

Scalable, Structured Data Placement over
P2P Storage Utilities

Zheng Zhang1, Mallik Mahalingam, Zhichen Xu, Wenting Tang
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-40
February 21st , 2002*

E-mail: zzhang@microsoft.com, {mmallik, zhichen, wenting} @hpl.hp.com

P2P storage
utility,
metadata
placement,
structured
data, CAN,
namespace,
tree

Current peer-to-peer storage utilities offer a convenient flat
storage space, delegating the organization and presentation of
data to upper layers. In reality, both applications and users
typically organize data in a structured form. One such popular
structure is hierarchical namespace as employed in a file
system. A naive approach such as hashing the pathname of file
system not only ignores locality in important operations such as
file/directory lookup, but also results in uncontrollable, massive
object relocations when rename on path component occurs.

In this paper, we investigate policies and strategies that map
the hierarchical namespace onto the flat storage space of P2P
systems. We found that, in general, there exists a tradeoff
between lookup performance and balanced storage utilization,
and attempts to balance these two requirements calls for
intelligent placement decision. We show that simple heuristics
are effective in achieving significant performance benefit with
negligible overhead. In addition, combining some of the
heuristics and carefully setting the parameters can significantly
reduce the lookup cost while keeping the impact on storage
utilization minimal. These algorithms are robust and generic,
capable of handling data layout to capture access locality.

* Internal Accession Date Only Approved for External Publication
1 Microsoft Research Asia. This work was done while Zhang was at Hewlett-Packard Laboratories
 Copyright Hewlett-Packard Company 2002

Scalable, Structured Data Placement over
P2P Storage Utilities

Zheng Zhang+

Microsoft Research Asia

zzhang@microsoft.com

Mallik Mahalingam, Zhichen Xu and Wenting Tang

Hewlett-Packard Laboratories

{mmallik, zhichen, wenting}@hpl.hp.com

Abstract

Current peer-to-peer storage utilities offer a
convenient flat storage space, delegating the
organization and presentation of data to upper
layers. In reality, both applications and users
typically organize data in a structured form. One
such popular structure is hierarchical namespace
as employed in a file system. A naïve approach
such as hashing the pathname of file system not
only ignores locality in important operations
such as file/directory lookup, but also results in
uncontrollable, massive object relocations when
rename on path component occurs.

In this paper, we investigate policies and
strategies that map the hierarchical namespace
onto the flat storage space of P2P systems. We
found that, in general, there exists a tradeoff
between lookup performance and balanced
storage utilization, and attempts to balance these
two requirements calls for intelligent placement
decision. We show that simple heuristics are
effective in achieving significant performance
benefit with negligible overhead. In addition,
combining some of the heuristics and carefully
setting the parameters can significantly reduce
the lookup cost while keeping the impact on
storage utilization minimal. These algorithms are
robust and generic, capable of handling data
layout to capture access locality.

1 Introduction
With the rapid growth of the Internet and ever-rising
demand of the application, building a highly scalable
infrastructure is becoming increasingly important. Such an
infrastructure should be self-managed, decentralized, and
capable of adapting automatically to the varying system

conditions. For many, this happens to be the
characteristics of Peer-to-Peer (P2P) networks [1] [2] [3]
[4].

An infrastructure must provide various core services.
One of such core services is information search and
retrieval. To this end, there are several options. For
example, in Gnutella [5], each individual node hosts a
number of objects over which local index is built. Locating
an object thus becomes the problem of distributed
indexing and searching. While this is adequate for content
sharing, such approaches lack the performance efficiency
and hard guarantees demanded by certain applications.
This lack of hard guarantee is addressed by some of the
recent P2P systems [3, 4, 6]. These systems offer an
administration-free and fault-tolerant storage utility.
Nodes in these systems collectively contribute towards a
storage space, in a self-organizing fashion. Unfortunately,
these P2P storage architectures do not offer support for
structuring data, other than assuming a distributed hash
table.

One of the most dominant options for structuring data is
a hierarchical namespace. The importance of a hierarchical
namespace should not be overlooked. When such a
facility is available, searching can be done more efficiently:
locating an object is reduced to a lookup operation to the
object’s parent directory. Indeed, both applications and
ordinary users have the intuitive notion of organizing
information into a tree-like hierarchical namespace.
Furthermore, a namespace is certainly what many (if not
all) legacy applications expect. We believe that
applications such as rich content distribution and
interaction can benefit from structuring data (e.g., a tree)
to describe the relationship amongst the participating
nodes.

As a result, the imminent gap between structured data
required by upper level applications and the flat storage
abstraction offered by P2P networks underneath must be
bridged. Policies and strategies to map the structured data
onto the flat storage space of P2P systems is the focus of
this study.

We choose to investigate hierarchical namespace for
metadata placement, since this type of distributed data
structure is the most distant from the flat nature of P2P
storage space, and is important for many applications.

Submitted for publication

Our approach is pragmatic in that the placement
decision is application-driven, by accounting for the
locality exhibited in those most frequent operations.
However, locality should not be the only consideration.
The time taken to make intelligent choices, the robustness
against various shapes of tree and the order in which the
tree is constructed, and most importantly the ability to
preserve the uniform storage utilization in large scale, must
be respected as well. The end results are mechanisms
achieving a careful balance among all these factors. In
contrast, current proposals support distributing objects
randomly anywhere over the flat storage space. While
simple to implement and yielding good storage utilization
overall, these approaches neglect the performance aspect.
Furthermore, as we will argue later, a straightforward
implementation by hashing pathname to place objects
randomly will result in uncontrollable and massive object
relocation when structural changing operations such as
rename occur.

