

Enh ancing Inte rne t Stre am ing Med ia
w ith Cue ing Protocols

Jack Brassil, H e nn ing Sch ulz rinn e 1
Inte rn e t and Mobile Syste m s Laboratory
H P Laboratorie s Palo Alto
H PL-2000-173
De ce m b e r 15th , 2000*

E-m ail: jtb@h pl.h p.com , h gs@cs.colum bia.edu

Real-Tim e
Transport
Protocol,
m ultim ed ia
signaling,
conte n t de live ry
n e tw ork s

W e propose a n e w , m ed ia-inde pend ent protocol for including
program tim ing, structure and ide n tity inform ation in inte rn e t
m ed ia stre am s. Th e protocol use s signaling m e ssage s called
cue s to indicate e ve n ts w h ose tim ing is sign ificant to re ce ive rs,
such as th e start or stop tim e of a m ed ia program . W e d e scrib e
th e im ple m e n tation and ope ration of a prototype inte rn e t
radio station w h ich transm its program cue s in audio broadcasts
using th e R e al-Tim e Transport Protocol. A colle ction of sim ple
ye t pow e rful stre am proce ssing applications w e im ple m e n ted
de m onstrate h ow application cre ation is gre atly e ased w h e n
m ed ia stre am s are e n rich ed w ith program cue s.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
1 Colum bia Unive rsity, Ne w York , NY
 Copyrigh t H e w le tt-Pack ard Com pany 2001

Enhancing Internet Streaming Media with Cueing Protocols

Jack Brassil
HP Laboratories
jtb@hpl.hp.com

Henning Schulzrinne
Columbia University
hgs@cs.columbia.edu

__

Abstract — We propose a new, media-independent protocol for including program timing,
structure and identity information in internet media streams. The protocol uses signaling
messages calledcues to indicate events whose timing is significant to receivers, such as the start
or stop time of a media program. We describe the implementation and operation of a prototype
internet radio station which transmits program cues in audio broadcasts using the Real-Time
Transport Protocol. A collection of simple yet powerful stream processing applications we
implemented demonstrate how application creation is greatly eased when media streams are
enriched with program cues.

Keywords — Real-Time Transport Protocol, multimedia signaling, content delivery networks

1. Introduction

The rapid deployment of Content Distribution Networks (CDNs) has refocused
attention on large scale, live, multimedia internet broadcasts. CDNs rely on an
interconnected network of servers providing ’application-level multicast’ or
’splitting’; a media stream is transmitted to servers which replicate and forward
the stream to either receivers or other downstream splitters. Transmission is
typically unicast, and uses either a reliable transport protocol (e.g., TCP) or a
proprietary, partially reliable protocol. Splitters can be located close to the
network edge, such as at an internet access provider’s point-of-presence.
Proximity of splitters to receivers improves the likelihood of high reception
quality. As we will see, this proximity also opens the door to the creation of a
new generation of broadcast services.

What streaming CDNs lack in architectural elegance is more than compensated
for by their global reach and lack of broadcast alternatives. Digital Island has
stated their intent to create an infrastructure capable of transmitting 7.5 million
simultaneous streams. Akamai has placed over 3000 edge servers, each capable
of potentially serving hundreds of users. Mirror Image currently streams video

at rates up to 1Mbit/sec from its Content Access Points. Real Broadcast
Networks successfully distributed over 2.3 million audio streams during a 24
hour live music concert in mid-1999. These emerging broadcasters are not
lacking media content to distribute; there are approximately 2400 radio stations
worldwide broadcasting on the internet today. And that rapid deployment of
satellite CDNs such as IBeam Broadcasting seem likely to ensure that mass
market video distribution is not far behind.

Given the rapid deployment of an internet broadcast network infrastructure,
what additional technology is required to support internet broadcasting? We
believe that the list of needed technologies is extensive. This would certainly
include tools, protocols and systems to provide media discovery and
announcements, broadcast network management, media personalization, and
rights management. Indeed, one need only contemplate the services provided
in conventional radio and television broadcasting to identify additional missing
technology components and service offerings.

In this paper we consider what we believe to be one crucial yet missing
enabling technology, a signaling mechanism — which we call a cueing
protocol — for delivering program timing, structure and identity information in
media streams. The elementary protocol message, acue, typically indicates an
event whose precise timing is significant to receivers, such as the start or stop
time of a program or program segment. We define a program (or segment) to
comprise a collection of transport layer media packets whose timestamps
belong to a well-defined timestamp interval. Often the program will have an
obvious application-level significance. For example, an internet television
station might issue cues to delimit and label individual video presentations to
facilitate recording by listeners using a Tivo-like consumer appliance.

