

SmartAgent: Extending the JADE Agent
Behavior Model

Martin L. Griss, Steven Fonseca, Dick Cowan, Robert Kessler1

Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-18
January 28th , 2002*

agents, JADE,
UML, state-
oriented
programming,
conversation
management

A key component of effective multi-agent systems (MAS) software
development is a set of models, technologies and tools that efficiently
support flexible and precise specification and implementation of
agent-to-agent conversations, standardized conversation protocols,
and corresponding agent behaviors. This motivated a substantial
extension to the JADE agent behavior model, which we call “HP
SmartAgent.” Previous experience with the ZEUS and JADE agent
toolkits highlighted the need for more flexibility and precision in
programming agent behavior and managing conversations. For
example, the JADE infrastructure routes ACL messages in round-
robin fashion to interested behavior “threads,” making it hard to
control ordering; reuse of behavior subclasses is difficult; and,
support for default and exceptional behavior is inadequate.
SmartAgent extends JADE behaviors with uniform message system
events, a multi-level tree of dispatchers that match and route events,
and a hierarchical state machine that is based on the UML statechart
model. Adherence to the UML helps bridge object-oriented to agent-
oriented programming using an industry familiar modeling language
and tools. Combining events, dispatcher tree and hierarchical state
machines simplifies programming of default and context dependent
behavior. This hypothesis was confirmed in a meeting scheduler
prototype where code previously written using pure JADE was
refactored using SmartAgent.

* Internal Accession Date Only Approved for External Publication
1 University of Utah, Salt Lake City, UT, 84112
 Copyright Hewlett-Packard Company 2002

 1

SmartAgent: Extending the JADE Agent Behavior Model
Martin L Griss, Steven Fonseca+, Dick Cowan, and Robert Kessler*

Software Technology Laboratory
HP Laboratories Palo Alto

(+UC Santa Cruz / HP Labs) (*University of Utah)
January 2002

(Submitted to the AOSE Workshop, SCI, Orlando, Florida, July 2002)

ABSTRACT
A key component of effective multi-agent systems (MAS) software development is a set of models, technologies and tools that
efficiently support flexible and precise specification and implementation of agent-to-agent conversations, standardized
conversation protocols, and corresponding agent behaviors. This motivated a substantial extension to the JADE agent
behavior model, which we call "HP SmartAgent." Previous experience with the ZEUS and JADE agent toolkits highlighted
the need for more flexibility and precision in programming agent behavior and managing conversations. For example, the
JADE infrastructure routes ACL messages in round-robin fashion to interested behavior “threads,” making it hard to control
ordering; reuse of behavior subclasses is difficult; and, support for default and exceptional behavior is inadequate.
SmartAgent extends JADE behaviors with uniform message and system events, a multi-level tree of dispatchers that match
and route events, and a hierarchical state machine that is based on the UML statechart model. Adherence to the UML helps
bridge object-oriented to agent-oriented programming using an industry familiar modeling language and tools. Combining
events, dispatcher tree and hierarchical state machines simplifies programming of default and context dependent behavior.
This hypothesis was confirmed in a meeting scheduler prototype where code previously written using pure JADE was
refactored using SmartAgent.

Keywords: agent, multi-agent system, conversation management, protocol, agent behavior, state machine, UML, JADE,
ZEUS, state-oriented programming.