Such pragmatic approach requires high frequent
operations be first identified. In traditional file system
studies, it has been shown that lookup requests comprise
a surprisingly high portion of total metadata operations
[7]. Moving towards large-scale deployment, we envision
this pattern to continue. As a matter of fact, NSFv4 [8]
explicitly tries to address this issue by providing multi-
component lookup. Optimizing lookups maybe even more
important in distributed file systems using P2P overlay,
since operations such as create is proceeded by a lookup
to the parent directory, after that the actual creation can
bypass normal routing infrastructure and operate on the
parent object directly.

To summarize, the overarching design requirements are:

• Performance: high frequency operations such as
lookup must be delivered with great efficiency. In
addition, the time to decide where to place an object,
given all other constraints, should also be
reasonable.

• Resource balance: The purpose of efficient resource
(e.g. storage) utilization in large scale peer-to-peer
network is important, since bad resource utilization
may create “hot spots” and system imbalance that
can degrade performance.

• Robustness: tree shape and construction order
should have a negligible impact to both performance
and resource balance.

This paper reports our early investigation into this
issue. We found that, in general, there exists a tradeoff
between lookup performance and uniform resource
utilization, and attempts to balance these two requirements
require intelligent placement decision that may incur some
additional overhead. We show that simple heuristics are
effective in meeting these goals. The three algorithms we

proposed, radius-delta, hill-climbing and zoom-in, can
easily cut down more than half of the lookup costs from
the naïve random placement approach. Some of the
algorithms even have better resource utilization than the
pure random policy. They are also robust to tree shapes
and construction order. Our current investigation focuses
on CAN as the chosen overlay platform and file system as
way to structure data. While these algorithms are primarily
designed for metadata placement, we believe they are
generic enough to handle layout for data objects, where
sequential access and pre-fetching exhibits similar locality
behavior.

The rest of the paper is organized as follows. Section 2
gives the background of the study, which includes a short
overview of P2P and CAN, and details of various options
for constructing a hierarchical namespace and conducting
a lookup procedure. We then discuss the three
approaches for lookup optimizations in Section 3. Detailed
evaluation and analysis are offered in Section 4. Section 5
discusses a few orthogonal optimizations. Related works
are covered in Section 6 and we conclude in Section 7.

2 Background

2.1 Overview of P2P systems and CAN

The peer-to-peer systems we are interested in are those
that will guarantee the retrieval of an existing object, as
opposed to systems such as Freenet [9]. Important flavors
of such systems include CAN [4], Pastry [2], Tapestry [1]
and Chord [3]. All of these systems can be regarded as a
distributed hash: lookup an object is equivalent to
searching with the key associated with the object.
Similarly, the concept of hashing bucket is mapped to a
node in the system. Consequently, object query becomes
routing in the overlay network composed by the
participating nodes (buckets in the hash). The
performance of a query is the product of number of
routing hops taken in the overlay network (we call them
logical hops) and the latency per logical hop. Each logical
hop may compose multiple IP-level physical hops. Let N
be total number of nodes in the system, then for any
random pair of nodes, the number of logical hops is a
function of N, denoted as F(N).

The system we choose to evaluate is CAN. CAN
organizes the logical space as a d-dimensional Cartesian
space (a d-torus). The Cartesian space is partitioned into
zones, with one or more nodes serve as owner(s) of the
zone. Routing from a source node to a destination node
boils down to routing from one zone to another in the
Cartesian space. The routing cost, F (N), between a
random pair is d/4×N1/d logical hops. We assume that
nodes populate the CAN logical space randomly; this is
the default policy in CAN.

2.2 Namespace organization on top of P2P

There are various alternatives to build the namespace on
P2P. The most straightforward option would be to hash
the entire pathname of an object into a random key, and
use it for placement and retrieval directly. For instance, in
the case of CAN, /a/b would hash to point p/a/b, and /a/b/c
hashes to point p/a/b/c, and so on so forth. Locating these
objects then amounts to routing to the corresponding
points in the logical space. This does not require any
change to the underlying infrastructure. However, this
works best for immutable namespace in practice. Consider
that the path component b is changed to b’. This renaming
operation not only renders that the directory /a/b’ be
hashed to a different point and thus has to be relocated
physically, but all pathnames following the directory b
(now b’) are affected as well and therefore their
corresponding objects have to be moved. Although it has
been shown that rename is not a frequent operation in
itself, such massive, uncontrollable relocation will cause
severe instability in the system. Figure 1 helps to explain
this phenomenon.

/a
: b
: c

/a/b
: d
: e

/a/b/d

/a/b/e

/a/c

Lookup(“/a/b/d”) =
routeTo(hash(“/a/b/d”))

/a
: b’
: c

/a/b’
: d
: e

/a/b’/d

/a/b’/e
/a/c

Rename “/a/b” to “/a/b’”
affects the location of

three objects

*
*

*

Figure 1: Using hashing on pathname alone can cause
massive, uncontrollable relocation when rename occurs

(objects with * attached are affected)

The problem here is that the placement decision creates
binding with the structure of the namespace. Other
hashing alternatives, such as hash on the content of
directory objects, have similar (albeit reduced) problem.

Therefore, in order to have a namespace hierarchy that
can cope with structural change, each directory must
contain name of the children object as well as their
location info (point in the Cartesian space in the case of
CAN). This is very much like the directory structure in
conventional file system, in which inode number is the
routing key for the layers beneath. When location
information is embedded, the placement of the objects
becomes controllable, allowing us to explore locality in
various namespace operations. (This is demonstrated in
Figure 2, where the binding between a parent directory
and all its sub-directories can be explored in recursive
namespace lookup to reduce overall lookup cost.)

2.3 Lookup operation in the namespace

While the primary function of lookup is to locate the
object, an implicit requirement for a general purpose
namespace is to validate the path along the way. Other
functionality such as right enforcement at directory level
requires similar level-by-level resolution.