The remainder of this paper is organized as follows. Section 2 provide
background and motivation for our investigation of cueing protocols. Section 3
introduces the overall system objectives, a proposal for a cueing message
format, and a discussion of the protocol’s relationships with other internet
protocols. An implementation of a prototype internet radio station using cues
is presented in Section 4. A number of related issues and future research
topics are discussed in Section 5, and our conclusions are stated in the final
section.

2. Background

A diverse collection of cueing mechanisms are used to facilitate program
insertion, switching and recording applications in traditional radio and
television broadcasting. Examples of existing systems using some form of

’cues’ include:

1. Radio Data System (RDS) for VHF/FM Broadcasting [5]

The RDS system provides traffic, station and song information to RDS-
capable radio receivers, primarily in cars. Cues, known as flags, are sent
out-of-band on unused, alternate frequencies. Users can view program
information on a small alphanumeric character display, and operate radios
in automatic switch-over mode to receive a travel alert or a preferred
program type (e.g., news program). Though introduced and widely used
in Europe, RDS has been weakly supported in the US. Plans to enhance
the existing RDS infrastructure with a digitally-encoded travel message
channel (TMC) are underway.

2. Program Delivery Control (PDC) [6]

PDC is a system for encoding television program identity and start and
stop times in teletext to facilitate recording on PDC-capable VCRs.
Program identity labels (PILs) are transmitted at the start of each
broadcast, and at one second intervals throughout. Corresponding
published program information (e.g., Gemstar’s ShowView and
VideoPlus+) can be obtained in printed TV guides and entered into a
PDC-capable VCR. A variant of PDC known as Video Programming
System (VPS) is available in Germany, Switzerland and Austria.

3. Pass through with Local Program Insertion in Cable Headends

Insertion of local programming content at conventional analog cable
television headends has been supported by DTMF ’cue tones’ transmitted
along with program content from a signal source. The demodulated
tones have been used to automatically trigger remote ad insertors and
channel multiplexors [15]. Examples of cue commands include an
’Entry’ (start, pre-roll) tone delivered 8 seconds prior to a local insertion
to provide adequate setup time for insertion equipment initialization. A
corresponding ’Exit’ (stop, switch to network) tone indicates the end of
an insertion period.

Even the most casual viewer of live broadcast analog television has observed
that local program insertions are often executed poorly. Viewers routinely see,
for example, a few seconds of the start of an advertisement, only to have it cut
away to a second, presumably intended local advertisement. Lack of
coordination is even more evident when local content is mixed with the signal
source (e.g., a stock ticker persists through a local ad insertion).

Let’s now consider today’s internet media streams. No mechanism exists to
directly convey program structure and identity with any measure of precision
and granularity. Hence, our first objective is to create a protocol intended to
facilitate the creation of internet services comparable to RDS, PDC, and local
ad insertion services as they exist in conventional broadcasting. Indeed, we
claim that we can create comparable services with far higher levels of
production quality.

But we also aspire to do considerably more with the aid of a well-designed
cueing protocol. We anticipate that the computational capabilities of internet-
connected devices will grow dramatically, enabling new services which process
streams in ways unanticipated by developers of conventional broadcasting
systems. Embedding cues in media streams should facilitate the creation of
novel stream processing applications [14], which might exist at either a receiver
(i.e., an internet connected home ’appliance’) or at a network intermediary
(e.g., gateway or proxy). In the latter scenario, a network node (i.e.,
intermediary) receives streams from one or more sessions, processes these
streams, and retransmits one or more possibly modified streams to other
network intermediaries or receivers. Intermediaries might choose to forward,
add or remove cues based on their utility to downstream devices. We expect
that smart receivers will also process streams with embedded cues, but those
streams will be terminated (i.e., not forwarded). Examples of applications
benefiting from program cues include:

a. Recording

In a program recording application, a program (or segment) is captured
for future playback. Cues which delimit programs facilitate recording by
uniquely identifying program content and precisely indicating program
start and end points.

b. Insertion

A program insertion application places a program segment within another
program, or within an interstice (i.e., program gap). A typical use of
program insertion is the dynamic placement of a commercial
advertisement within an entertainment program. Such local insertions are
routinely performed during anout-of-network commercial break by
insertion equipment located at a cable television headend. For an internet
broadcast, such a function is easily envisioned at or near a CDN’s edge
server at an internet access point. Cues may be used in this setting to
demarcate an interstice (i.e., commercial break) or a program segment
suitable for replacement.

c. Modification

Overlaying a logo on program content is an example of a program
modification. A second is program ’blanking’ or removal. In blanking
applications, content is removed from programs according to user
preferences. For example, if certain program content is accompanied by a
parental advisory notice indicated by cues, that content can be removed at
the listener’s or viewer’s discretion. This approach could also be used to
implement local ’black outs’ of sporting events with market restrictions.

d. Switching

Program switching applications select programs for forwarding from
among one or more active streams being received. We anticipate that
emerging internet radio and television stations will seek to personalize
program content by monitoring and switching between active streams
based on established listener or viewer preferences.

e. Adaptation

Program adaptation or repurposing applications manipulate program
content on behalf of diverse receivers. A typical adaptation is the
transcoding of a video stream for forwarding to receivers otherwise
incapable of either receiving or rendering the original stream.

