

Some Questions and Answers on CC/PP and UAProf

Mark H. Butler
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-73
April 5th , 2002*

E-mail: mark-h_butler@hp.com

device
independence,
composite
capabilities/
preferences
profile
(CC/PP),
resource
description
framework
(RDF),
wireless
access
protocol
(WAP),
user
agent profile
(UAProf)

DELI is an open-source library developed at HP Labs that allows
Java servlets to resolve HTTP requests containing device capability
information in either CC/PP, the proposed recommendation by the
W3C CC/PP, or UAProf, the standard proposed by the WAP
Forum. This document consists of a set of questions and answers
that explore issues that have arisen during the implementation of
DELI. It is presented specifically to initiate further discussion to
identify whether further work is necessary on the CC/PP
recommendation track documents.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Some Questions and Answers On CC/PP and UAProf
Mark H. Butler
mark-h_butler@hp.com
20 / 03 / 2002

Abstract
DELI is an open-source library developed at HP Labs that allows Java servlets to
resolve HTTP requests containing device capability information in either CC/PP, the
proposed recommendation by the W3C CC/PP, or UAProf, the standard proposed by
the WAP Forum. This document consists of a set of questions and answers that
explore issues that have arisen during the implementation of DELI. It is presented
specifically to initiate further discussion to identify whether further work is necessary
on the CC/PP recommendation track documents.

Keywords
Device Independence, Composite Capabilities / Preferences Profile (CC/PP),
Resource Description Framework (RDF), Wireless Access Protocol (WAP), User
Agent Profile (UAProf)

CC/PP and UAProf: A Dialogue
Q: So what do you think about the current versions of CC/PP and UAProf?

A: Well in summary my opinion is that the CC/PP documents do not give enough
detail to effectively implement a CC/PP processor. The UAProf documents do give
enough detail to implement a UAProf processor, but neither UAProf nor CC/PP
adequately addresses profile validation so it is not possible to guarantee vendor
interoperability for UAProf profiles.

Q: But surely CC/PP and UAProf work? Haven’t a number of people have already
implemented them?

A: Yes people have implemented CC/PP and UAProf. I’ve produced an
implementation myself called DELI1,2. However DELI (and I suspect other
implementations) uses a number of bodges i.e. temporary fixes that are likely to break
in a large-scale deployment. Although DELI can process all profiles I have currently
encountered, my experience is that generally DELI will fail when it encounters a new
profile. There are several reasons for this but it is chiefly because there is currently no
notion of profile validation in CC/PP or UAProf so there is no guarantee of vendor
interoperability.

Q: Yes but I’m working on CC/PP - why should I be interested in UAProf as that’s
the WAP Forum’s problem?

A: UAProf is the first large-scale deployment of CC/PP. Therefore the problems
encountered with UAProf illustrate some important issues for CC/PP. A lot of the
problems stem from the fact that the CC/PP recommendation track documents don’t
specify very much. As a result of this UAProf had to define functionality that CC/PP
left unspecified. Really CC/PP should specify these bits of functionality in order to

 2

guarantee vocabulary interoperability, as after all UAProf is really just a specific
CC/PP vocabulary and protocol rather than an alternative standard.

Q: What do you mean CC/PP doesn’t specify very much?

A: In my opinion, the requirements in the CC/PP structure and vocabularies document
can be re-interpreted as saying “any RDF parser that assumes any property ending in
“Defaults” is equivalent to any property ending in “defaults” constitutes an
implementation of CC/PP”.

Q: What do you mean - it’s a long document - surely it specifies more than that?

A: When you read drafts one key thing to consider is what is required for
conformance. Typically this is indicated by "REQUIRED", "MUST" and
"SHOULD”. If you search the CC/PP working draft3, you’ll find the following
conformance issues. I've numbered them so I can make further comments:

1. CC/PP profile components: support for these is REQUIRED.

2. CC/PP profile defaults: support for these is REQUIRED.

3. Support for the structured CC/PP attribute formats described, where relevant, is
REQUIRED.

4. CC/PP applications are not required to support features described in the
appendices, but any new attribute vocabularies defined MUST conform to the RDF
schema in appendices B and C.