1 Introduction
Before effective agent-oriented solutions can be made widely available, systematic agent-oriented engineering and process
methodologies must be matured. This lesson [Jennings, 2000] was internalized by our agent research group while prototyping
a mobile shopper demonstration [Fonseca et al., 2001a; Griss and Letsinger, 2000] (using ZEUS [Nwana et al., 1999]) and a
personal assistant with meeting scheduler [Griss et al., 2001] (using JADE [Bellifemine et al., 1999]). The software
engineering and programming of multi-agent systems should use the same techniques used for any complex, distributed
system: decomposition, abstraction, and organization [Booch et al., 1999; Jennings & Wooldridge, 1998].
The overall purpose of our agent-engineering research is to express and adapt these three techniques for the agent-oriented
paradigm. Our goals are to develop a programming paradigm and implementation that facilitates agent construction through
libraries of composable, reusable behavior elements, generated and assembled from input (UML) models. We and others are
working in several related areas, including: UML-based modeling for agent systems (AUML [Odell 2000], [Griss 2000] and
others), agent patterns [Kendall, 1999], Java-bean based agent component frameworks Gschwind [Gschwind et al., 1999], and
aspect-oriented programming applied to agents [Kendall, 1999; Griss 2000a].
In this paper, we describe some of our recent work on a flexible conceptual and implementation framework that allows a
number of conversation management (monitoring and control) policies and mechanisms to be uniformly described,
negotiated, composed and implemented. MAS frameworks such as Zeus and JADE provide some support for constructing
and coordinating sets of behaviors that support a particular conversation, but we found these mechanisms fairly rudimentary
and idiosyncratic; in particular, it was hard to both control the precise order of behavior invocation and flexibly decompose
behavior into coordinating parts that could be updated dynamically.
To realize flexibility, partitioning, and control when programming an agent, we chose to use an architecture supporting
hierarchical state machine based programming of behavior, augmented with several flexibility enhancing mechanisms (such as
events and dispatcher chains). We chose to base our conversation models and engines as accurately as possible on the UML
standard hierarchical StateCharts [Booch et al., 1999]. Figure 1 shows as a UML interaction diagram ACL message exchange

 2

between three agents in our personal meeting arrangement assistant. These messages trigger state transitions shown in Figure
2, which models one of the hierarchical state machines that define a personal agent’s behavior.
It is this decomposition of agent behavior and conversation management that SmartAgent supports. Section 2 provides a brief
review of UML state machines and several agent platforms that support state-based programming of behavior and
conversation management. Section 3 describes the SmartAgent architecture and design of our event-based, state-oriented
extensions to JADE behaviors. Section 4 summarizes our experience using these extensions, and Section 5 concludes with a
summery and suggests next steps.

2 State Machines and MAS Frameworks
State-based programming recognizes that any useful system must respond to the dynamic conditions of its environment. This
fits well with the notion that software agents should autonomously react to their society. State-based programming for agent

behavior has been explored to model agent communication and behaviors [Odell 2000], as well more general reactive systems
[Harel and Politi, 1998]. JADE offers a lightweight non-hierarchical state machine class with limited functionality while
ZEUS provides a more complete non-hierarchical state machine execution subsystem, but the API is not well-developed. The
JACKAL conversation engine also uses a state machine model [Cost 1998, 1999], and explored (colored) Petri nets [Cost et
al., 2000].

Figure 1 – Meeting arrangement conversation

Calendar
Agent

Personal
Agent

Natural
Language

Agent

inform

Meeting
Agent

inform

inform

inform

inform

Startup

transition

ConvertToNL

SendSimple

transition

 3

We will discuss JADE in more detail than ZEUS, since it was our chosen platform for our state-based programming
extensions. When messages arrive, a pool of currently interested behaviors is woken-up and the first ready behavior has an
opportunity to process the message. A logical combination of string matching on the attributes of the incoming message is
performed to determine if the action method of this behavior is executed. If the matching criteria are not satisfied, the current
behavior is put back to sleep and matching with the next behavior is attempted. Once a behavior accepts a message, the pool
of active behaviors are put back to sleep. Explicit reposting of a message is required when it should be handled by multiple
behaviors. JADE recently provided a simple state machine, whose FSMBehaviour class maintains the relationship
(transitions) between states and selects the next state behavior to execute. When a state is registered, a string name is
associated with the corresponding behavior object. After naming all states, the transitions between them are defined and
stored. Each transition is assigned an integer representing its event number. Once the start and finish states are registered, the

state machine is ready for execution. When a state behavior finishes, an onEnd method returns the event number that
determines the one-and-only next transition to fire. If no transitions are associated with the current event number, the default
transition is taken if one was specified. Note that transitions only serve to link states; they do not encapsulate agent behavior.
Dealing with transition event numbers is also troublesome.
The UML state machine [Booch et al., 1999] evolved from the hierarchical statechart work of Harel [Harel and Politi, 1998].
A UML state machine defines the states that a machine is allowed to enter and the transitions that connect states together.
States and machines can be built within other states and machines. This provides a hierarchy of processing elements that
make it easier to respond to dynamic conditions of the environment and to handle default conditions. UML state machines are
event driven; all actions in the environment come in the form of events that are presented to the state machine. Transitions
define the conditions under which changes in state occur and are often event driven.

