 1. Values |x| > 1 are conditioned on only

two contexts, determined by the prediction error at location n, and are grouped, for parameter

reduction, into “error buckets” of size exponential in |x|. The total number of parameters for 8-bit

per sample images is 128. Each parameter corresponds to a binary decision, which is encoded with

an adaptive binary arithmetic coder.

The Huffman version is a simple DPCM scheme, in which errors are similarly placed into

“buckets” which are encoded with a Huffman code, using either recommended (fixed) or customized

tables. The index of the prediction error within the bucket is fixed-length coded. Given the

absence of a context model, these simple techniques are fundamentally limited in their compression

performance by the first order entropy of the prediction residuals, which in general cannot achieve

total decorrelation of the data [9]. Even though the compression gap between the Huffman and the

arithmetic coding versions is significant, the latter did not achieve widespread use, probably due

to its higher complexity requirements and to intellectual property issues concerning the use of the

arithmetic coder.

At the time of writing, the Independent JPEG Group’s lossless JPEG image compression pack-
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age, a free implementation of the lossless JPEG standard, is available by anonymous ftp from

ftp://ftp.cs.cornell.edu/pub/multimed/ljpg.

3 FELICS: Toward Adaptive Models at Low Complexity

The algorithm FELICS (Fast, Efficient Lossless Image Compression System) [15, 16] can be consid-

ered a first step in bridging the compression gap between simplicity-driven schemes, and schemes

based on context modeling and arithmetic coding, as it incorporates adaptivity in a low complexity

framework. Its compression on photographic images is not far from that provided by lossless JPEG

(arithmetic coding version), and the code is reported in [15] to run up to five times faster. For

complexity reasons, FELICS avoids the use of a generic arithmetic code, and uses at least one bit

per each coded sample. Consequently, it does not perform well on highly compressible images.

The key idea is to assume, for each sample, a probability distribution as depicted in Figure 2,

where L and H denote, respectively, the minimum and maximum between the sample values at

locations w and n, and the decay on both sides is assumed exponential and symmetric. Thus,

FELICS departs from the traditional predictive coding paradigm in that not one, but two “pre-

diction values” are used. The rate of decay depends on a context, determined by the difference

∆ = H − L. A probability close to 0.5 is assumed for the central part of the distribution, leading

to a coding scheme that uses one bit to indicate whether the value x of the current sample lies

between H and L. In this case, an adjusted binary code is used, as the distribution is assumed

nearly flat. Otherwise, an additional bit indicates whether x is above or below the interval [L,H],

and a Golomb code specifies the value of x − H − 1 or L − x − 1. Golomb codes are the opti-

mal (Huffman) codes for geometric distributions of the nonnegative integers [10], and were first

described in [13], as a means for encoding run lengths. Given a positive integer parameter m, the

mth order Golomb code encodes an integer y ≥ 0 in two parts: a unary representation of by/mc,
and a modified binary representation of ymodm (using blogmc bits if y < 2dlogme−m and dlogme
bits otherwise). FELICS uses the special case of Golomb codes with m = 2k, which leads to very

simple encoding/decoding procedures, as already noted in [13]. The parameter k is chosen as the

one that would have performed best for the previous occurrences of the context.

At the time of writing, the mg-Felics freeware implementation can be obtained as part of the

mg package (see [59]) from http://www.cs.mu.oz.au/mg/.
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Figure 2: Probability distribution assumed by FELICS

4 Modeling for High Performance Compression with Arithmetic

Coding

The optimization of the modeling steps outlined in Section 1, inspired on the ideas of universal

modeling, is analyzed in [54], where a concrete scheme (albeit of relatively high complexity) is

presented as a way to demonstrate these ideas. Following [27], we will refer to this scheme as

UCM (for Universal Context Modeling). Image compression models, such as Sunset, customarily

consisted of a fixed structure, for which parameter values were adaptively learned. The model

in [54], instead, is adaptive not only in terms of the parameter values, but also in their number and

structure. In UCM, the context for xt+1 (a sample indexed using raster scan order) is determined

out of differences xti − xtj , where the pairs (ti, tj) correspond to adjacent locations within a fixed

causal template, with ti, tj ≤ t. Each difference is adaptively quantized based on the concept

of stochastic complexity [40], to achieve an optimal number of contexts. The prediction step is

accomplished with an adaptively optimized, context-dependent function of neighboring sample

values. In addition to the specific linear predicting function demonstrated in [54] as an example

of the general setting, implementations of the algorithm include an affine term, which is estimated

through the average of past prediction errors, as suggested in [54, p. 583].