Note that each of the above applications can be realized by alternate means
without developing a cueing protocol. For example, an application may choose
to use wall clock time as a reference to start/stop recording of a scheduled
program. As an alternative, an application could rely on a pre-existing
agreement about sequence numbers or timestamps, or even the initiation or
suspension of packet flow, to indicate program initiation or termination.

But we maintain that cues are a simpler mechanism for maintaining tight time
synchronization when processing streams. Failure to maintain precise time
synchronization — say when switching between two source streams — could
result in perceptible audible and visible artifacts. Tight time synchronization is
also required in implementations where relatively little media packet buffering
is available at a stream processing point.

Cues can be related to other types of signaling messages and protocol
exchanges. Since cues typically identify events, they can be related to ’named
events’ as proposed for telephone signaling over RTP [2]. A named event is a
message — in some cases in lieu of an in-band, encoded audio signal such as a
DTMF tone — which can be used to trigger an event (e.g., tone generation) at
a receiver. Cues can also be viewed as protocol message flowing downstream

with content for the purpose of content modification or enhancement at ’edge’
servers, analogous to the role played by Internet Content Adaptation Protocol
(I-CAP) [12] extensions to HTTP.

3. Protocol Elements and Architecture

3.1 Objectives

Our cueing protocol was designed to have the following desirable properties:

• Media encoding independence

A single cueing mechanism should be used by all types of encoded media
(e.g., MP3, PCM, MPEG-4). This property permits a single, common
approach to stream handling and in most cases allows stream processing
applications to be unaware of the details of the media encoding. Cues at
the transport layer also enable stream processing without incurring latencies
associated with identifying program structure as might be indicated at the
application-level.

• Transport protocol independence

In the remainder of this document we will focus attention specifically on
how program cues can be added to RTP, the internet standard media
transport protocol. However, it is our intent to have a common cueing
protocol operate across all internet media transport protocols, including
proprietary transport protocols as used by the Real Player (i.e., RDT) and
Windows Media Player. Note that a common cueing mechanism still
permits proprietary media encodings, if desired.

• Consistency with markers at other protocol layers

Information about the structure or semantics of program content might exist
at protocol layers other than the Transport Layer. For example, markers
indicate appropriate entry and exit ’splice’ points in MPEG-2 transport
streams [16, 17]. Hence, it is possible that program cues, if used, could be
either redundant or merely helpful indicators for certain media types. For
example, a cue might indicate that the next arriving packet contains more
detailed, media-specific splicing information requiring consideration of an
application-level header within the transport packet payload.

• Cues as separate, optional packets

Cues are chosen to be separate packets (i.e., distinct from media packets)
and are always optional within a transport stream. Network intermediaries
which receive an stream with embedded cues may add or remove cues to or

from a source stream prior to forwarding. For example, an audio stream
broadcast to affiliate radio stations (for the purpose of rebroadcast) might
include certain cues which contain locally significant or private information
which need not be forwarded to listeners of the affiliate radio stations.

It is not strictly necessary to use separate packets for cues. For example, an
alternate mechanism such as an optional media transport header extension
could be defined to implement cues. However, the use of separate packets
facilitates the addition or removal of cues from a stream, as well as other
stream processing functions.

• In-band and out-of band operation

Application creation is eased somewhat if cues flow in-band, that is, with
cues and media packets forming a single stream, with cues distinguished by
a separate identifier. We anticipate that in-band cues will be the dominant
operating mode. However, out-of-band cues (e.g., cues and media packets
forming two or more separate streams) are also supported. For example,
out-of-band cues might be sent to a separate unicast port from the media
stream, allowing a receiver to accept either the cues, the media stream, or
both. Note that out-of-band delivery of cues might be desirable if privacy
is sought, or if the out-of-band communications uses an underlying reliable
protocol (e.g., TCP) while the media stream is carried by an unreliable
protocol (e.g., UDP) [4]. In principle, an application could be written using
both in-band and out-of-band cues. The cue format is identical regardless of
the channel used to convey the cue. It is also possible to envision
applications which receive cue streams but don’t receive any media packets
(e.g., a program directory service, or a digital rights tracking and accounting
service).