3 Design of SmartAgent
Our goal was to provide to the JADE programmer an easy to use set of classes and mechanisms (a conversation manager
“kit”) to enable the building of robust JADE behaviors. We wanted an explicit representation of the states and transitions,
allowing future model-based generation, testing and monitoring tools. We wanted more control over the order of event
dispatching, we wanted more powerful event matching patterns and rule-based dispatchers (using Jess and other pattern
matchers). We wanted more flexible and extensible, dynamic addition of activities, transitions, states and complete behaviors,
yet still provide precise handling of complex protocols. Finally, we wanted to easily express, combine and reuse core protocol
elements and important default and exception handlers.

Waiting SendMessageToUser

Startup
entry: validate and

send to calendar

failure || exception
/ print special error
act(failure(unexpected))

inform[replyID]:
/store str msg

ConvertToNL

entry: set replyId
send obj msg to NL

SendSimple
entry: find channels

send str msg via channels
act(success)

action:
exit:

confirm
/send confirm
to MA

Finalize

entry: stop()

*/ act(failure(sender))
*/ act(failure(default))

after 10 sec
/act(timeout)

Figure 2: Sub-conversation StateChart

 4

To this end, we implemented a fairly complete version of the UML hierarchical StateCharts, augmented with events and
flexible dispatching extensions. UML StateCharts provide a standard graphical notation with numerous existing tools. The
ability to run actions on both states and transitions provides flexibility in expression, and the hierarchy (nested states)
provides a good mechanism for default handling.

3.1 SmartAgent Behavior Architecture
SmartAgent consists of three major subsystems: an event fusion and matching system that provides uniform event handling,
an event dispatching system that provides event routing, grouping and ordering of agent Activities, and hierarchical state
machine classes that partition agent behavior into states and transitions. Figure 3 shows a somewhat simplified class
structure1. Figure 4 shows the event Controller/Dispatcher, and Figure 5 illustrates the state machine mechanism.

Event and EventTemplate
SmartAgent is explicitly event-driven. Every action that an agent is subjected to is translated into an event for uniform
handling and processing. JADE behaviors convert received ACL messages and timers into events sent into the dispatcher
structure (e.g., ControllerBehavior in Figure 4); other system actions and behaviors can also generate events. This includes
both “external events” such as incoming ACL messages, system events such as ExceptionEvent and TimerEvent, and internal
events signaled by other behaviors and activities, such as SuccessEvent and FailureEvent. ACL messages are wrapped in a
MessageEvent object. Other event subclasses allow an agent and its internal systems to handle these Events uniformly. We
extend JADE’s message matching mechanism to allow more complex event matching. An event of a specified type is
compared with an EventTemplate that defines a function called matches that checks to see if the matching criterion is
satisfied. For example, a MessageEventTemplate object contains a JADE MessageTemplate that is compared with an
incoming JADE ACL message wrapped in a MessageEvent object. EventTemplates allow matching on message arrival,
timeouts or other events. Multiple matching checks can be combined using logical connectives to create a single boolean
expression that can be tested for satisfaction. Loose coupling of event handlers is achieved by using the Observer pattern
[Gamma et al., 1994] to allow dynamic addition and removal of multiple event listeners, each obtaining a copy of the event.