Lookup can be implemented in two different ways. The
first, iterative, lets the client resolve one component at a
time. This method is commonly used in local file system
[10] in order to resolve over mount points. The other,
recursive, hands over the complete path to the first
directory, which resolves the first component and then
passes the remaining path to the next directory, and so on
so forth. The final result is then sent back directly to the
client. These two approaches are shown in Figure 2. When
a distributed system is built on P2P, different directories
are very likely to reside on different nodes. Therefore,
irrespective of the implementation, the unique directories
(and thus unique nodes in the system) to be visited are
the same. Obviously, the recursive approach reduces the
total number of network hops and is more adequate in
large-scale system where latency is high. To lookup an
object N levels down, iterative requires 2N network trips,
comparing with N+1 of recursive. For this reason, we
choose the recursive method in this report.

/a
: b
: c

/a/b
: d
: e

/a/b/d

/a/b/e

/a/c

A B

Recursive lookup
Iterative lookup

1

3

21,2

3,4

Figure 2: Two lookup procedures shown side by side.
Node A performs iterative lookup, while node B performs
recursive lookup. Each directory may reside on different
nodes in the system. Links between objects are location
information embedded in the directory entries. As shown,
iterative incurs more network hops than recursive.

2.4 Cost of lookup

Having introduced namespace organization and lookup
procedure, we can now discuss how lookup cost is
computed.

For a given object, let P be the complete path (e.g.,
“/a/b/c”), and D=|P| be the length of the path. The total

lookup cost can be expressed as D× h , where h is the
number of average logical routing hops resolving one
component. Assuming random node distribution in the
logical CAN space, for any two nodes with the same

logical distance, the physical routing latency between the
two is roughly the same. As a result, we can compare
various algorithms by their total logical routing hops. The
two simple cases of lookup cost, each represents one
extreme of the cost spectrum, are as follows:

l If we can compute the location of the object a
priori (as is the case if hashing pathname is used
to decide the object location), the so-called zero
lookup bypasses all directories on the path and
directly seek to the object. Since the query may be
submitted from anywhere in the system, the total
cost is equivalent to the routing cost between any
two random pair of nodes in the system. The zero
lookup cost is therefore F(N).

l If, on the other hand, we allow any directories on P
to reside randomly anywhere in the system, then
resolving any component incurs the cost of
routing between two random nodes. Therefore, the
total cost is D×F(N). This solution, which we call
baseline, has the best storage utilization.

F(N) and D×F(N) represent the low and high bounds of
lookup cost. Throughout the rest of the paper, we use
Lb and L0 to denote the cost of baseline and zero lookup,
respectively. A good solution should strive to achieve
lookup cost as close to F (N) as possible, while keeping
the storage utilization close to that of the baseline. In
addition, the algorithm must be simple and efficient.
This is especially important for large-scale peer-to-peer
systems.

2.5 Discussion

It should be noted that in traditional distributed file
system, path resolution results are often cached and thus
lookup cost is paid only once. This has been particularly
effective for small-scale system, where namespace
structure does not change rapidly and/or the update cost
is small. For a large scale P2P system, however, cached
directory entries may get invalidated not only because the
structure change, but also when their location (zone)
change (i.e. the node hosting the original directory object).
Furthermore, cache misses can be more expensive. What
this means is while we still expect caching namespace
resolution to be helpful, a system must not rely on caching
alone but rather to start with a sound placement strategy
to begin with.

3 The algorithms: Radius-delta, Hill-
climbing and Zoom-in

As explained earlier, the total lookup cost can be

expressed as D× h , where D is the path length, and h is
the number of average logical routing hops resolving one
component. The locality of the lookup procedure is
inherent in resolving consecutive components. Therefore,

to bring down h , we can place a child object at a node that
is close-by in routing with respect to the node hosting the
parent object, subject to storage utilization constraint and
decision complexity. This is the principle behind the
Radius-delta and Hill-climbing algorithms. The third
algorithm, Zoom-in, takes a somewhat different approach.
The goal here is to quickly “zoom” into a small subset of
nodes that host deep down sub-trees, making lookup cost
irrelevant to the path length D.

3.1 Radius-delta

The idea here is to simply choose a small constant, r,
which defines a small space within which a child object
will be randomly placed, relative to the position of the
parent. In the case of CAN, r is a small real number in the
range of [0,1], for example 1/16.

There is no additional overhead in creation time: it’s just
a matter of picking a random point in the target space.

Under this algorithm, the average distance between a
parent and one of its children is r/2 in CAN. The routing
cost resolving one “component” is r×F (N). As a result,
the total lookup cost is D×r×F (N). Thus, lookup cost is r
fraction of Lb and, theoretically, can always be reduced it
by decreasing r.

With a balanced tree, the storage utilization with infinite
number of nodes resembles a normal distribution centered
at root. The height of the center depends on r: bigger r
has a flat center and spreads out the distribution. Also,
the deeper the tree relative to r, the more spread the
distribution will be. This seems to imply that radius-delta
by default have very poor storage balance. However, the
system is not of infinite size. The effect of limited system
size is to divide the “infinite” spread into chunks, and the
total storage utilization can be found by “folding” the
chunks on top of each other. Figure 3 illustrates these
concepts. For the “folding” effect to take hold, D×r must
be larger than 1 to allow the allocation “crawl” out of the
boundary. Thus, a larger D×r has the net effect of
smoothing up storage utilization, while at the same time
increases lookup cost. As a result, there exists a tradeoff
between lookup time and storage utilization.

 Small r×D

folding

Big r×D

Figure 3: Storage utilization with radius-delta and the
“folding” effect

3.2 Hill-climbing

In a P2P network, nodes typically exchange periodic
heartbeats with its neighbors for maintenance purposes.
Storage utilization of surrounding nodes can thus be made
“free” by piggybacking such information along with the
heartbeats. Guided with this knowledge, a node inspects
its own storage utilization comparing with those of its
immediate neighbors. If the minimum storage utilization of
its neighbors is within a threshold, comparing with that of
its own, it hosts the object immediately. Otherwise, it
hands the job over to the one with the minimal utilization
(breaking ties randomly) and the process starts there
again. The default algorithm has a threshold of zero. A
larger threshold value encourages parent-child
collocation, at the cost of less even storage utilization
distribution.