To reduce the number of parameters, the model for arithmetic coding follows the widely accepted

observation that prediction residuals ε in continuous-tone images, conditioned on the context, are

well modeled by a two-sided geometric distribution (TSGD). For this two-parameter class, the

probability decays exponentially according to θ|ε+µ|, where θ∈(0, 1) controls the two-sided decay

rate, and µ reflects a DC offset typically present in the prediction error signal of context-based

schemes.1 The resulting code length for the UCM model is asymptotically optimal in a certain
1In fact, UCM assigns to a sample x a probability resulting from integrating a Laplacian distribution in the interval

[x− 0.5, x+ 0.5). This probability assignment departs slightly from a TSGD.
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broad class of processes used to model the data.

While UCM provided the best published compression results at the time (at the cost of high

complexity), it could be argued that the improvement over the fixed model structure paradigm,

best represented by the Sunset family of algorithms (further developed in [22] and [23]), was scant.

However, the image modeling principles outlined in [54] shed light on the workings of some of the

leading lossless image compression algorithms. In particular, the use of adaptive, context-based

prediction, and the study of its role, lead to a basic paradigm proposed and analyzed in [55], in

which a multiplicity of predicting contexts is clustered into a smaller set of conditioning states.

This paradigm is summarized next.

While Sunset uses a fixed predictor, in general, a predictor consists of a fixed and an adaptive

component. When the predictor is followed by a zero-order coder (i.e., no further context modeling

is performed, as in the Huffman version of lossless JPEG), its contribution stems from it being the

only “decorrelation” tool in the compression scheme. When used in conjunction with a context

model, however, the contribution of the predictor is more subtle, especially for its adaptive compo-

nent. In fact, prediction may seem redundant at first, since the same contextual information that

is used to predict is also available for building the coding model, which will eventually learn the

“predictable” patterns of the data and assign probabilities accordingly. The use of two different

modeling tools based on the same contextual information is analyzed in [55], and the interaction

is explained in terms of model cost. The first observation, is that prediction turns out to reduce

the number of coding parameters needed for modeling high-order dependencies. This is due to the

existence of multiple conditional distributions that are similarly shaped but centered at different

values. By predicting a deterministic, context-dependent value x̂t+1 for xt+1, and considering the

(context)-conditional probability distribution of the prediction residual εt+1 rather than that of

xt+1 itself, we allow for similar probability distributions on ε, which may now be all centered at

zero, to merge in situations when the original distributions on x would not. Now, while the fixed

component of the predictor is easily explained as reflecting our prior knowledge of typical structures

in the data, leading, again, to model cost savings, the main contribution in [55] is to analyze the

adaptive component. Notice that adaptive prediction also learns patterns through a model (with

a number K ′ of parameters), which has an associated learning cost. This cost should be weighted

against the potential savings of O(K(logn)/n) in the coding model cost. A first indication that

this trade-off might be favorable is given by the bound in [29], which shows that the per-sample
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Figure 3: CALIC’s encoder

model cost for prediction is O(K ′/n), which is asymptotically negligible with respect to the coding

model cost discussed in Section 1. The results in [55] confirm this intuition and show that it is

worth increasing K ′ while reducing K. As a result, [55] proposes the basic paradigm of using a

large model for adaptive prediction which in turn allows for a smaller model for adaptive coding.

This paradigm is also applied, for instance, in CALIC [66].

CALIC [61, 66, 62] avoids some of the optimizations performed in UCM, but by tuning the

model more carefully to the image compression application, some compression gains are obtained.

A block diagram of the encoder is shown in Figure 3 (from [66]). CALIC has two modes of operation:

a binary mode, that is used when an already encoded neighborhood of the sample to be coded has

no more than two distinct intensity values, and a continuous-tone mode.

In binary mode, a ternary event (including an escape symbol that causes a switch back to

continuous-tone mode) is coded using a context-based arithmetic coder. In the continuous-tone

mode, the prediction step is context-dependent, but differs from [54] in that it incorporates prior

knowledge through a fixed component, termed GAP (Gradient Adjusted Predictor), which switches

between combinations of neighboring sample values based on local gradient information. The

context-dependent adaptive correction is similar to the affine term in classical autoregressive (AR)

models. Let dh and dv denote estimates, within a scaling factor, of the gradient magnitude near

the current location in the horizontal and vertical directions, respectively, given by:

dh = |Iw − Iww|+ |In − Inw|+ |In − Ine|

dv = |Iw − Inw|+ |In − Inn|+ |Ine − Inne| .

These estimates detect the orientation and magnitude of edges, and determine the weights assigned

to neighboring sample values in the calculation of the GAP prediction x̂, as follows:
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if (dv−dh>80) x̂=Iw /* sharp horizontal edge */

else if (dv−dh<− 80) x̂=In /* sharp vertical edge */

else {
x̂ = (Iw + In)/2 + (Ine − Inw)/4;

if (dv−dh>32) x̂=(x̂+Iw)/2 /* horizontal edge */

else /* weak horizontal edge */

if (dv − dh > 8) x̂ = (3x̂+ Iw)/4

else /* vertical edge */

if (dv − dh < −32) x̂ = (x̂+ In)/2

else /* weak vertical edge */

if (dv − dh < −8) x̂ = (3x̂+ In)/4;

}

The context for the adaptive part of the predictor has components for “local texture” and

“error energy.” The texture component is based on the sign of the differences between the value of

neighboring samples and the GAP prediction. The energy component is computed by quantizing

a linear combination of dv, dh, and previous GAP prediction errors. These two components are

combined in a cartesian product to form the compound modeling contexts. The GAP prediction

is then corrected with an adaptive term which is estimated through the average of past prediction

errors at the context. Overall, CALIC uses the 7 surrounding pixels shown in Figure 1 for prediction

and context modeling.