1 We have removed several classes, interfaces and relationships to simplify explanation.

Figure 3 – Simplified SmartAgent architecture

Activity
hasInterest(event)
eventReceived(event)

Dispatcher
addActivity(activity)
removeActivity(activity)
isDone()
guard()

Controller
addDispatcher(section, dispatcher)
addDispatcherSection(section)
removeDispatcher(dispatcher)

Event
getContents()
getEventID()
getTimeStamp()

EventTemplate
matches(event)

HSM
addState(state)
removeState(state)
getCurrentState()
setCurrentState(state)
start()
stop()

State
entry()
action()
exit()
addTransition(section, transition)
removeTransition(transition)

Transition
execute(event,state)
gotoNextState()

Internal

Default

Immediate

DeferredInitialState TimedState

FinalState
CompositeState

 5

Dispatching and controller mechanism
The SmartAgent dispatching and controller mechanism routes events (including MessageEvents) to one or more execution
objects (an Activity). As shown in Figure 4, ControllerBehavior continuously runs as a top-level agent behavior. It delivers
all received messages as some Event to the controller. The controller contains a chain of dispatchers, grouped into sections.
When a new dispatcher is added to a controller, it is appended to the end of an appropriate dispatcher section, implementing a
simple priority scheme.

Each dispatcher manages a collection of activities. The granularity of an Activity can range from a very simple and short
code sequence to another dispatcher or full multi-state state machine. As shown in Figure 3, controllers, dispatchers, and
activities all implement this interface, and so dispatch trees can be built as shown in Figure 4, by attaching other controllers or
dispatchers to a higher-level dispatcher.
Dispatchers first determine if the incoming event is for their Activities (via hasInterest and guard). The hasInterest function
may use an EventTemplate, while guard will check additional requirements (such as testing counters in the agent). If both
tests succeed, the dispatcher distributes the event according to its distribution policy (via eventReceived). After activity
processing is complete, the dispatcher tests isDone to see if the event should be forwarded to the next dispatcher.
Figure 4 does not show the grouping of dispatchers into named sections. These allow the dynamic addition of a new
dispatcher at a specified place in the chain or tree. Activities, dispatchers and sections can be added or removed at runtime. It
is quite easy to establish (say) three sections, in which the first copies events to each of an extensible set of loggers and
monitors, the second runs one or more activities and then the last section contains default and exception handling activities,
that fire only if none of the dispatchers in the second section fire. More precise control will require more intermediate
sections, or a Hierarchical State Machine.
Hierarchical State Machine
In the Hierarchical State Machine (HSM), actions that an agent must perform can also be further decomposed into states in
which case incoming events trigger state transitions. We use three core class hierarchies. First, an HSM class implements the
Activity interface. It is the top-level object that receives events from the dispatching subsystem. HSM maintains a current
state pointer so when new events are received they can be forwarded to the current state. When transitions are taken, the
current state pointer is updated.
All states in an HSM descend from a class called State. State provides the basic functionality that all states share and defines
default methods that subclasses might override. For example, the eventReceived method is often rewritten and is dependent
on the type of the state object. Figure 3 shows a simplified state class hierarchy.

Agent Society

ControllerBehavior

Dispatcher

Dispatcher

Dispatcher

Dispatcher

…

Controller Activity

Activity (HSM)

Activity

Activity (HSM)

Activity

…

isDonemessage

event

Figure 4: SmartAgent event-driven dispatching model

Activity
Activity
ActivityController

Dispatcher

Dispatcher

Dispatcher

 6

The normal State class and its subclasses CompositeState and TimedState, implement entry, action, and exit methods.
InitialState and FinalState are simplified kinds of State. They restrict the transitions allowed, and do not implement the entry,
action, or exit functions. Entry is called each time a new states is entered. The action method is invoked when an event is
received but does not result in the firing of any transition. By default, action runs a set of attached Activities. Exit is called
before a transition leaves the state. A CompositeState provides the additional capability of encapsulating a collection of
nested states. A CompositeState can include its own initial and final states. TimedState extends State by providing a built-in
timeout mechanism that on entry starts a timer that generates a timer event after a specified duration has elapsed.
States are connected by transitions, a subclass of Dispatcher. When an event is received by the current state, a check is
performed to see if it matches any of the transitions leading to a next state. For a transition to fire, its guard and event
matching criteria must be satisfied. Like state objects, transitions also have an overridable action function (by default running
attached activities).
Internal and deferred transitions do not leave the current state. When an internal transition fires, the HSM continues to remain
in the same state, and entry and exit methods are not run. When a deferred transition fires, the event is placed in the deferred