Lookup cost depends largely on parent-child distance.
Consider the initial state of the system where there is no
object, and assume the namespace is built recursively
breadth-first. A “pile” will first emerge, with the later-
comers laid on the surface. Since the surface increases
gradually, the pace at which the “pile” expands also slows
down. When the next level of hierarchies starts to build,
new “shells” are put up and the “pile” crawls towards
outbound. In reality, the actual tree creation order is
arbitrary, and the hill-climbing algorithm always tries to
place the object close-by, given the constraint of storage
utilization. A deep and thin tree usually has short parent-
child distance, whereas a fat and shallow tree is the
opposite. As a result, lookup cost to leaf objects is
insensitive to the tree shape.

The hill-climbing algorithm cannot always settle the
placement of the object in one shot. If the parent directory
is already in a “dip”, the placement is immediate. If, on the
other hand, the parent is at the top of a local “hill,” the
algorithm will roll “downhill” until a “dip” is found. In that
case, creation takes longer time. A larger threshold tends
to reduce the creation cost because it tolerates utilization
deviations more. Another way to limit the creation cost is
to introduce the time-to-live (TTL) value, which restricts
the maximum number of hops the placement takes.

It is possible that multiple hills will emerge and,
consequently, the total storage utilization becomes
uneven. This is so because the optimization is always
local, which is a fundamental property of the hill-climbing
algorithm. When number of objects is much larger than the
system size, the multiple-hill effect will be reduced. This is
because the “pile” will eventually “overflow” the
boundary and crawl backwards. Figure 4 demonstrates
these concepts.

 Children of “/”

 “/a”

 Children of “/a”

Overflow

Figure 4: Storage utilization of hill-climbing algorithm

3.3 Zoom-in

While the previous two algorithms aim at bringing

down h , the goal of zoom-in is different. Zoom-in instead
tries to minimize the impact of D and, in the extreme,
renders it completely irrelevant.

With zoom-in, we always define the zone where a parent
object lives, and sub-divide that zone into k (k is called
the zoom-in degree) sub-zones in which we place the child
objects in a random or round-robin fashion. This way,
descending down the tree, the routing range will be
recursively reduced, until the point where one single node
now contains all the remaining sub-tree of a directory.
From this point onwards, lookup becomes local operations
to that node. Assuming sub-zones are perfect cubes and
with fully balanced tree, we can prove that this algorithm
can approach the performance of L0:

For a d-dimensional CAN, assuming a zoom-in degree k ,
and a zone with average routing hops x, after zoom-in, the
average routing hops of each of the k sub-zones will be
x*(1/k 1/d). If we repeatedly sub-divide the sub-zones with
the same zoom-in degree, after subdividing the zone y
times, the average routing hops of the sub-zones will be
x*(1/k y/d). An upper-bound of the average lookup time is

therefore, F(N) * ()∑∞

=0

1
y

d
y

k
, which is approximately

[k1/d/(k 1/d-1)]×F(N). With a large k , zoom-in approaches
the performance of L0.

There is no additional overhead involved in object
creation. As long as the namespace tree is balanced, the
storage utilization will also be perfect. But there is one
catch: if the fan-out is smaller than k , then it’s guaranteed
that not all sub-zones will be populated. This is especially
a problem if small fan-out occurs at higher level.
Furthermore, zoom-in only works the most effectively if D
is large (a shallow tree can be easily handled by radius-
delta). Therefore, this algorithm is good for deep, balanced
tree with fan-out a multiple of the zoom-in degree
(especially at higher level). In other words, zoom-in is
somewhat sensitive to tree shapes. We discuss remedies
to that problem in later sections.

When a priori knowledge of the tree is available (for
example a digital library), it is possible to do intelligent
division of the zones (i.e, vary k and sub-zone sizes
accordingly). The pseudo code of the algorithm is shown
in Figure 5.

Step 1: Traverse the tree in post-order and assign a
weight to each node in the tree. The weight of a node
indicates the total amount of storage requirement for
the sub-tree rooted at the node.

Step2: call place(root, the entire Cartesian space);

The procedure ‘place’ and the auxiliary functions W
and Size are defined below:

W: treenode à weight;// returns weight of a node

 Size: zone à double; // returns the size of a zone

place (r: treenode, z: zone) {

 Place r in z;

 Foreach (c :child of r) {

 zc = a new sub-zone of z,

 where Size(zc)/Size(z) equals to W(c)/W(r);

 place(c, zc);

 }

}

Figure 5 Pseudo code for distributing the name space
according to the weight and structure of the tree

This algorithm consists of two steps: in the first step,
the entire tree is traversed in post-order, and each node is
assigned a weight that indicates the amount of storage
requirements for the sub-tree rooted at each node. In the
second step, the tree is traversed again and each node is
placed into a zone whose size is proportional to the weight
assigned to the node.1

One might argue that a tree whose structure is known
beforehand can be handled by hashing the pathname. The
difference here is that zoom-in can cope with structure
change without massive relocation, and that it captures
locality better because getting down the levels, objects
start to cluster together rather than spread out.

3.4 Summary

The properties of the three algorithms can be summarized
as the followings:

• By choosing small radius, radius-delta can arbitrarily
reduce the lookup cost. However, the storage

1 When the shape of the tree changes causing a zone for a sub-

tree to become over crowded, we can always allocate a new
and less crowded zone for the new objects of the sub-tree that
otherwise would fall into the over crowded area.

utilization improves only upon the product of the
depth of the tree and the radius. As a result, there
exists a tradeoff between lookup performance and
storage utilization.