• Time-sensitive program information

Cues are intended for the limited purpose of carrying time-sensitive
program information. Other out-of-band communication mechanisms (e.g.,
HTTP, Session Description Protocol [7] via Session Announcement
Protocol [21]) should be used to carry program information which is
relatively time-insensitive. An example of such program information would
be an internet television station’s weekly programming schedule
announcement or future playlist.

3.2 Cue Types

The basic element of our protocol, the program cue, is constructed by creating
a new RTP payload type. Hence, cues are distinguished from media packets of
separate payload type when carried in-band.

This payload format is used for four principal types of signals:

1. Event Notification

An Event Notification (EN) cue notifies the recipient of the initiation of
an event.

2. Event Termination

An Event Termination (ET) cue notifies the recipient of the completion
of an event.

3. Event Pending

An Event Pending (EP) cue notifies the recipient of an upcoming event.
Depending on application requirements, a sender may issue multiple
(redundant) EPs associated with each event at various times prior to the
event.

4. Event Continuing

An Event Continuing (EC) cue notifies the recipient that an event is in
progress. Depending on application requirements, a sender may issue
multiple EPs associated with each event at various times during an event.

A compliant receiving implementation should support the cues listed above. In
some cases, an implementation may simply ignore or delete some or all cues.
The extensible protocol design permits the addition of new cue types, as
necessary.

3.3 Use of RTP Header Fields

In addition to a new RTP payload type, crucial information needed for cue
handling is located in the RTP header, which we now briefly review; see [3]
for a complete explanation of RTP.

RTP is an internet standard protocol for transporting continuous media. Figure
1 shows the header format. The first twelve bytes of the header are required.
The synchronization source (SSRC) is a random number which uniquely
identifies the source of an RTP packet stream. Packets from a synchronization
source are distinguished by a timestamp and sequence number. These fields are
used by receivers for proper signal reconstruction and playout timing. The
initial sequence number value is also random, and is incremented for each
consecutively transmitted packet. Packets can and do arrive at their destination
out-of-order.

The timestamp indicates the time of the sampling instant of the RTP payload
relative to the initial timestamp value, which is random. The sampling rate for

many audio/video encoding formats is constant, well known, and registered
with IANA; other formats can have time-varying sampling rates. Media
formats are specified by the Payload Type (PT) field. Multiple packets can
have the same timestamp, as in the case where a large video frame is grabbed,

op
t.

op
t.

op
t.

timestamp

sequence number

synchronization source identifier (SSRC)

MV(2)

0x00

header extension

XP

bytes

count
CSRC

contributing source identifiers (CSRC)

U
D

P
 p

ac
ke

t

0 8 16 24 32bit

payload (audio,video,...)

payload type

encoded, but then transported in multiple packets.

Figure 1 — RTP version 2 header.

A list of contributing source identifiers is present only if multiple RTP streams
have been mixed. In this case, theCSRC count (CC) field indicates the number
of contributors, and theCSRC list contains the originalSSRC identifier of each
contributing source.

RTP header fields in cue packets are used as follows:

1. Timestamp: The RTP timestamp reflects the measurement point for the
event indicated by the current packet. The event duration, as described
in the next section, extends forwards from that time. When sent in-band
with media packets, the timestamp rate of cues is identical to the
timestamp rate of the associated media.

2. Marker bit: The RTP marker bit set to 1 (0) indicates the beginning (end)
of an event.

In accordance with current practice, this payload format does not have a static
payload type number, but uses a RTP payload type number established
dynamically and out-of-band (e.g., via a session announcement).

3.4 Cue Payload Format

The payload format is shown in Fig. 2.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
 event type  cuetype ver 
+-+
 number 
+-+
 duration 
+-+
 date 
+-+
 time 
+-+
 time (cont.) reserved  label bytecount 
+-+
 label 
 
+-+

Figure 2 — Payload Format for Cues

Each field in the cue payload is defined as follows:

— event type: The event type is encoded as shown in Table 1.

— cue type: The cue type specifies the significance of the cue, as follows:

i. Notification: cue_type = 1 indicates an EN packet.

ii. Termination:cue_type = 2 indicates an ET packet.

iii. Pending:cue_type = 3 indicates an EP packet.

iv. Continuation:cue_type = 4 indicates an EC packet.

— ver: This field identifies the cue command protocol version. This paper
describes a draft protocol with value 0x0.

— number: The number uniquely identifies an event of specified type. That is,
the { event type, number} tuple uniquely describes a distinct event. Event
type values can be either random, sequential, or assigned by a numbering
authority. If no identifier is used, the value 0x00000000 is used.