event queue for processing in a later state2.
Hierarchy in UML state machines provides two inheritance benefits, factoring common actions and tests. First, if an event
does not fire a transition of the current state, then the transitions for parent states are recursively checked. This inheritance
makes it easy to program default agent behavior by having composite states provide default and exceptional transitions to
states that then need explicitly handle only the main cases. Further, nested states can redefine transitions matching the same
type of event as its parent to override what is already provided by default. The second is that a chain of entry and exit
functions will be run when transitions cross composite state boundaries.
For example, Figure 5 shows an incoming ACL message received by the ControllerBehavior, which is sent as a MessageEvent
to the Controller. This passes the event through the tree of Dispatchers. Dispatchers that match haveInterest and guard run
their Activities. In this example, the Template associated with the second Dispatcher matches, and the event is received by a
single state machine activity named HSM. Its currentState pointer relays the event to the correct state, in this case S1. S1
searches for a transition that matches the event just received. If transition T1 exists between S2 and S3, where S1 is a top
level state, and S3 is a child of S2, the expected sequence of method invocations is as specified by UML: S1.exit, T1.action,

2 Deferred transitions were only partially implemented.

(REQUEST
:sender (agent-identifier :name sender1@spfonseca:1099/JADE)
:receiver (set (agent-identifier :name hsmtest@spfonseca:1099/JADE))
:content "want a meeting "
:reply-with rid_sender10
:conversation-id hsmtest

)

ControllerBehavior

Controller

MessageEvent

Dispatcher-2

S1 S3

HSM

S2

T1

current state pointer

Template & guard matches

T1 matches messages of type
REQUEST

T1.match
T1.guard
S1.exit
T1.action
S2.entry
S3.entry

All activities receive copy of MessageEvent

Figure 5: SmartAgent Dispatching Model

Dispatcher-1

Activity
Activity
Activity

 7

S2.entry, and S3.entry. This ensures that exit code is always run; this is used for example in TimedState to shut off the timer.
First, S1 is exited. Though not shown, the current state pointer of HSM is updated to S3.
We have introduced two new types of transitions: immediate and default. After a state’s entry code is executed, all immediate
transitions are evaluated without waiting for an event. When an event arrives, if no transitions fire, we recursively search the
parent chain. Often we created a parent state enclosing the child state just to hold a single transition to handle any exceptional
events. This idiom was so common that we introduced a default transition as a "macro" for this common case.
To summarize, after a transition’s hasInterest and guard return true, the following occurs in this order:

1. The current state’s exit method is run.
2. The transition’s action is run.
3. The target state’s entry code is evaluated.
4. The guards on any immediate transitions are checked and fired if appropriate.
5. If there are deferred events, they are processed like any other external event, firing transitions if appropriate.
6. The target state then waits for a new event to arrive. When that happens, the regular, deferred and internal

transition triggers and guards are checked and then fired as appropriate.
7. If no transitions fire in Step 6, any default transitions are processed.
8. The parent hierarchy is scanned to see if any parent wishes to process the event.
9. If no one will process the event, it is discarded, the state’s action is evaluated, and processing continues back at

Step 5.

4 Experience using SmartAgent
As we developed and evaluated the integrated model, we used two experimental vehicles. One was an extensive set of sample
state machines. The other was a re-implementation of our CoolAgent Personal Assistant and Meeting Assistant system [Griss
et al., 2001] (similar in spirit to [Maes, 1994]). We used table-driven event and meeting request senders for debugging,
exhaustive testing of corner cases, exploring new features, improving the robustness of the meeting system and assessing the
benefits of explicit state-based programming.
The meeting system was originally written using a state-like model (with case statements over integer states), so adapting it
for the HSM was relatively straightforward. The original conversation models were informally sketched as state machines
(such as in Figure 2), so formalizing states, transitions, templates, guards, and actions was fairly direct. Mapping from the
UML diagrams into code was immediate. We translated code that looked like that in Figure 6A into code in Figure 6B. What
you should notice are many switch statements (lines 4 and 23), both for state processing and for message handling. State
changes occur by changing the state variable to the value of an integer constant. Line 21 shows a call to receive a message.
By forcing message retrieval through one function, it allows you to add a message logging capability. However, if you wish
to be selective and only log certain messages, the code would require additional arguments or global state to decide which
messages to log. Under the dispatcher model, one simply adds a new message dispatcher that decides which messages to log
and inserts that at the top of the dispatch loop. Line 30 shows the addition of another behavior that is responsible for sending
the message to the user (essentially the right side of the state chart in Figure 2). Outer code not shown coordinates the
blocking of this behavior until the child completes. Figure 6B shows a piece of the state machine code for Figure 2. Lines 2
through 11 create the states. Some states, such as finalize on lines 8 through 11, are simple enough that you merely instantiate
a state object and define the various methods inline. Others, such as startup, sendSimple, and convertToNL on lines 4
through 7 are more involved and so we chose to create a subclass that defines the various entry, action, or exit code. Lines 28
through 41 show how easy it is to create transitions. Lines 28-39 shows the definition of a transition between convertToNL
and sendSimple that has both guard and action code. Lines 40-41 show a simpler transition that goes from startup to finalize
when any FAILURE message is received. As you might imagine, modifying the state machine to handle other situations is as
simple as adding a new transition.