5. If a CC/PP profile uses any attribute that can appear on different component types,
then the type of any component on which such an attribute appears MUST be
indicated by an rdf:type property, or equivalent RDF. A CC/PP processor MUST be
able to use this type information to disambiguate application of any attribute used.

6. A ccpp:Component resource MAY have an rdf:type property (or equivalent RDF
structure) indicating what kind of client component it describes. The example in
figures 3-4 is of a profile with an explicit indication of component subtype. However,
CC/PP processors MUST be able to handle profiles that do not contain component
type indicators. As long as the CC/PP attributes used are all specific to a given
component type, a processor will have sufficient information to interpret them
properly.

7. Default values are referenced by the property ccpp:defaults. This name conforms to
the name format recommendations of the RDF model and syntax specification [3],
appendix C.1. However, for compatibility with earlier versions of CC/PP used with
UAPROF, CC/PP processors SHOULD recognize the property name ccpp:Defaults
(i.e. with capital "D") as equivalent.

8. The component resources in a profile are instances of components identified in the
corresponding schema, which in turn MUST be subclasses of ccpp:Component. They

 3

MUST be identified as such , by means of the rdf:type property whose value matches
the name of the component type in the schema.

9: NOTE: A default document uses a <Description> element as its root node. The
<Description> is named using an about= attribute whose value is a URI. This URI
MUST correspond to the value in the rdf:resource= attribute in the <Defaults>
element in the referencing document. In the examples of default documents below, the
URLs of the external default values documents are used. However the default
resource URI does not have to be the document URL, as long as the URI is uniquely
identified, the same URI is used in both the source document and the external default
values document, and there is some way for the processing software to locate and
retrieve the document containing the default resource.

It’s strange that a lot of these constraints refer to the processor when this document is
meant to describe the structure and vocabularies used by the profile. There is a logical
problem here because even if the processor MUST process something, it doesn’t
necessary follow that a profile MUST contain it. Furthermore none of the CC/PP
documents discuss a processing model, so putting constraints on the processor doesn’t
achieve much. For example points 1 - 3 use the word "support" to describe what the
processor does. However “support” is not defined anywhere so could simply mean
parse. In Point 5 "use" is not defined nor “handle” in points 6 and 7. Points 8 and 9
seem okay though: 8 is a requirement on any CC/PP schema so we can say a CC/PP
schema must be a valid RDF schema and condition 8 must hold whereas 9 is a
requirement on "default documents" so we can say a default CC/PP document must be
a valid CC/PP profile and condition 9 must hold. I think a distinction needs to be
drawn between "support", "use" and "handle” and parsing otherwise any RDF parser
can be regarded as a CC/PP implementation as long as it obeys point 7 e.g. it regards
the property defaults equivalent to Defaults.

Q: So what’s RDF? I thought CC/PP and UAProf used XML?

A: RDF, the Resource Description Framework4, is the W3C’s recommendation for
metadata. It is a way of representing information as statements, each consisting of a
subject, predicate and object. However it is a new technology so people are not as
familiar with it as they are with XML. RDF can be serialised in many ways, but
CC/PP uses the XML serialisation of RDF. Hence CC/PP is built on RDF represented
using XML, so CC/PP profiles are, in effect, written in XML. However when we
parse CC/PP profiles we need to remember there is another level of abstraction above
the XML i.e. RDF.

Several implementations of CC/PP or UAProf, for example the IBM UAProf
implementation5 or the XCries CC/PP implementation in XSmiles6 process UAProf
and CC/PP respectively using an XML parser. Parsing the XML serialisation of RDF
using an XML parser is difficult7 as the XML serialisation allows the same RDF
model to be represented in many different ways. Therefore these processors are not
able to parse all possible XML serialisations of RDF and hence all possible CC/PP
profiles.