• Hill-climbing tries to minimize lookup cost given
storage utilization constraint, and is insensitive to tree
shapes. But it may take time to make placement
decision, and require large object-to-system size ratio
to populate system space.

• Zoom-in has the best theoretical performance, with
lookup cost approaching that of zero lookup.
However, it’s more sensitive to tree shapes. Zoom-in
with a priori knowledge of the tree structure is
possible to attain good lookup performance as well as
storage utilization.

The design of the above algorithms has taken the three
requirements, performance, storage utilization and
robustness, into account. Some of the desired properties
can be found only through more in-depth analysis of the
experiment results. As we will show shortly, these
algorithms can be combined together for even better
results.

4 Evaluation
We evaluate the three algorithms proposed by means of
simulations. The primary goal of the experiment is to gain
insight on how well the approaches perform, and secondly
to identify potential optimization opportunities.

We choose CAN as the overlay network consisting of
1024 nodes (roughly about 1/100 of total objects for a
given a tree), organized in a 2-d Cartesian space. Nodes
populate this logic space uniformly. The details of
experiment setup, workload and metrics of comparison are
reported first, followed by the results and analysis.

4.1 Experiment setup

4.1.1 Namespace used

The namespace trees include both synthetic as well as
real, active ones. In the synthetic class, two trees with
dramatic different characteristics, deep and fat, are used.
Deep is a binary tree containing objects spanning across
31 levels. The fanout in this tree grows slower, with fanout
alternating between 1 and 2 per node as level grows. Fat
tree has fan-out that doubles at each subsequent level,
with initial fan-out of 4. Fat tree contains 100K objects
with depth of 6. We gathered real active trees from two
different sources. The first one is a namespace from an
active server for software distribution in HP-Labs, and this
tree has about 165K objects in total. The second active
tree is web namespace that we generated from the proxy
logs available from NLANR [11], which contains about 1M
objects.

We use d, f, h and w as shorthand notations for these
four trees from now on. Figure 6 shows the number of
children at each level for these trees.

0

100

200

300

400

500

1 4 7 10 13 16 19 22 25 28 31

(
in

 t
h

o
u

sa
n

d
s)

Levels

O
b

je
ct

s w

h

f

d

Figure 6: Shapes of the four trees used. (Where d, f, h
and w refer Deep, Fat, HPL tree and Web Namespace

respectively)

4.1.2 Access pattern

Namespace accesses correspond to two different kinds:
those that construct the tree, and those that walk through
the tree (lookup).

Since the log of tree creation is not available, to
understand the effect of different tree creation order, we
synthetically construct tree three different ways: depth
first (DF), breadth first (BF) and random (R). Since the
robustness against tree construction order is by itself an
important issue, we dedicate a separate section to report
its effect. In other parts of the evaluation, BF is used as
the default tree construction order.

Access pattern is synthetic for all but the web
namespace. In the case of synthetic access pattern, we
randomly choose a set of paths from the processed tree
and a set of nodes from the node space, to perform
lookup. For the web namespace, the access pattern is
directly taken from the proxy logs. We first hash the
clients IP address to one of 1K locations and use the
hashed value as node identifier to perform the lookup with
the corresponding path that client accessed.

4.1.3 Metrics

For a given lookup operation, the cost is computed by
counting logical hops routing to leaf objects. This gives

us the direct measure of h -- number of logical hops
resolving one segment in lookup. The number of hops
“seeking” to the root is included. We average over 100
random samples; each is a pair of the query node and a
leaf object. To give as fair a comparison as possible, we
report the lookup cost, L, normalized by the zero lookup
cost (L0). The normalized baseline lookup costs (Lb) for the
four trees are 27, 5.6, 8.7 and 5.2 for deep, fat, hpl and web

respectively. Due to the irregularity of node’s physical
connectivity and position in the Internet, logical hop
counts may not be perfectly proportional to the end
physical latency observed. However, we believe L
establishes a sound base for performance comparison in
evaluating different algorithms.

The storage utilization is the standard deviation
amongst nodes. Similar to lookup performance, the
storage utilization, U, is normalized by that of the baseline.

Wherever necessary, we also report the creation time C,
which is the number of hops it takes before an object is
finally placed. C represents the overhead in performing
intelligent placement decision.

4.2 Results

Figure 7 shows the result of the basic radius-delta
algorithm. For comparison purposes, we include the data
of the baseline algorithm (data points labeled by “b”). We
use altogether 5 different radiuses, from 1/16 to 1 (rd uses
1/d as radius). There are clear tradeoffs between lookup
cost versus storage utilization: L increases, whereas U
decreases with radius. As described earlier, larger radius
and D has the effect of “overflow” the boundary and even
up the distribution. Consequently, deep has the best
storage utilization, followed by hpl. Because fat, hpl and
web are relatively shallow, lookup performances benefit
from small radius for these trees.

For these workloads, radius of 1/8 is the most balanced
between good lookup performance and reasonable storage
utilization. On average, its lookup cost is about 4 times of
L0, 67% reduction over Lb.

0
5

10
15

20
25
30

r16 r8 r4 r2 r1 b

l(d)

l(f)

l(h)

l(w)

(a) Lookup cost

0
0.5

1
1.5
2

2.5
3

r16 r8 r4 r2 r1 b

u(d)
u(f)
u(h)
u(w)

(b) Utilization

Figure 7: Radius-delta. rd means using radius delta of
1/r. The baseline results are the points on the “b”
column.