CALIC adheres to the paradigm of using a large collection of contexts for adaptive prediction,

and few conditioning contexts for coding, by restricting the latter to the error energy component.

In total, 576 and 8 contexts, respectively, are used for 8-bit per sample images. Since conditional

prediction error distributions from different contexts merge into a single distribution for coding,

a “sign flipping” technique is used to sharpen the resulting distribution, thus reducing the corre-

sponding conditional entropy. The idea is that, before merging, the sign of errors whose distribution

has negative estimated conditional mean are flipped, which can be mimicked by the decoder. Thus,

twin distributions that are symmetric but of opposite sign, are merged at the “right” phase.

At the moment of writing, CALIC’s executables can be downloaded from

ftp://ftp.csd.uwo.ca/pub/from wu.
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5 JPEG-LS: High Compression Performance at Low Complexity

While UCM and CALIC pushed the frontiers of lossless compressibility of continuous-tone images,

the LOCO-I algorithm [56, 57, 58], developed in parallel to CALIC, showed that low complexity

and state-of-the-art compression are not incompatible, as had been suggested by FELICS. In many

applications, a drastic complexity reduction can have more practical impact than a modest increase

in compression. Since further attempts to improve on CALIC’s compression ratios (see, e.g., [62])

confirmed that a point of diminishing returns was being reached, the alternative of applying ju-

dicious modeling to obtain competitive compression at significantly lower complexity levels seems

appealing. Rather than pursuing the optimization of the image modeling principles of UCM, the

main objective driving the design of LOCO-I (LOw COmplexity LOssless COmpression for Images)

is to systematically “project” these principles into a low complexity plane, both from a modeling

and coding perspective. Thus, LOCO-I differs from FELICS in that it follows a more traditional

predictor-modeler-coder structure along the paradigm of [51] and [54].

In 1994, the JPEG committee solicited proposals for a new international standard for

continuous-tone lossless image compression [19]. The Call for Contributions was answered by eight

industrial and academic organizations that submitted a total of nine proposals, including CALIC

and LOCO-I. Two proposals were based on reversible transform coding, while the others built

on context or block based, adaptive, predictive coding. As a result of the standardization process,

LOCO-I is the algorithm at the core of the new standard, termed JPEG-LS [17]. It was selected due

to its optimal placement in a conceptual compression/complexity curve, within a few percentage

points of the best available compression ratios (given by CALIC), but at a much lower complexity

level.2 The standard evolved after refinements of the algorithm introduced in [56]; here, we discuss

the final scheme [57]. In Section 6 we also comment on two other proposals, CREW [68, 14] and

ALCM [46, 47], as these algorithms ended up impacting other standardization efforts.

Our description of JPEG-LS refers to the block diagram in Figure 4 (from [57]), which includes

the causal template used for prediction and modeling. The fixed component of the predictor

switches among three simple predictors (Iw, In, and Iw + In − Inw), resulting in a non-linear

function of the samples in the causal template, given by:

x̂MED

∆= min(Iw, In, Inw) + max(Iw, In, Inw)− Inw.
2For example, it is reported in [57] that timing experiments with publicly available implementations yield about

an 8:1 speed ratio on natural images and significantly more on compound documents.
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Figure 4: JPEG-LS’s encoder

This function (first suggested in [35]) is termed median edge detector (MED), as it incorporates

prior knowledge through a rudimentary edge detection capability. The adaptive component of the

predictor is limited to an integer additive term, analogous to an affine term in the adaptive predictor

of [54]. It effects a context-dependent translation (“bias cancelation”), and can also be interpreted

as part of the estimation procedure for the probabilistic model of the prediction residuals. The

context dependence includes the sample ne, which is not used in the fixed part of the predictor.

The number of parameters per context is reduced to two by assuming a TSGD model for the

prediction residuals. The integer part of the TSGD offset µ is canceled by the adaptive component

of the predictor, which, through a simple addition-subtraction mechanism, is tuned to produce

average residuals between −1 and 0, leaving a negative fractional shift s. Thus, the assumed

distribution on the prediction error ε after bias cancelation decays as θ|ε+s|, where θ∈(0, 1) and

s∈[0, 1). The choice of this interval for s is matched to the prefix codes used in the adaptive coding

unit described below.