Even if the CC/PP processor does use an RDF parser (for example DELI uses Jena 8)
the XML serialisation can still cause problems. For example one use case for CC/PP

 4

is to use the profile information to adapt XML using XSLT. To investigate this, I have
integrated DELI into the Apache Cocoon9 XML / XSLT publishing framework so that
XSLT stylesheets can query CC/PP profiles. XSLT uses XPath but it is difficult to
query CC/PP profiles using XPath as the structure of the underlying RDF model is
different to the XPath representation of the CC/PP profile. In order to resolve this
problem DELI “flattens” the profile to produce an XML profile which is amenable to
query via XPath. Clearly this is undesirable as it means that DELI is using two
different profile representations.

Q: This all sounds rather pedantic - what does this have to do with vendor
interoperability?

A: Well the problem is if a specification is not adequately constrained, there is too
much room for vendors to produce different incompatible variants. This seems to be
what’s happening with CC/PP. When implementing DELI, the first thing I had to do
was answer the question of what a CC/PP or UAProf processor does and I concluded
that one important task was profile resolution. UAProf, and the proposed protocol for
CC/PP, split the profile into a number of fragments so that these fragments can be sent
efficiently to the server. Profile resolution is when the server recombines these
fragments to form the original profile. Unfortunately as profile resolution is defined in
the CC/PP protocol document and the protocol was outside the original charter,
profile resolution is not defined in any recommendation track W3C documents. So
one way of resolving the problem with requirements 1-7 would be to put a description
of profile resolution in a recommendation track document. I think it is possible for
resolution to be specified in a protocol independent way.

Q: So how does DELI perform profile resolution?

A: Firstly when DELI processes a HTTP request containing CC/PP information, it
searches the request header for the headers “x-wap-profile” and “x-wap-profile-diff”,
the W-HTTP UAProf request headers. Then it has to search for the headers “profile”
and “profile-diff” because currently the Nokia phone emulator uses these non-
standard request header names. So Nokia and Ericsson currently implement the
protocol differently! Then it has to search for HTTP-ex style request headers in case it
is dealing with a CC/PP device conforming to the proposed (but not recommended)
extension protocol10 or a UAProf 1.2 device.

Secondly once DELI has identified the profiles and the profile -diffs, it builds an RDF
model for each profile fragment. Some profiles, such as the Ericsson T6811 and T3912
do not use rdf:type to identify components. Although this behaviour is permitted
under the CC/PP and UAProf recommendations, really this is incorrect use of RDF
just as using a variable in a Java program before declaration would be considered
incorrect13. For example in the following profile fragment

<prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 <rdf:type
 rdf:resource =
"http://www.wapforum.org/profiles/UAPROF/ccppschema20010430#HardwarePlatform
"/>
 <prf:BitsPerPixel>2</prf:BitsPerPixel>
 </rdf:Description>
</prf:component>

 5

we declare that the component is called HardwarePlatform twice. It is important to
note the first use of HardwarePlatform defines the instance name whereas the second
use is to define the type. This is just as if we defined an object in Java e.g.

HardwarePlatform hardwarePlatform;

In Java we would not expect the complier to determine the object type from the
instance name.

Q: Is it really true that they would be required to do this in order to be valid RDF?
Surely typing is not mandatory as in Java?

A: I mention Java as an analogy. By incorrect RDF I don’t mean that it breaks formal
things such as the EBNF rules governing the RDF syntax but it is using RDF in a way
that is not intended. Here’s a fragment from the T68 profile:

<prf:component>
 <rdf:Description ID="SoftwarePlatform">
 <prf:AcceptDownloadableSoftware>No</prf:AcceptDownloadableSoftware>
 </rdf:Description>
</prf:component>

As you can see in this profile a component is created with a local ID of
“SoftwarePlatform”. By local I mean it is local to this particular model. RDF
processors don’t place a “global” interpretation on the ID. Here’s what the RDF
Model and Syntax Specification document says about Description elements:

A single RDF statement seldom appears in isolation; most commonly several
properties of a resource will be given together. The RDF XML syntax has been
designed to accomodate this easily by grouping multiple statements for the same
resource into a Description element. The Description element names, in an about
attribute, the resource to which each of the statements apply. If the resource does not
yet exist (i.e., does not yet have a resource identifier) then a Description element can
supply the identifier for the resource using an ID attribute.