— duration: The duration of an event is the time remaining before completion
of the specified event, in timestamp units. For example:

1. An EP packet’s duration specifies the time before the expected
occurrence of the associated pending event.

2. An EN packet indicating the start-of-event has a duration set at the
expected time until the corresponding end-of-event.

3. An ET indicating the end-of-event has a duration set to zero.
However an exception exists if multiple ETs are required, which we
discuss below.

4. An EC packet has a duration set to the expected time until the end of
the currently continuing event’s end.

— date: Society of Motion Picture and Television Engineer’s (SMPTE) date
encoding.

— time: SMPTE time encoding.

— reserved: This field is currently unused and reserved for future use.

— label bytecount: The byte count holds the length (in bytes) of the subsequent
variable-length text field.

— label: A variable-length text field, possibly containing either a Universal
Resource Name or a token suitable for display.

Tables 1 summarizes the encoding of the event type field in the cue payload
format.

_ _______________________________________
encoding (decimal) Event type_ _______________________________________

0-10 <reserved>
11 <advertisement>
12 <video-frame>
13 <interstice>
14 <audio-track>
15 <audio-segment>
16 <video-segment>
17 <program-title>
18 <program-description>
19 <program-label>
20 <content-type>
21 <program-advisory>

22-1023 to be specified
>1023 private, by assignment_ _______________________________________ 






































Table 1: A list of event types

The application developer will determine the appropriate event type for each
application. In general, application developers decide how cues are most
effectively used for their specific purpose. We make no attempt to develop a
particular application protocol other than for the purpose of illustration. We

encourage the adoption of standard conventions by different developers creating
similar or related applications. It is the responsibility of the application
encapsulating data to ensure that packets are filled, and cues are added, in a
manner facilitating stream processing, where possible.

3.5 Cue Placement and Redundancy

Cues placed in an RTP stream might arrive to a destination out-of-order.
Hence, the precise placement of a cue in an RTP stream is not required. The
timestamp and duration fields of a cue convey the precise time of an event, not
the cues position within an RTP stream nor its sequence number.

It is the responsibility of a processing application to buffer enough packets to
handle lost or out-of-order cues. However, placement of a cue at the time of an
event it is marking can reduce the need for buffering. Hence, cues marking the
beginning (EN) or end (ET) of an event cue should be placed in the stream
within 50ms of the time of the associated event. Providing this timely
notification will facilitate the creation of applications using small amounts of
packet buffering per stream. A source should also avoid sending cues to mark
events which have occurred at much earlier times, since these cues are unlikely
to be useful to the receiver.

Cues placed in an RTP stream might fail to arrive to their destination. To
achieve higher reliability, particularly when using an unreliable protocol (e.g.,
UDP) on lossy communication channels, a source may issue multiple cues to
signal the same event (e.g., multiple EP followed by an EN packet).
Applications will generally issue multiple cues in advance of the corresponding
event for the purpose of redundancy. Implementations should be capable of
properly handling redundant cues.

In general, application requirements dictate the appropriateplacement of cues
in an RTP stream. For example, EC packets might be repeated on a regular
basis or injected at random times during an event.

Cues should not affect any mechanism that would normally be used to provide
reliability to a media stream. For example, the forward error correction
mechanism described in RFC 2733 [13] may of course continue be used to
recover from media packet losses.

3.6 An example

Consider the following commercial ad insertion application. A broadcaster
issues an EP cue (event type 13) 8 seconds prior to an interstice suitable for a
program insertion. The network affiliate receives the notice, and initiates setup
of insertion equipment. A second, redundant notification is sent 0.5 seconds

prior to the final RTP packet of the program segment preceding the interstice,
providing the affiliate with an improved estimate of the upcoming interstice’s
start time. Subsequent to the final packet in the terminating program segment,
an EN cue (event type 13) is issued. The downstream affiliate begins
transmitting a new program to the user. This is preceded by the affiliate
issuing an EN cue (event type 11). EC cues are issued by the broadcaster to
the affiliate at 1 second intervals during the interstice. Immediately prior to
transmitting a new program segment to the affiliate, the broadcaster issues an
ET (event type 13) packet indicating the end of the interstice. The affiliate
concurrently issues an ET (event type 11) to the viewer indicating the end of
the inserted program.

In the above example, no cues were forwarded to receivers by the network
affiliate; all cues transmitted by the broadcaster were removed from the stream.

3.7 Indicating Cue Usage in SDP and RTSP

Cues can be sent either with media packets or as a separate stream; the former
case is anticipated to be most common. For the latter case, cues can be sent on
separate multicast groups or separate ports from the media. In either case,
these configuration options must be indicated out-of-band. Straightforward
extensions (e.g., newattributes) can be used to communicate desired cue
operation in both SDP and the Real-Time Streaming Protocol (RTSP) [20].
These descriptions are omitted for brevity.