The context model is determined by quantized gradients as in [54]. Each of the differences

g1=Ine−In, g2=In−Inw, and g3=Inw−Iw, is quantized into up to 9 connected regions by a quantizer

κ(·). To preserve symmetry, the regions are indexed −4, · · · ,−1, 0, 1, · · · , 4, with κ(g) = −κ(−g),
for a total of 729 different quantized context triplets. For a prediction residual ε, if the first non-zero

element of a triplet C=[q1, q2, q3], where qj=κ(gj), j=1, 2, 3, is negative, the encoded value is −ε,
using context −C. This is anticipated by the decoder, which flips the sign if necessary to obtain
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the original error value. Merging contexts of “opposite signs” results in a total of 365 contexts.

With two TSGD parameters per context, the total number of free statistical parameters is very

manageable, and has proved to be a very effective compromise for a wide range of image types and

sizes. Notice also that, by using the template of Figure 4 for prediction and modeling, JPEG-LS

limits its image buffering requirement to one scan line.

In a low complexity framework, the choice of a TSGD model is of paramount importance, since

it leads to a very simple yet efficient coding unit. This unit derives from the family of optimal prefix

codes for TSGDs characterized in [31], which are in turn based on the Golomb codes. Specifically,

prediction residuals are encoded with codes from the family:

C = {G2k(M(·)) | k ≥ 0} ∪ {G1(M ′(·))},

where Gm denotes the Golomb code of order m, M(x) denotes the mapping from an integer x to

its index in the interleaved sequence 0,−1,+1,−2,+2, . . . (starting from index 0), and M ′(x) =

M(−x−1). The use of the map M ′ in C reflects dependence on the TSGD parameter s. Codes

in C−{G1(M ′(·))} were first used for image compression applications in [37]; thus, the map M is

often called Rice mapping.3 In JPEG-LS, codes from C are adaptively selected with an on-line

strategy reflecting the estimation of the parameters of the TSGD. The strategy turns out to be

surprisingly simple, and it is derived using techniques presented in [30] and [45]. Specifically, the

code parameter k is computed by the C programming language “one-liner”:

for ( k=0; (N<<k)<A; k++ );

where N counts the number of prediction residuals that have been coded at that context, and

A accumulates the magnitudes of the prediction residuals for that context. As a result, adaptive

symbol-by-symbol coding is possible at very low complexity, thus avoiding the use of the more

complex arithmetic coders. The use of Golomb codes in conjunction with context modeling was

pioneered in FELICS (see Section 3). However, JPEG-LS uses a TSGD model, as opposed to the

geometric distributions assumed in FELICS. Also, the above simple explicit formula for Golomb

parameter estimation differs from the search procedure described in [16].

In order to address the redundancy of symbol-by-symbol coding in the low entropy range (“flat”

regions), a major problem in FELICS, an alphabet extension is embedded in the JPEG-LS model

(“run” mode). In Figure 4, the switches labeled mode select operation in “regular” or “run” mode,

as determined from the context by the simple “flatness” condition g1=g2=g3=0. In run mode, the
3Even though [13] precedes [37] by more than a decade, the prefix codes G2k are sometimes referred to as Rice

codes.
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length of the run of the sample value Iw is adaptively coded using block-MELCODE, an adaptation

technique for Golomb-type codes [52]. This specific adaptation technique is the most significant

departure of JPEG-LS from the original LOCO-I.

In summary, the overall simplicity of JPEG-LS can be mainly attributed to its success in match-

ing the complexity of the modeling and coding units, combining simplicity with the compression

potential of context models, thus “enjoying the best of both worlds.” JPEG-LS implementations

can be downloaded from http://www.hpl.hp.com/loco. Another JPEG-LS codec is available from

ftp://dspftp.ece.ubc.ca/pub/jpeg-ls.

6 Other Approaches

LOCO-A and ALCM. An arithmetic coding version of LOCO-I, termed LOCO-A [57], is being

specified as an extension of the baseline JPEG-LS standard [18]. This extension addresses the basic

limitations that the standard presents when dealing with very compressible images, or images that

are far from satisfying the assumptions underlying the model in JPEG-LS. LOCO-A is a natural

extension of the JPEG-LS baseline, requiring the same buffering capability. It closes, in general,

most of the (small) compression gap between JPEG-LS and CALIC, at the price of the additional

computational complexity introduced by the arithmetic coder (but with no significant additional

complexity for modeling). The basic idea behind LOCO-A follows from clustering contexts with

similar conditional distributions into conditioning states, based on the value of the ratio A/N (used

to determine the Golomb parameter k in JPEG-LS). The resulting state-conditioned distributions

are arithmetic encoded, thus relaxing the TSGD assumption, which is used only as a means to

form the states. Here, A/N acts as a measure of activity level, discriminating between active areas

(such as edges) and smooth regions, and can be seen as a refinement of the “error energy” used

in CALIC. Clearly, LOCO-A applies the paradigm of [55], using many contexts for prediction but

only a few for coding.