Figure 8 depicts the result of the hill-climbing algorithm.
We also studied variations with threshold and TTL. The
threshold is number of objects as a fraction of the average
objects per node. For example, if there are 100K objects in
a system of 1K nodes, then average objects per node is
100. In this example, a threshold of 5% means a node will
host an object unless one of its neighbors has 5 less
objects. Because total number of objects is usually
unknown at creation time, this threshold setting is not
practical in reality, where an absolute storage utilization
difference (weighted with bandwidth and other

parameters) is more adequate. TTL is simply the maximum
number of hops a placement will take before settling down.
In Figure 8, hc is hill-climbing with infinite TTL; hc-T is
hill-climbing with TTL equals to 10; hc+ is hill-climbing
with threshold of 5% and infinite TTL; hc+T is the same
as hc+ but with TTL=10. As before, baseline results are
included.

The first observation to make is that, across the board,
all variations achieve good storage utilizations as well as
low lookup costs. Interestingly enough, the storage
utilization is even better than baseline. It could also be
observed that different trees make little effect. This is
because for a given number of objects, a fat tree has low D
and the average parent-to-child distance is greater; a deep
tree is exactly the opposite. Setting non-zero threshold
produce the same effect. Overall, lookup cost is around 3
times of L0, achieving 78% reduction over Lb.

This robust performance comes with a slight cost of
creation cost, since hill-climbing will look for storage
under-utilization nearby. The creation costs for hc are 2.2,
4.2, 6.3 and 3.7 hops, for deep, fat, hpl and web
respectively.

0

5

10

15

hc hc-T hc+ hc+T b

l(d)
l(f)
l(h)
l(w)

(a) Lookup cost

0

0.02

0.04

0.06

0.08

hc hc-T hc+ hc+T b

u(d)
u(f)
u(h)
u(w)

(b) Utilization

Figure 8: Hill-Climbing algorithm.

Figure 9 gives the result of the zoom-in algorithm. The
zoom-in degrees are is 8, 4, 2 and 1 (zd is zoom-in degree
equals d). Note that zoom-in degree of 1 is the baseline
algorithm.

Let us focus first on the lookup cost. As expected,
zoom-in tends to be robust against different trees. Z4
seems to be good enough for these workloads, achieving
lookup cost of 3.4 times of L0, a 64% reduction over Lb.
However, different trees have a significant impact on
storage utilization. Deep with zoom-in degree of 8,
populates a very small fraction of the system and its
utilization is very poor (U=12K). However, as observed in
Figure 6, the web tree has a very big fan-outs, as a result,
storage utilization is excellent. This verifies our
assumption that while zoom-in can attain the best
theoretical lookup performance, its storage utilization is
rather sensitive to different tree shapes.

0
5

10
15

20
25
30

z8 z4 z2 z1(b)

l(d)

l(f)

l(h)

l(w)

(a) Lookup cost

0
2
4
6
8

10
12

z8 z4 z2 z1(b)

u(d)

u(f)

u(h)

u(w)

(b) Utilization

Figure 9: Zoom-in algorithm

4.3 Variations

The hill-climbing algorithm can be a standalone tool to
even up distribution. We apply this to radius-delta and
zoom-in to see how much difference it makes in terms of
storage utilization. Here, we use radius-delta and zoom-in
as algorithms to make primary placement decision, and use
hill-climbing to further fine-tune the placement according
the storage utilization in the local context. Doing so may
inadvertently reduce the lookup performance, since hill-
climbing will move the placement to nearby underutilized
nodes. Thus, we set the threshold to be 5%.

0
5

10
15

20
25
30

r16 r8 r4 r2 r1 b

l(d)
l(f)
l(h)
l(w)

(a) Lookup cost: with hill-climbing

0

0.02

0.04

0.06

0.08

r16 r8 r4 r2 r1 b

u(d) u(f)

u(h) u(w)

(b) Utilization: with hill-climbing

Figure 10: Radius-delta with hill-climbing

Figure 10 shows the results of radius-delta, when
applied with hill-climbing. Comparing with its non-hill-
climbing counterparts, the storage utilization is greatly
improved. Lookup costs increases are moderate. Since
radius-delta has fairly good storage utilization to start
with, it does not take hill-climbing too long to smooth the
distribution: the average creation cost of r16, for example,
is only 2 hops.

0
5

10
15

20
25
30

z8 z4 z2 z1 b

l(d)
l(f)
l(h)
l(w)

(a) Lookup cost: with hill-climbing

0

0.02

0.04

0.06

0.08

0.1

z8 z4 z2 z1 b

u(d)
u(f)
u(h)
u(w)

(b) Utilization: with hill-climbing

Figure 11: Zoom-in with hill-climbing

Figure 11 shows that hill-climbing is very efficient to
improve storage utilization for zoom-in as well. This comes
with the cost of more creation time. Especially in z8 where
storage utilization is the most imbalanced, it takes hill-
climbing lots of time to even up utilization (5 creation
hops). The impact on lookup is the most pronounced for
deep: L with z8 increases from 2.7 to 8.2.

To gain more insight of the effectiveness of hill-
climbing, Figure 12 plots the storage utilization of the
radius-delta algorithm, before and after hill-climbing is
applied. In the figure, x-axis corresponds to nodes in the
system (node space is compacted into 40 chunks) and y-
axis corresponds to the normalized storage utilization. The
results are for fat tree with the smallest radius we
experimented, 1/16. Recall that in radius-delta, storage
utilization depends on D×r. Thus, this is the most
unfavorable case to start with. As shown, the
concentration is effectively mitigated after the hill-climbing
is applied.

(a) Default

(b) After

Figure 12: Effect of hill-climbing on storage utilization
(radius-delta with r=1/16, on the fat tree).

4.4 Robustness against tree creation order

In the above experiments, we have assumed a breath-first
tree construction order. In reality, tree creation is far from
predictable, not to say controllable. An important aspect
of the placement algorithm is therefore how robust they
are against different tree creation order.