Furthermore it says this about Description elements using the type property:

The third basic abbreviation applies to the common case of a Description element
containing a type property (see Section 4.1 for the meaning of type). In this case, the
resource type defined in the schema corresponding to the value of the type property
can be used directly as an element name. For example, using the previous RDF
fragment if we wanted to add the fact that the resource
http://www.w3.org/staffId/85740 represents an instance of a Person, we would write
this in full serialization syntax as:

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://description.org/schema/">
 <rdf:Description rdf:about="http://www.w3.org/Home/Lassila">
 <s:Creator>
 <rdf:Description rdf:about="http://www.w3.org/staffId/85740">
 <rdf:type rdf:resource="http://description.org/schema/Person"/>
 <v:Name>Ora Lassila</v:Name>
 <v:Email>lassila@w3.org</v:Email>
 </rdf:Description>

 6

 </s:Creator>
 </rdf:Description>
</rdf:RDF>

So we have to use rdf:type to indicate that when we create a SoftwarePlatform
resource we are referring to something we have defined in the associated schema.
Presumably some UAProf processors search the profile for resources with specific
local IDs e.g. “SoftwarePlatform”, “HardwarePlatform” etc. This isn’t the
recommended approach in RDF: if we need to search for resources, then we should do
it based on resource type.

Q: But doesn’t the CC/PP structure and vocabularies document explicitly allow you
to do this in point 6?

A: Yes that’s what the document says at the moment. I suspect this requirement is
primarily to guarantee compatibility with UAProf rather an explicit design decision.
Specifically although it is possible to make a requirement like this of a UAProf
processor as it only processes the UAProf vocabulary, I think the current CC/PP
documents make it impossible to create a CC/PP processor which could process many
vocabularies.

Currently DELI tries to cope with such situations by inferring the component from the
attribute name using a vocabulary description. However a processor cannot guarantee
that the vocabulary description will be available. All currently available UAProf
profiles reference a namespace using a URL that does not contain a schema. If the
processor has not been instructed a priori to associate this namespace with a local
copy of the schema, then the processor cannot infer the parent components of any
attribute, as they do not possess the schema. This stems from the fact that CC/PP and
UAProf do not state that profiles MUST reference namespaces that make RDF
schemas available.

The Mitsubishi Trium profile14 does not use components at all. This causes a problem
as RDF models, unlike XML, do not have a concept of a root node. Therefore by
default DELI tries to use the components as a starting point in the RDF graph for
retrieving information. With the Trium, DELI has to use a fallback mode where it
tries to manually locate the root of the model (as CC/PP profiles, unlike other RDF
models, always have a root node) in the hope it can find attributes there.

Q: That sounds like a good solution - what’s the problem?

A: Well either I’d like to see the profile format much more tightly defined or if a
fallback approach is necessary have that made explicit in a formal document.

I think the confusion about components stems from the fact it is not obvious what
purpose components serve. The CC/PP structure and vocabularies document
recommends that attributes should really only be associated with one component:
hence components don’t provide any additional information beyond attribute name.
Furthermore I observe that there has been disagreement in UAProf about which
component is most appropriate for various attributes e.g. should CcppAccept be in
SoftwarePlatform or BrowserUA? If we don’t have a concrete use case for why we

 7

need components, perhaps we need to exercise Occam’s razor and just dispose of
them altogether.

Q: You also mentioned something called a vocabulary description - what’s that?

A: When you perform profile resolution in UAProf, you need to know some
information about the vocabulary in use. I’ve called this information the vocabulary
definition. It is derived either from the RDF schema for the vocabulary or a
proprietary DELI format file.

Q: Why did you create a proprietary format when CC/PP and UAProf use RDF
schema?