Activity levels are also used in the ALCM (Activity Level Classification Model) algorithm [46],

another contributor to the design of LOCO-A. Moreover, LOCO-A borrows from ALCM its bina-

rization strategy, which differs from the one described for the Sunset family. The idea in ALCM

is to apply the Rice mapping M , defined in Section 5, to the prediction errors, and binarize the

decisions using the code tree associated with a context-dependent Golomb code, with the context

given by the activity level. A binary adaptive arithmetic code is used to encode the sequence of
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decisions. A key feature of ALCM is its adaptive predictor, based on 6 neighboring sample values,

which is discussed in [47]. By emphasizing prediction accuracy, ALCM reported the best results on

“near-lossless” compression among proposals submitted in response to [19]. In this lossy mode of

operation, also standardized by JPEG-LS, every sample value in a reconstructed image component

is guaranteed to differ from the corresponding value in the original image by up to a preset (small)

amount, δ. Near-lossless performance is closely related to prediction accuracy, since the loss is

introduced in a DPCM loop by quantizing the prediction residual into quantization bins of size

2δ+1, with reproduction at the center of the interval.

CREW and other transform-based algorithms. CREW (Compression with Reversible

Embedded Wavelets) uses an integer-to-integer wavelet transform, thus allowing for embedded

coding. Ideally, an embedded coder generates a bit-stream that can be truncated at any point, and

the resulting prefix can be decoded to reconstruct the original image with a fidelity approaching

that of an “optimal” coder, tailored to produce the same bit-rate as the prefix. With an integer-

to-integer transform, the end step of progressive decoding is a lossless representation. The wavelet

model works reasonably well on natural images (although it falls short of the compression efficiency

achieved by predictive schemes of similar complexity), but is not suited for images with sharp edges

or text portions (compound documents, computer graphics). However, the novelty of the rich set

of features provided by CREW triggered a new ISO standardization effort, JPEG 2000 [20]. This

emerging standard, which draws heavily from [50], includes provisions for integer-to-integer wavelet

transforms for lossless image compression, an approach pioneered by CREW and SPIHT [44]. Other

schemes for progressive image transmission are described in [5] and [63].4

The transform step in transform-based schemes can be viewed as the computation of “prediction

residuals” from a large, non-causal neighborhood. Unlike sophisticated predictive schemes, this

“predictor” is non-adaptive and linear, reflecting a “prior belief” on a more restricted model.5

The context model for encoding the transform coefficients is based on neighboring coefficients,

which is analogous to the use of neighboring prediction errors in, e.g., Sunset, but differs from

UCM, CALIC, and JPEG-LS. The progression by quality is usually given by the encoding of the

coefficients by bit-planes. This aspect is analogous to the binarization process in, e.g., Sunset and
4Notice that even on natural images, CALIC still outperforms the relatively complex ECECOW algorithm [63] or

its highly complex variant [64], in lossless compression.
5Here, we are not concerned with the multiresolution aspect of scalability, which is given by the organization of

coefficients into decomposition levels.
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ALCM. However, in predictive schemes, all the bits from one sample are encoded before proceeding

with the next sample. In contrast, the context model in transform-based schemes can include

bits already encoded from non-causal neighbors. The interaction between context modeling and

transform coding warrants further investigation.

TMW: Two-pass mixing modeling. The TMW algorithm [32] uses the two-pass modeling

paradigm, in which a set of model parameters is estimated from the whole image in a first pass

(image analysis stage), and is then used by an arithmetic coder, which codes the samples in a

second pass (coding stage). The model parameters must be described to the decoder as header

information. TMW achieves compression results marginally better than CALIC (the improvements

reported in [32] rarely exceed 5%), at the price of being quite impractical due to its computational

complexity.

The probability assignment in TMW can be seen as a mixture of parametric models. Mixtures

are a popular tool for creating universal models, in the sense that the asymptotic performance

of the mixture approaches that of each particular model in the mixture, even if the data agrees

with that specific model (see, e.g., [43]). However, this theoretically appealing approach was not

pursued in other state-of-the-art image compression algorithms. In TMW, the mixture is performed

on variations of the t-distribution, which are coupled with linear sample predictors that combine

the value of causal neighbors to determine the center of the distribution. The parameter of each

t-distribution depends on past prediction errors. An alternative interpretation, along the lines of

the modeling principles discussed in this paper, is that the distribution parameters are context-

dependent, with the contexts given by past prediction errors (as in Sunset), and the dependency on

the context being, in turn, parameterized (sigma predictors). This (second-level) parameterization

allows for the use of large causal templates without significant penalty in model cost. In a sense,

sigma predictors predict, from past errors, the expected error of sample predictors. As in UCM, the

probability assigned to a sample value x results from integrating the continuous distribution in the

interval [x − 0.5, x + 0.5). The mixture coefficients are based on the (weighted) past performance

of each model in a causal neighborhood (blending predictors), with weights that can be interpreted

as “forgetting factors.” The blending predictors yield an implicit segmentation of the image into

segments, each “dominated” by a given sample predictor. The determination of mixture coefficients

is in the spirit of prediction with expert advice [26], with each sample predictor and t-distribution

acting as an “expert.” The three-level hierarchy of linear predictors (sample, sigma, and blending
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predictors) is optimized iteratively by gradient descent in the image analysis stage.