 8

01 public void actionBody() {
..
04 switch (state) {
05 case STARTING: {
..
20 case WAITING_FOR_UPDATE_CONFIRMATION: {
21 ACLMessage msg = agent.receiveACLMessage(MessageTemplate.MatchInReplyTo(reply_id));
22 if (msg != null) {
23 switch (msg.getPerformative()) {
24 case ACLMessage.CONFIRM: {
..
29 // Start behavior for informing the participant of the meeting details
30 addChildBehavior(new PA_SendMsgToUser_Behavior(agent, this, announcement));
31 state = FINISHED;
32 break;
33 } //~ case ACLMessage.CONFIRM
34 case ACLMessage.FAILURE: {
35 state = FINISHED;
36 break;
37 } //~ case ACLMessage.FAILURE
..
48 } //~ switch (msg.getPerformative())
49 } // END if (msg != null)
50 break;
51 } // END case WAITING_FOR_UPDATE_CONFIRMATION:
52 } // END switch (state)
53 } // END actionBody()

Figure 6A – Partial code for Figure 2 before change into a state machine.
01 // *** Create the States.
02 CompositeState def = new CompositeState("Default", this);
03 CompositeState sendMessageToUser = new CompositeState("sendMessageToUser", this);
04 State startup = new StartupState("Startup", def);
05 State sendSimple = new SendSimpleState("SendSimple", sendMessageToUser,
06 agent.getTimeout("waitForSendMessage", 5000), this, timerEventKey);
07 State convertToNL = new ConvertToNLState("ConvertToNL", sendMessageToUser);
08 State finalize = new State("Final", this) {
09 public void entry() {
10 stop();
11 }
12 };
13 // *** Create the transitions.
..
28 Transition gotNL = new Transition("gotNL",
29 new MessageEventTemplate(MessageTemplate.MatchPerformative(ACLMessage.INFORM)),
30 convertToNL, sendSimple) {
31 public boolean guard(Event e) {
32 return (e instanceof MessageEvent) &&
33 (((ACLMessage)e.getContents()).getInReplyTo().equals(replyId));
34 }
35 public void action(Event e, State s) {
36 convertedMessage = ((ACLMessage)e.getContents()).getContent();
37 }
38 };
39 convertToNL.addTransition(gotNL);
40 Transition.add(startup, finalize, "failure",
41 new MessageEventTemplate(MessageTemplate.MatchPerformative(ACLMessage.FAILURE)));

Figure 6B – Partial state machine code for state diagram in Figure 2.
One interesting observation is what we have NOT used in the system. So far we have not needed any state action; instead, we
put all action code either inside the state entry or in the transition action. In part, this is because one cannot ensure that the
state action code will ever be executed. It is only executed when an event arrives that the state transitions cannot handle. If
only expected valid events arrive, then the action code will never be executed. In the “event switch” model, the action code is
used to indicate those exceptional conditions when no event template can be found anywhere in the hierarchy. In the UML
state chart design, action is the “idle loop” action or “default action.” We could easily be enabled this in our model by
sending in (several frequencies of) “clock tick” event. Another rarely used feature is the state exit capability. So far, our only
use was to turn off the timer in a TimedState. We suspect that as more complex conversations are developed, we will
certainly make use of these features. We must note that nested states are used extensively to factor our exceptional and default
case transitions, and caused us to introduce the DefaultTransition for the most common case.