4. Implementation

We next describe a simple prototype implementation of an ’internet radio
station’ transmitting streams enhanced by cues. In addition, we describe the
implementation of stream processing applications which support desirable
listener and broadcaster services.

Audio content for our internet broadcast is sourced from CD-audio and
transcoded to MP3 files at 96kbs using a widely available tool such as Real
Network’s RealJukebox. The audio is transmitted on private, 10Mbs local area
networks on a well-known multicast address with restricted scope. Individual
MP3 audio tracks are streamed using RTP from Live.com’s streaming server
(i.e., livecaster version 1.5 for Linux).

A ’cue server’ runs on the same machine as the streaming server. The cue
server was little more than a modified version ofrtpsend [18], a public domain
program written by the author (HGS) to transmit stored or pre-recorded RTP
packets. Of course, cue support will be most effective when natively supported
by media servers rather than running as a separate server. The basic cue

operations are easily envisioned as implemented by extensions to the library
rtplib [22]. The transmitted stream is ’marked up’ with structural cues
indicating the beginning and end of a program (i.e., new CD). In addition, cues
indicate the beginning and end of each track, as well as program interstices for
third party program insertions. In each case the transmitted objected is
identified by cues with an appropriate event type and unique event number.

Our desire was to ensure that any media player could be used with our radio
station without modification. But few players support RTP over IP multicast
natively; plug-ins do exist for some players such as Nullsoft’s popularWinAmp.
However, even in cases where plug-ins exist we found that some media players
become confused by receiving an RTP packet with payload type different from
that of the media packets. A typical response observed was a media player
’hanging’ (i.e., abruptly stop rendering the media stream) upon receiving a
program cue. It is clear that future media players will need to be aware of in-
band cues to ensure correct operation, even in the case where the player
chooses to ignore all cues. For now, we were pleased to find a general solution
which operates with all players. A freely available tool, Live.coms’s
playRTPMPEG, terminates RTP over IP (unicast or multicast) and pseudo-
streams the MP3 payload via HTTP to any player, virtually all of which accept
MP3/HTTP. This solution worked on a variety of clients we tested, including a
prototype ’internet radio’ appliance running FreeAmp on Linux [23].

To demonstrate how cues are helpful to both broadcasters as well as end users,
we wrote the following two simple but illustrative applications:

1. Network-based recording service

As a benefit for our internet radio station listeners, we developed a
system to provide hands-free recording of individual MP3 tracks. The
recording service operated on a separate machine from the internet radio
station’s streaming server. To use the service, a listener would view the
radio station’s web page, on which an advance playlist of a CD’s tracks
would be generated by querying the CD audio database www.CDDB.com
and parsing the response. Viewing the playlist, a listener requested the
recording of a specific track, invoking a CGI script. The script initiated a
modified version of rtpdump [18], a publicly available tool which
examines and outputs the header of RTP packets, which remained in a
loop waiting for the program cue indicating the start of the desired track.
Upon receipt of the start-of-track cue, the program invokedplayRTPMPEG
to save the incoming packets to a local MP3 file. The corresponding
end-of-track cue terminated the writing. The resulting file was delivered
to the requester as an attachment to a mail message, though any alternate

fulfillment mechanism could have been used. Note that no advance
coordination was required between the media and recording servers, other
than their shared information about the cueing protocol and its track
identifier.

2. Third-party ad insertion

To show the benefits of cues to broadcasters, affiliates, CDNs and other
service providers, we developed a simple prototype system to provide
third party ad insertion. To use the service, an advertiser would use an
out-of-band method to acquire the right to use a specific program
interstice in our broadcast. In fact, we routinely placed a 60 second
program gap between broadcast audio tracks. The ad insertion program,
operating on a separate machine from the internet radio station’s
streaming server, also used a modified version ofrtpdump, which
remained in a loop waiting for the cue indicating the start of the program
gap. Upon receipt of the appropriate start-of-interstice cue, the program
assumed control of the broadcast. The ad inserter first issued a start-of-ad
cue usingrtpsend, invoked its own streaming server, and broadcast an
audio advertisement stored locally as an MP3 file. Upon conclusion of
the insertionrtpsend was invoked again to issue the corresponding end-
of-ad cue. The internet radio station then resumed control of the
broadcast by issuing its corresponding end-of-interstice cue.