For tree creation order to make a difference, the
placement decision must have a dependency on the
current layout status. As such, neither the basic radius-
delta nor the zoom-in algorithm is sensitive to creation
order: they depend on the overall structure only. However,
the hill-climbing algorithm itself and the other two
algorithms when combined with it are influenced by
storage utilization at any given moment. To understand
the impact of the tree creation, we use three forms of order,
depth-first (DF), breadth-first (BF) and random (R). For
random tree creation, we enumerate all the paths of each
tree in random order, we then walk each component of the
random paths and create an object if the component has
not yet been created. We only report results of the
following configurations:

l Hill-climbing with threshold of 5 and 10 TTL.

l Radius-delta with r=1/8, combined with hill-
climbing with threshold 5.

l Zoom-in with degree of 4, combined with hill-
climbing with threshold 5.

We plot the lookup cost and storage utilization of DF,
BF, and R as shown in Figure 13 through Figure 15. It can
be observed that the order of tree creation has very little
effect on the lookup cost and storage utilization for all the
trees for the three experiment configurations. For the
configuration with the hill-climbing algorithm alone,
random tree creation slightly worsens the storage
utilization for both the fat tree and the HPL tree. Both the
fat and hpl trees are fat and shallow, and of relative small
sizes. We believe that for small fat-trees, with a random
strategy, there is a larger probability that multiple hills can
emerge and consequently cause the total storage
utilization uneven, whereas for a larger tree, such as the
Web tree, the small hills are evened out because of the
huge number of objects. We are still in the process of
gaining in-depth understanding of the phenomenon.
Nevertheless, it should be noted that even the worst case
has better storage utilization than the baseline random
case.

0

0.5

1
1.5

2

2.5

3

Deep Fat HPL Web

BF DF R

(a) Lookup cost:

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Deep Fat HPL Web

BF DF R

(b) Utilization

Figure 13: Lookup cost and Storage utilization for hill
climbing using BF, DF and R tree creations

0

2

4

6

8

10

Deep Fat HPL Web

BF DF R

(a) Lookup cost:

0
0.005

0.01
0.015
0.02

0.025
0.03

0.035
0.04

Deep Fat HPL Web

BF

DF

R

(b) Utilization

Figure 14: Lookup cost and Storage utilization for
Radius-delta (8) using BF, DF and R tree creations

0

2

4

6

8

10

Deep Fat HPL Web

BF DF R

(a) Lookup cost:

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Deep Fat HPL Web

BF

DF

R

(b) Utilization

Figure 15:Lookup cost and Storage utilization for Zoom-
in (4) BF, DF and R tree creations

4.5 Summary

In this section, we provide extensive experiment results on
the three heuristic algorithms. Not surprisingly, in general,
improving lookup performance comes at a cost of less
even storage utilization distribution. Algorithms that try to
balance the two calls for intelligent placement decision,
which incurs additional overhead.

Our results indicate that the simple hill-climbing
algorithm is robust and achieves the most balanced results
overall, with moderate placement overhead. Hill-climbing is
also very effective as a complementary tool to smooth out
distribution for other algorithms. Radius-delta delivers fair
performance, and its storage utilization can be improved
quite easily using hill-climbing. The strength of zoom-in is
for deep, balanced trees with fan-outs greater than zoom-
in degree, and is demonstrated with the web namespace
tree, which is shallow and has high fan-outs.

5 Discussion and other orthogonal
mechanisms

We have assumed that storage distribution is at the
granularity of object size. Other alternatives such as CFS
[12] choose to treat the whole distributed storage space as
a gigantic disk and therefore allocation is done at the
block level. The difference in distribution granularity isn’t
the key issue, as resolving next component along the
namespace path necessitates the access of component’s
internal data in any case – be it scattered on a number of
blocks or contained in one object. Lookup performance
only depends on the cost of seeking from one component
to next.

In fact, we believe the algorithms we developed here is
directly applicable not only as optimizations to improve
lookup performance in block-based distributed file system
on top of P2P, but can be extended to data blocks
allocation as well. If an object is large, the blocks
associated with it may spread across multiple nodes.
Distribution of those blocks should take into account the
access pattern of the application. If the access pattern
isn’t predictable, it will be safer to target the locality
exhibited in sequential access and/or pre-fetching.
Sequential access to a broad range of blocks is akin to
“lookup” through a thin tree fan-out equal to 1. As such
the blocks should be allocated close by, subject to storage
utilization constraint. This is exactly the same assumption
under which our algorithms for metadata distribution are
developed.

Since lookup performance depends on system’s routing
capability, a number of obvious optimizations can be
applied to shift the focus more towards storage utilization.

For instance, we can use high-dimension CAN or other
systems with O (log N) routing performance. Each node
might have routing cache to keep direct routes to those
frequently visited nodes. Alternatively, we can include a
“hint” field in directory entry that speculates the node that
keeps the child object. Apart from other well-known
approaches such as caching and replication, directory
aggregation, where an object contains multiple levels of
underneath sub-directories, will also reduce the lookup
cost by slashing D.

These approaches work well but only for namespace
objects that are rarely modified. In a large-scale peer-to-
peer system, enforcing consistency for directory objects
that need to be accurate all the time is a sizeable challenge.
On top of this, approaches such as directory aggregation
will run into a phenomenon called “false-sharing.”

Another vulnerable point of the above strategies has to
do with the dynamic nature of P2P system. The side effect
introduced when nodes come and go may also invalidate
cached copies. Consequently, the system can’t rely on
caching alone, and a sound placement algorithm that relies
on the default routing infrastructure only is highly
beneficial. Our results support this conclusion, in that the
lookup cost with these simple heuristics can be easily
reduced by 60-70% over the naïve random algorithm.