 9

The way we handle multiple conversations is simple: a message begins a new “sub-conversation” allocates a new unique
conversation ID (CID) and then instantiates an appropriate HSM, which is attached to a new dispatchers that matches only
messages with that CID. When a message with that CID arrives it is directly routed to the specific HSM. Once the HSM is
finished, we remove the dispatcher. Logging, monitoring and default handlers will still apply as appropriate to all messages.
We have built about a dozen state machines to handle various parts of the personal assistant system. We have used
dispatchers and HSM’s to implement a loosely coupled internal agent architecture, in which a rich set of internal events is
exchanged between HSM’s [Letsinger 2001]. Anecdotally, it is clear to us that using this model is far superior to using the
model that is provided by the base JADE system. We can construct more robust, more complicated state-based interactions in
less time and with less code.

5 Summary, Conclusions and Future Work
We have developed an enhanced JADE agent behavior model allowing more precise control over robust agent behavioral
issues such as timeouts, default and exception handling, and order of behavior execution. In addition, we have increased the
flexibility and adaptability of our system. Our model integrates events, activities, event dispatching and hierarchical state
machines to overcome the difficulties we encountered in our previous experiments with ZEUS and JADE [Fonseca at al,
2001; Fonseca et al, 2001a; Griss et al, 2001]. Key to this integration was:

• Event fusion, which converts all messages, exceptions, timeouts and other systems events into a common event
hierarchy that can be matched and dispatched uniformly by rules, dispatchers and state machines.

• Event invoked activities, with a simple Activity interface that can be implemented by most other elements (simple
expressions, rule modules, JADE behaviors and state machines).

It is very easy to add default handlers. Timed states handle those situations where a target agent fails to respond, and
state/transition hierarchy cleanly separates the “main” flow of the conversation and its exception handling.
While we tried to follow the UML state chart semantics very closely, we made some modifications, interpretations and
extensions to better suit a natural, precise yet compatible extension to JADE. Close compatibility with UML yields a rich, yet
understandable system, and enables the use of tools such as Visio 2000, ArgoUML and Rational Rose to design state charts
and interaction diagrams. As mentioned above, the significant changes and extensions include:

• Dynamic addition of dispatchers, states, transitions and activities
• Immediate and default transitions
• Dynamic inheritance of transitions in the state hierarchy
• Embedded HSM, remote invocation of HSM

To better support the factoring of more complex state machines, we expect to complete the implementation of deferred
transitions, and of concurrent states, with fork and join states.

Acknowledgements
Special thanks to David Bell for earlier work that helped motivate and define the scope of this work, and to Reed Letsinger
for critique and feedback as we developed these extensions.

References

[Bellifemine et al., 1999] F. Bellifemine, A. Poggi & G. Rimassi, "JADE: A FIPA-Compliant agent framework", Proc.

Practical Applications of Intelligent Agents and Multi-Agents, April 1999, pg 97-108 (See
http://sharon.cselt.it/projects/jade for latest information)

[Booch et al., 1999] G. Booch, J. Rumbaug & I. Jacobson, The Unified Modeling Language User Guide, Addison-
Wesley, 1999

[Cost et al., 1998] RS. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield & A. Boughannam,
"Jackal: A Java-Based Tool for Agent Development." Working Notes of the Workshop on Tools
for Developing Agents (AAAI '98) (AAAI Technical Report).

[Cost et al., 1999] RS. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Soboroff, J. Mayfield & A. Boughannam, An
Agent-based Infrastructure for Enterprise Integration, ASA/MA, October, 1999, p. 219-33

[Cost et al., 2000] RS.Cost, Y. Chen, T. Finin, Y. Labrou, & Y. Peng, Using Colored Petri nets for Conversation
Modeling, Issues in Agent Communication, AI Vol. 1916, May 2000, p. 178-92.