It is worth noticing that there is no inherent advantage to two-pass modeling, in the sense that

the model cost associated with describing the parameters is known to be asymptotically equivalent

to that resulting from the learning process in one-pass schemes [40] (see Section 1). In fact, one-

pass schemes adapt better to non-stationary distributions (TMW overcomes this problem by the

locality of blending predictors and through the forgetting factor). Thus, it is the mixing approach

that appears to explain the ability of TMW to adapt to a wide range of image types. While none of

the modeling tools employed in TMW is essentially new, the scope of their optimization definitely

is. Therefore, the limited impact that this optimization has on compression ratios as compared to,

e.g., CALIC, seems to confirm that a point of diminishing returns is indeed being reached.

Heavily adaptive prediction schemes. In addition to ALCM, other schemes build mainly

on adaptive prediction. The ALPC algorithm, presented in [33] and [34], makes explicit use of

local information to classify the context of the current sample, and to select a linear predictor

that exploits the local statistics. The predictor is refined by gradient descent optimization on the

samples collected in the selected cluster. ALPC collects statistics inside a window of previously

encoded samples, centered at the sample to be encoded, and classifies all the samples in the window

into clusters by applying the Generalized Lloyd Algorithm (LBG) on the samples’ contexts. Then,

the context is classified in one of the clusters and the most efficient predictor for that cluster is

selected and refined via gradient descent. The prediction error is finally arithmetic coded. The

compression results show that the algorithm performs well on textured and structured images, but

has limitations on high contrast zones. The computational complexity of this approach is very

high.

In [24], an edge adaptive prediction scheme that adaptively weights four directional predictors

(the previous pixels in four directions), and an adaptive linear predictor, updated by gradient

descent (Widrow-Hoff algorithm) on the basis of local statistics, are used. The weighting scheme

assumes a Laplacian distribution for the prediction errors, and uses a Bayesian weighting scheme

based on the prediction errors in a small window of neighboring samples.

A covariance-based predictor that adapts its behavior based on local covariance estimated from

a causal neighborhood, is presented in [25]. This predictor tracks spatially varying statistics around

edges and can be the basis of a lossless image coder that achieves compression results comparable to

CALIC’s. The high computational complexity of this approach can be reduced by using appropriate
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heuristics, and the price paid in terms of compression is reported to be negligible.

LZ-based schemes. As discussed in Section 1, universal compression tools based on the LZ

algorithm do not perform well when directly applied to natural images. However, the LZ algorithm

has been adapted for image compression in various forms. The popular file format PNG achieves

lossless compression through prediction (in two passes) and a variant of LZ1 [69]. A generalization

of LZ2 [70] to image compression, with applications in lossy and lossless image coding, is presented

in [7] and [8], and refined in [42]. At each step, the algorithm selects a point of the input image (also

called growing point). The encoder uses a match heuristic to decide which block of a local dictionary

(that stores a constantly changing set of vectors) is the best match for the sub-block anchored at

the growing point. The index of the block is transmitted to the decoder, a dictionary update

heuristic adds new blocks to the dictionary, and the new growing point is selected. Decompression

is fast and simple, once an index is received, the corresponding block is copied at the growing point.

A similar approach was presented in [12]. Two-dimensional generalizations of LZ1 are presented

in [48] and [49].

Block coding. Block coding is sometimes used to exploit the correlation between symbols

within a block (see, e.g., [11]), as the per-symbol entropy of the blocks is a decreasing function of

their length. Notice that, if we ignore the complexity axis, the main theorem in [41] shows that

this strategy for achieving compression ratios corresponding to higher order entropies is inferior to

one based on context conditioning. However, block coding can be convenient in cases where fast

decoding is of paramount importance.

7 Color and Palletized Images

Many modern applications of lossless image compression deal mainly with color images, with a de-

gree of correlation between components depending on the color space. Other images, e.g., satellite,

may have hundreds of bands. In this section we discuss how the tools presented for single-component

images are integrated for the compression of multiple-component images.

A simple approach consists of compressing each component independently. This does not take

into account the correlation that often links the multiple bands, which could be exploited for better

compression. For example, the JPEG-LS syntax supports both interleaved and non-interleaved (i.e.,

component by component) modes, but even in the interleaved modes, possible correlation between

color planes is limited to sharing statistics, collected from all planes. In particular, prediction and
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context determination are performed separately for each component.