6 Related work
Much works have gone into the issue of storage
utilization in large-scale systems. Many of them are
variations of hill climbing; this is the case in Farsite [13],
CAN[4] and PAST[2]. The hill-climbing algorithm we
proposed is guided by the same principle. In addition, we
investigated a number of other algorithms. The unique
contribution we make is that we treat the issue of storage
utilization in conjunction with efficient hierarchical
namespace in the peer-to-peer networks.

CFS [12] proposes an interesting alternative called
“virtual server,” which is to divide the resource of a
physical server into multiple peers that participate in the
peer-to-peer systems. The net result is that storage
utilizations of multiple nodes in the overlay networks are
aggregated. If those virtual servers are scattered
sufficiently randomly, overall storage utilization in the
physical world tends to be balanced. The tradeoff is that
more states have to be kept per physical node. The focus
there is on storage utilization, and the locality of file
system operations and its impact on performance was not
taken into account.

A number of systems are capable of building a
distributed file system at object granularity [14, 15].
Lightweight protocols to construct namespace across
geographically distributed sites are proposed in [16]]. In
[17], qualitative arguments have been made about the gap

between the hierarchical namespace and the flat P2P
storage abstraction, pointing out that the “virtualization”
property of P2P systems is incapable of taking advantage
of the various locality exhibited by applications. Our view
is consistent with theirs, and we have contributed not
only with quantitative analysis but also algorithms to
balance the tradeoff between performance and resource
utilization.

7 Conclusion and Status
In this paper, we investigate the issue of establishing
efficient hierarchical namespace in the flat storage space
offered by peer-to-peer systems. To our knowledge, this is
the first work that addresses this problem.

We found that, in general, there exists a tradeoff
between lookup performance and uniform storage
utilization distribution, and attempts to balance the two
requirements in turn incur additional overhead for
intelligent placement decision.

We derived a set of simple heuristics-based algorithms
and verified them through experiments. Our approach is
application driven, by taking full account of the locality
exhibited in high-frequency operations. The design goal
has been to arrive at algorithms and strategies that
balance carefully between performance, storage utilization
and robustness.

Our results indicate that the simple hill-climbing
algorithm is robust and achieves the most balanced results
overall, with moderate placement overhead. Hill-climbing is
also very effective as a complementary tool to smooth out
distribution for other algorithms. Simulation results show
that our approaches can reduce the average lookup cost
by 60-70% from the baseline.

Our planned future work include both advanced issues
as well as problems we have not addressed properly:

• We plan to extend the algorithms and look into
placement algorithms not only for metadata, but for
data objects as well. We plan to investigate the
placement algorithms for other popular distributed data
structures.

• Adaptive schemes will serve many of the algorithms
well if applied properly. For instance, in zoom-in, the
way sub-zones are divided can be more intelligent; in
hill-climbing, both TTL and threshold can be adjusted
on the fly; lastly, in radius-delta, the radius can be
modified as well.

• Some of the orthogonal optimizations we described
could be combined with the current algorithms.

• Last but not the least, we’d like to see if these
techniques can be extended to other peer-to-peer
systems, and how much a difference it will make by
varying system parameters.

8 References
1. Kubiatowicz, J., et al. OceanStore: An

Architecture for Global-Scale Persistent
Storage. in ASPLOS 2000. 2000. MA, USA:
ACM.

2. Druschel, P. and A. Rowstron. PAST: a large-
scale, persistent peer-to-peer storage utility. in
HotOS-VIII Workshop. 2001. Schloss Elmau,
Germany.

3. Stoica, I., et al. Chord: A scalable peer-to-peer
lookup service for Internet applications. in ACM
SIGCOMM. 2001. San Diego, CA, USA.

4. Ratnasamy, S., et al. A Scalable Content-
Addressable Network . in ACM SIGCOMM. 2001.
San Diego, CA, USA.

5. Gnutella, http://www.gnutella.org.

6. Rowstron, A. and P. Druschel. Pastry: Scalable,
distributed object location and routing for
largescale peer-to-peer systems. in IFIP/ACM
Middleware. 2001. Heidelberg, Germany.

7. Dahlin, M., et al. Cooperative Caching: Using
Remote Client Memory to Improve File System
Performance. in Usenix OSDI. 1994. Monterey,
California, USA.: USENIX.

8. NFSv4, http://www.nfsv4.org.

9. Clarke, I., et al. Freenet: A distributed
anonymous information storage and retrieval
system. in Workshop on Design Issues in
Anonymity and Unobservability. 2000. Berkeley,
CA, USA.

10. Kleiman, S.R. Vnodes: An Architecture for
Multiple File System Types in Sun UNIX. in
Summer 1986 USENIX Conference. 1986.
Atlanta, GA, USA.

11. NLANR, http://www.nlanr.net/.

12. Dabek, F., et al. Wide-area cooperative storage
with CFS. in Symposium on Operating Systems
Principles (SOSP) . 2001. Banff, Canada.

13. Bolosky, W.J., et al. Feasibility of a Serverless
Distributed File System Deployed on an Existing
Set of Desktop PCs. in ACM SIGMETRICS. 2000.
Santa Clara, California, USA.

14. Silaghi, B., B. Bhattacharjee, and P. Keleher.
Routing in the TerraDir Directory Service. in In
Submission. 2002: University of Maryland.

15. Karamanolis, C., et al., An Architecture for
Scalable and Manageable File Services. 2001,
Hewlett-Packard Labs: Palo Alto.

16. Zhang, Z. and C. Karamanolis. Designing a
Robust Namespace for Distributed File Services.

in 20th Symposium on Reliable Distributed
Systems. 2001. New Orleans, USA: IEEE Computer
Society.

17. Keleher, P. and S. Bhattacharjee. Are Virtualized
Overlay Networks Too Much of a Good Thing?
in 1st International Workshop on Peer-to-Peer
Systems (IPTPS'02). 2002. Cambridge, MA, USA.

+ This work was done while author was at Hewlett-Packard
Laboratories.