 10

[Finin 1997] T. Finin, Y. Labrou and J. Mayfield, “KQML as an Agent Communication Language,” in Software
Agents, J.M.Bradshaw (ed), MIT Press, Cambridge, Mass., p291-316, 1997.

[Fonseca et al, 2001] SP Fonseca, ML. Griss, & R. Letsinger, Evaluation of the ZEUS MAS Framework, Hewlett-
Packard Laboratories, Technical Report, HPL-2001-154

[Fonseca et al, 2001a] Steven P. Fonseca, Martin L. Griss, Reed Letsinger, An Agent Mediated E-Commerce
Environment for the Mobile Shopper, Hewlett-Packard Laboratories, Technical Report, HPL-
2001-157

[Gamma et al., 1995] E. Gamma, R Helm, R Johnson & J Vlissides, “Design patterns,” Addison-Wesley, 1995.
[Griss 2000] ML. Griss, "My Agent Will Call Your Agent," Software Development Magazine, February. (See

also "My Agent Will Call Your Agent … But Will It Respond?" Hewlett-Packard Laboratories,
Technical Report, TR-HPL- 1999-159).

[Griss 2000a] ML. Griss, Implementing Product-Line Features By Composing Component Aspects, Proc. First
International Software Product-Line Conference, Denver, CO., Aug 2000

[Griss & Letsinger, 2000] ML Griss & R Letsinger, Games at Work - Agent-Mediated E-Commerce Simulation, Workshop,
Autonomous Agents 2000, Barcelona, Spain, June 2000. (Also HP Laboratories Technical Report,
HPL-2000-52.)

[Griss et al., 2001] ML. Griss, et al., CoolAgent: Intelligent Digital Assistants for Mobile Professionals – Phase 1
Retrospective, HPL Technical Report, Nov 2001 (In preparation)

[Gschwind et al., 1999] T Gschwind, M Ferudin, & S Pleisch, ADK - Building Mobile Agents for Network and Systems
Management from Reusable Components, ASA/MA. Los Alamitos, IEEE.

[Harel and Politi, 1998] D Harel and M Politi, Modeling Reactive Systems with Statecharts, McGraw Hill, 1998
[Jennings and Wooldridge, 1998] NR. Jennings, and MR. Wooldridge, Agent Technology, Springer.
[Jennings, 2000] NR. Jennings, On Agent-Based Software Engineering, Artificial Intelligence, March, 2000, vol.

117, no. 2, p. 277-96
[Kendall, 1999] EA. Kendall, Role Model Designs and Implementations with Aspect-oriented Programming, Proc.

Of OOPSLA 99, Oct, Denver, ACM SIGPLAN, p. 353-369
[Letsinger, 2001] R Letsinger,. Three Architectural Principles for the Design of Personalisable Agents,

 HP Labs Tech Report, HPL-2001-300, December 2001.
[Maes, 1994] P Maes. "Agents that Reduce Work and Information Overload." Communications of the ACM,

Vol. 37, No.7,pp. 31-40, 146, ACM Press, July 1994.
[Nwana et al., 1999] H. Nwana, D. Nduma, L. Lee, J. Collis, "ZEUS: a toolkit for building distributed multi-agent

systems", in Artificial Intelligence Journal, Vol. 13, No. 1, 1999, pp. 129-186. (See
http://www.labs.bt.com/projects/agents/zeus/).

[Odell, 2000] J Odell, H. VD Parunak & B Bauer, Extending UML for Agents, AOIS Workshop at AAAI 2000,
www.auml.org. Also see http://www.jamesodell.com/publications.html

[Samek and Montgomery, 2000] M Samek & P Montgomery, State-Oriented Programming, Embedded Systems
Engineering, August, 2000, p. 21-43.

[Shoham, 1993] Y Shoham, “Agent Oriented Programming,” Journal of Artificial Intelligence, 60(1), pp. 51-92,
1993.

	ABSTRACT
	Introduction
	State Machines and MAS Frameworks
	Design of SmartAgent
	SmartAgent Behavior Architecture

	Experience using SmartAgent
	Summary, Conclusions and Future Work
	Acknowledgements
	References