For some color spaces (e.g., RGB), good decorrelation can be obtained through simple lossless

color transforms as a pre-processing step. For example, using JPEG-LS to compress the (R-G,G,B-

G) representation of a set of photographic images, with suitable modular reduction applied to the

differences [57], yields savings between 25 and 30% over compressing the respective (R,G,B) rep-

resentation. Given the variety of color spaces, the standardization of specific filters was considered

beyond the scope of JPEG-LS, and color transforms are expected to be handled at the application

level.

A multiple-component version of CALIC is presented in [65]. The decision of switching to

binary mode takes into account also the behavior of the corresponding samples in a reference

component. In continuous-tone mode, the predictor switches between inter-band and intra-band

predictors, depending on the value of an inter-band correlation function in a causal template.

Inter-band prediction extends GAP to take into account the values of the corresponding samples

in the reference component. Context modeling is done independently for the inter- and intra-band

predictors, as they rely on different contexts. Inter-band context modeling depends on a measure

of activity level that is computed from the reference component, and on previous errors for the left

and upper neighbors in the current component.

Similarly, a multiple-component scheme akin to LOCO-I/JPEG-LS, termed SICLIC, is pre-

sented in [4]. A reference component is coded as in JPEG-LS. In regular mode, two coders work in

parallel, one as in JPEG-LS, and the other using information from the reference component. For

the latter, prediction and context determination are based on the differences between sample values

and their counterpart in the reference component. After the adaptive prediction correction step,

SICLIC chooses between intra- and inter-band prediction based on the error prediction magnitude

accumulated at the context for both methods. Coding is performed as in JPEG-LS. In run mode,

further savings are obtained by checking whether the same run occurs also in the other components.

It is reported in [57] that the results obtained by SICLIC are, in general, similar to those obtained

when JPEG-LS is applied after the above color transforms. However, SICLIC does not assume

prior knowledge of the color space.

Palletized images, popular on the Internet, have a single component, representing an array of

indices to a palette table, rather than multiple components as in the original color space represen-

tation. Indices are just labels for the colors they represent, and their numeric value may bear no
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relation to the color components. Furthermore, palletized images often contain combinations of

synthetic, graphic, and text bitmap data, and might contain a sparse color set. Therefore, many

of the assumptions for continuous-tone images do not hold for the resulting arrays of indices, and

palletized images may be better compressed with algorithms specifically designed for them (see,

e.g., [1, 2, 3]). Also, LZ-type algorithms, such as PNG (without prediction), do reasonably well,

especially on synthetic/graphic images. However, algorithms for continuous-tone images can often

be advantageously used after an appropriate reordering of the palette table, especially for palletized

natural images. The problem of finding the optimal palette ordering for a given image and com-

pression algorithm is known to be computationally hard (see, e.g., [67, 28]). Some heuristics are

known that produce good results at low complexity, without using image statistics. For example,

[67] proposes to arrange the palette colors in increasing order of luminance value, so that samples

that are close in space in a smooth image, and tend to be close in color and luminance, will also be

close in the index space. The JPEG-LS data format provides tools for encoding palletized images

in an appropriate index space. To this end, each decoded sample value (e.g., and 8-bit index) can

be mapped to a reconstructed sample value (e.g., an RGB triplet) by means of mapping tables.

According to [57], with the simple reordering of [67], JPEG-LS outperforms PNG by about 6%

on palletized versions of common natural images. On the other hand, PNG may be advantageous

for dithered, halftoned, and some synthetic/graphic images for which LZ-type methods are better

suited.

8 Experimental results and prospects

The JPEG-LS standard for lossless compression of continuous-tone images is the state-of-the-art

in terms of compression and computational efficiency. The standard achieves compression ratios

close to the best available on a broad class of images, it is very fast and computationally simple.

CALIC remains the benchmark for compression efficiency. Although considerably more complex

than JPEG-LS, it is still suitable for many applications.

Table 1, extracted from [57], shows lossless compression results of JPEG-LS and CALIC, aver-

aged over independently compressed color planes, on the subset of 8-bit/sample images from the

benchmark set provided in the Call for Contributions leading to the JPEG-LS standard [19]. This

set includes a wide variety of images, such as compound documents, aerial photographs, scanned,

and computer generated images. The table also includes the compression results of FELICS and
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L. JPEG FELICS JPEG-LS CALIC

bike 3.92 4.06 3.63 3.50

cafe 5.35 5.31 4.83 4.69

woman 4.47 4.58 4.20 4.05

tools 5.47 5.42 5.08 4.95

bike3 4.78 4.67 4.38 4.23

cats 2.74 3.32 2.61 2.51

water 1.87 2.36 1.81 1.74

finger 5.85 6.11 5.66 5.47

us 2.52 3.28 2.63 2.34

chart 1.45 2.14 1.32 1.28

chart s 3.07 3.44 2.77 2.66

compound1 1.50 2.39 1.27 1.24

compound2 1.54 2.40 1.33 1.24

aerial2 4.14 4.49 4.11 3.83

faxballs 0.84 1.74 0.90 0.75

gold 4.13 4.10 3.91 3.83

hotel 4.15 4.06 3.80 3.71

Average 3.40 3.76 3.19 3.06

Table 1: Compression results on the JPEG-LS benchmark set (in bits/sample)

the arithmetic coding version of Lossless JPEG, as representatives of the previous generation of

coders.