Note once again that no advance coordination was required between
partners sharing control of the broadcast, other than their shared
information about the cueing protocol and the interstice identifier. Of
course, a practical ad insertion system would likely operate differently.
For example, we envision an inserter operating at — or in conjunction
with — a CDN’s edge server. Advertisement content could equally well
be locally stored or cached, or requested from remote sources (e.g., using
RTSP). All communication would be unicast, avoiding the well-known
security problems of IP multicast (e.g., susceptibility to denial-of-service
attacks). Cues between broadcast partners would generally not be passed
to receivers In principle, different receivers could receive different edge-
inserted advertisements, according to their preferences.

In each of the above applications cues were lightly used. With the audio stream
operating at 96kbs, an additional 0.1% or less of bandwidth was consumed by
cues. Even when cues are generously used in audio streams, there seems little
reason to expect the incremental percent bandwidth to grow larger, particularly
as streaming bandwidth increases. With the nominal streaming bandwidth for
video being larger, there too we expect cue bandwidth consumption to be

insignificant.

5. Related Topics and Conclusions

5.1 Conveying Program Semantics

In addition to communicating program structure, cues may be used to convey
program semantics. For example, cues within a video stream might delimit a
collection of packets which contain a single image of significance to a receiver
(e.g., <photo op> ... </photo op>). Use of such cues could facilitate a variety of
highly time-sensitive adaptation or repurposing applications.

5.2 Proper Audio/Video Encoding and Transition Concealment

Consider again the problem of inserting an advertisement in a ’live’ or
’simulated live’ broadcast stream. It is clear that content coming from different
sources need not be encoded with the same media type or bandwidth. The
RTP specification [3] states that "A synchronization source may change its data
format, e.g., audio encoding, over time." Hence, an RTP stream can be
inserted in any standard format receivers can decode. It is each viewer’s
responsibility to identify the payload type change and correctly adapt to the
change. In practice, however, we have observed some video players
responding correctly to changes in encoding scheme, but we have also seen
audio players ’hang’ on rate changes between back-to-back MP3 tracks.

Even when a player can accommodate changes in rate and encoding, the
transition should be aesthetically pleasing. When a local television station
affiliate, for example, switches in a stored program advertisement during an
out-of-network commercial break, the program transition should be free of
visible switching artifacts. For example, a full frame should be sent first (e.g.,
an I-frame in MPEG-2). Such a recommendation is common in any video
mixing system [19]. In principle this can be relatively easily realized for stored
program advertisements. But achieving this becomes more difficult for "live"
insertions, and also when returning control to "live" programming content. One
possible solution is to have the intermediary discard video data until a full
frame is received. The disadvantage of such a technique is obviously that
switching between sources will take a longer, more variable period of time
(e.g., perhaps 1/2 second before receiving the next I-frame in a typical MPEG
sequence).

Concealment techniques can and should be used to hide aesthetically
displeasing transitions. Perhaps the simplest video concealment technique is
for both parties to agree on content surrounding the transition; the party
completing its transmission can fade-to-black, while the party initiating its

transmission can begin with multiple black frames. Any number of special
effects can be used to aesthetically improve the receiver’s transition. In a
similar fashion, proper volume control can be used to minimize audio artifacts
(e.g., clicks).

5.3 Electronic Commerce

Cues enable new services, and these new services must be accompanied by a
payment mechanism. For example, once a program insertion system exists, it is
necessary to arrange for payment for insertions, as well as a mechanism for
accounting for viewers. This is particularly true when insertions are
’personalized’, and more than one program is simultaneously broadcast to
different users of the same edge server. As viewer demographic information is
returned to content providers in near real time, we expect to see payment
mechanisms become more auction-like.

5.4 Security and Robustness

Methods to authenticate cues need to be explored. Signing a packet using a
public-key algorithm is computationally difficult and would introduce at least
64 bytes of overhead per packet. Thus, it appears that one has to resort to non-
technical means to discourage intrusions by malicious third parties.

The presence of cues allow end users to perform functions that might not be
desired by broadcasters or content providers. For example, receivers can use
software filters to block advertisements at their end systems. While hardware-
based adblankers exist for broadcast receivers, their use is not widespread;
viewing or hearing nothing in lieu of an undesired advertisement offers viewers
little advantage. But software filters are easy to construct, so their use is a
threat. If filter use were to become common, broadcasters might be forced to
consider additional countermeasures.

6. Conclusion

We have designed and implemented a prototype cueing protocol to support a
new generation of internet broadcasting services. While we focused on the
ability of cues to provide a mechanism for conveying program identity and
structure, the protocol is extensible, and we envision it used for a variety of
applications, including emergency notifications, alerts, and media
personalization.

Our work optimistically anticipates that global IP network infrastructure
improvements will continue at a rate sufficient to support acceptable quality
real-time transport. To this end, we strove to develop a protocol which fits
well with the tiered architecture of emerging CDNs.