Other algorithms (e.g., TMW, ALPC) have achieved compression performance comparable to

CALIC (or marginally better on some data), but remain impractical due to their high computational

complexity.

Extensive comparisons on medical images of various types are reported in [6], where it is rec-

ommended that the DICOM (Digital Imaging and Communications in Medicine) standard add

transfer syntaxes for both JPEG-LS and JPEG 2000. Both schemes, in lossless mode, achieved an

average compression performance within 2.5% of CALIC.

As for color images, Table 2 presents compression results, extracted from [4], for the multi-
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IB-CALIC SICLIC Filter+JPEG-LS

cats 1.81 1.86 1.85

water 1.51 1.45 1.45

cmpnd1 1.02 1.12 1.09

cmpnd2 0.92 0.97 0.96

Table 2: Compression results on color images (in bits/sample)

component version of CALIC presented in [65] (denoted IB-CALIC) and for SICLIC, on a sub-set of

8-bit/sample RGB images from [19]. For comparison, JPEG-LS has been applied to the (R-G,G,B-

G) representation of the images, with differences taken modulo 256 in the interval [−128, 127] and

shifted.

While the results of Table 2 suggest that, when the color space is known, inter-band correlation

is adequately treated through simple filters, the advantage of inter-band schemes seems to reside in

their robustness. For example, JPEG-LS compresses the (R-G,G,B-G) representation of the image

bike3 to 4.81 bits/sample, namely 10% worse than the non-filtered representation. On the other

hand, SICLIC achieves 4.41 bits/sample. Thus, SICLIC appears to exploit inter-band correlation

whenever this correlation exists, but does not deteriorate significantly in case of uncorrelated color

planes.

Table 3 presents compression results obtained with JPEG-LS6 and CALIC7 (with default pa-

rameters) on five other, 8-bit/sample, images.8 These algorithms do not appear to perform as

desired when compared to a popular universal compression tool, gzip, which is based on the LZ1

algorithm [69].

The images are:

• france: [672x496] - A grey-scale version of an overhead slide as might be found in a business

presentation. It contains text and graphics superimposed on a gradient background.

• frog: [621x498] - Odd-shaped, dithered image picturing a frog.

• library: [464x352] - Image scanned from a student handbook showing pictures of on-campus

libraries. The pictures have a dithered quality, typical of many inexpensive publications.

6from http://www.hpl.hp.com/loco

7from ftp://ftp.csd.uwo.ca/pub/from wu.

8from http://links.uwaterloo.ca/BragZone.
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gzip -9 JPEG-LS CALIC

france 0.34 1.41 0.82

frog 3.83 6.04 5.85

library 4.76 5.10 5.01

mountain 5.27 6.42 6.26

washsat 2.68 4.13 3.67

Table 3: Compression results on five other images (in bits/sample)

• mountain: [640x480] - A high contrast landscape photograph.

• washsat: [512x512] - A satellite photograph of the Washington DC area.

A more appropriate usage of the compression tool can often improve the compression results.

This is indeed the case with mountain and washsat in the above image set, as these pictures use

few grey levels. A simple histogram compaction (in the form of a mapping table) results in a

dramatic improvement: the compression ratios for JPEG-LS become, respectively, 5.22 and 2.00

bits/sample (5.10 and 2.03 bits/sample using CALIC). This histogram compaction is done off-

line, and is supported by the JPEG-LS syntax through mapping tables. The standard extension

(JPEG-LS Part 2 [18]) includes provisions for on-line compaction.

Nevertheless, gzip also does better than JPEG-LS and CALIC on the other three images. The

poor performance of JPEG-LS and CALIC on frog and library seems to be caused by the dithered

quality of the pictures and the failure of the prediction step.9 In the case of the synthetic image

france, its gradual shading prevents efficient use of the run mode in JPEG-LS, and may not be

suited to CALIC’s binary mode.

As JPEG-LS, CALIC, and all the previously cited lossless image compression algorithms build

on certain assumptions on the image data, they may perform poorly in case these assumptions

do not hold. While it may be argued that the current image models are unlikely to be improved

significantly, it cannot be expected from a single algorithm to optimally handle all types of images.

In particular, there is evidence that on synthetic or highly compressible images there is still room

for improvement. The field of lossless image compression is therefore open to fruitful research.

9Compression results on frog improve by 15% after histogram compaction, but still fall significantly short of gzip.
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