A successful cueing protocol will effectively support local ad insertion. By
allowing rich media content to be increasing personalized, we are supporting a
business model for funding programming events which might be acceptable to
content providers, internet broadcasters and viewers. As a consequence, internet
broadcasting growth will be stimulated. Alternative funding models (e.g., pay-
per-view) will likely coexist with commercial advertising as they do on
broadcast television. We also recognize that many viewers find commercial
advertising unappealing. For these viewers we have proposed mechanisms to
ensure that ads can potentially delivered according to user preferences, or not
viewed at all.

The rapid acceptance of software viewers such asRealPlayer and Windows
Media Player and the emergence of commercial internet broadcasters suggest
continued strong demand for dissemination of multimedia content. The
commercial media broadcasting market is obviously not waiting for transport
service guarantees, higher speed residential access technologies, new electronic
payment systems, nor improved IP multicast infrastructure. Looking ahead, it
appears as though the existing multimedia distribution approaches will serve
only to accelerate demand for increased bandwidth and service quality. It
remains to be seen just how much of this growing demand for multimedia
‘broadcasts’ will be satisfied by emerging CDN infrastructure.

References

[1] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: a
transport protocol for real-time applications,"Request for Comments (Proposed
Standard) 1889, Internet Engineering Task Force, Jan. 1996.

[2] H. Schulzrinne, S. Petrack, " RTP Playload for DTMF Digits,
Telephony Tones and Telephony Signals,"Internet Draft, AVT Working
Group, Oct. 1999.

[3] S. Bradner, "Key words for use in RFCs to indicate requirement levels,"
Request for Comments (Best Current Practice) 2119, Internet Engineering Task
Force, Mar. 1997.

[4] J. Brassil, S. Garg, H. Schulzrinne, "Program Insertion in Real-Time IP
Multicast," ACM Computer Communication Review, April. 1999.

[5] http://www.rds.org/rds98

[6] http://www.gemstar.co.uk/en/showview/pdc.html

[7] M. Handley and V. Jacobson, "SDP: session description protocol,"
Request for Comments (Proposed Standard) 2327, Internet Engineering Task
Force, Apr. 1998.

[8] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J. C.
Bolot, A. Vega-Garcia, and S. Fosse-Parisis, "RTP payload for redundant audio
data," Request for Comments (Proposed Standard) 2198, Internet Engineering
Task Force, Sept. 1997.

[9] J. Whittiker, DTV - The Revolution in Electronic Imaging, McGraw-
Hill, 1998.

[10] H. Schulzrinne, "RTP profile for audio and video conferences with
minimal control," Request for Comments (Proposed Standard) 1890, Internet
Engineering Task Force, Jan. 1996.

[11] Cugnini, A. G., "MPEG-2 Bitstream Splicing,"Proceedings of the
Digital Television’97 Conference, Overland Park, KS, Dec. 1997.

[12] http://www.i-cap.org/

[13] Rosenberg, J. and H. Schulzrinne, "An RTP Payload Format for
Generic Forward Error Correction,"Request for Comments 2733, Internet
Engineering Task Force, Dec. 1999.

[14] Mitchell, S. et al, "A QoS Support Framework for Dynamically
Reconfigurable Multimedia Applications,"Technical Report, Distributed
Systems Laboratory, University of London, 1998.

[15] DVS-075, "Cue Commands in Digital Systems", Digital Video
Subcommittee, Society of Cable Telecommunications Engineers, Inc., March
25, 1997.

[16] DVS-253, "Digital Program Insertion Cueing Message for Cable",
Digital Video Subcommittee, Society of Cable Telecommunications Engineers,
Inc., September 27, 1999.

[17] J. After, "MPEG-2 Bit Splicing Revolution in Electronic Imaging",
McGraw-Hill, 1998.

[18] H. Schulzrinne, RTP Toolset Version 1.10,
http://www.cs.columbia.edu/˜hgs/software.

[19] Cable Television Laboratories, Inc., "Digital Program Insertion:
Request for Information," (April 1997).

[20] A. Dutta, H. Schulzrinne, Y. Yemini, "MarconiNet - An Architecture
for Internet Radio and TV Networks,"IEEE NOSSDAV’99, (1999).

[20] H. Schulzrinne, A. Rao, and R. Lanphier, "RTSP: A Transport Protocol
for Real-Time Applications,"Internet Draft (February 1998).

[21] M. Handley, "SAP: Session Announcement Protocol,"Internet Draft
(November 1996).

[22] RTP Library, http://gaia.cs.umass.edu.com/˜drubenst/rtp_api.html.

[23] V. Krishnan, G. Chang, "Customized Internet Radio,"Proceedings of
the 9th International World Wide Web Conference, Amsterdam, 2000.