A: In order to perform profile resolution in UAProf the processor needs to know the
type and the resolution rule used by the attribute. In the RDF schema for UAProf, this
information is stored as comments rather than as XML formatted data. This means it
is hard to retrieve using an XML parser, as you have to do lots of text matching which
should not be necessary. So initially I invented my own data format that stored this
information as XML. As time went on I discovered there are many versions of the
UAProf vocabulary in use and phones often use a vocabulary incorrectly e.g.
attributes are spelt incorrectly. For example the Ericsson phones use an attribute
called “PixelsAspectRatio” which I think should be “PixelAspectRatio”. In the
interests of fairness I decided it was important to discover whether I was making
mistakes or whether it was the phone. The best way to do this seemed to be to use the
official UAProf schema. This involved writing a parser that could parse the comments
fields. These UAProf schemas are available at
http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330#
http://www.wapforum.org/profiles/UAPROF/ccppschema-20000405#

When I tried parsing these schemas I found that both schemas contained a large
number of RDF errors. For example they do not use the correct RDF namespace.
They should qualify ID with the rdf namespace i.e. use rdf:ID not ID. Similarly they
should use rdf:resource not resource. They contain a few invalid URI with extraneous
pre-pended and trailing white spaces. They also use several different namespaces to
refer to RDFS elements when they should all use a single RDFS namespace. Finally
the schema incorrectly says that Bag and Seq elements are in the RDFS namespace
when they should be in the RDF namespace. If you want to see the errors for yourself,
try running the schema through the W3C RDF Validation service at
http://www.w3.org/RDF/Validator/. I have corrected the schemas and sent the
corrected versions to the WAP Forum, but they have not yet updated them. The
corrected schemas are available with DELI though.

Q: But surely companies check their profiles before they release them?

A: Well to be fair to the vendors one of the biggest problems with CC/PP is there is
no automatic scheme for validating profiles. To date the biggest users of DELI have
been vendors who want to test their profiles rather than content authors using CC/PP
or UAProf information. To be honest, DELI is not ideal as a profile validator because
CC/PP has a very weak concept of what constitutes a valid profile. For example at the
moment there is no requirement that profiles reference real schemas as processors do

 8

not have to support schemas. As I see it, the working draft should contain much
stronger constraints on profiles somewhere along these lines:

A CC/PP profile MUST meet the following criteria:

- It must be valid RDF.
- It must refer to a minimum of three namespaces, the RDF namespace, the

CC/PP namespace and one or more vocabulary namespaces. The RDF and
CC/PP namespaces MUST be the standard W3C namespaces.

- All vocabulary namespaces MUST be URLs that actually contain valid RDF
schemas. A CC/PP profile can only use attributes that are defined in one of
the RDF schemas it references.

- As well as defining the attribute name and its parent component, the RDF
schema should also define the attribute type and whether it is simple or
complex. When attributes in the vocabulary can use several different
resolution policies, as in UAProf, it should also define the resolution rule.
When suitable mechanisms for defining these properties are not available in
the RDF schema namespace, a new standardised CC/PP schema namespace
should be used rather than placing the information in comments fields.

If profiles were formally required to meet these criteria, DELI could perform
validation and check profiles before they become public. Such a validating CC/PP
processor could be made available at the W3C website, in a similar way to the RDF
validation service.

Q: Why can’t you use this on profiles for currently available phones like the Ericsson
T68?

A: Currently phones often refer to schemas that do not exist so such a validation
process is not possible. For example the Ericsson T68 profile references the
namespace
http://www.wapforum.org/UAPROF/ccppschema-20000405#
Whereas the correct URL is
http://www.wapforum.org/profiles/UAPROF/ccppschema-20000405#
In DELI, I “bodge” this problem using a configuration file that maps the incorrect
namespaces used by phones onto local corrected versions of the UAProf schemas.
However when a manufacturer releases a new phone, there is a danger that they will
use a different namespace. As namespaces have to be explicitly configured in DELI,
if it encounters a new namespace it will fail. This is a major barrier to true vendor
interoperability. Of course I could “bodge” this so if a profile uses a namespace that
DELI has never heard of it adopts a fallback one, but this is patching the problem
rather than solving it I would like to get rid of all these “bodges” - that’s why I’ve
been so vocal about the issues with CC/PP and UAProf.

Q: What about other phones?

A: Well the other phone I have encountered, the Mitsubishi Trium, references the
namespace
http://www.wapforum.org/UAPROF/ccppschema-19991014#
and again no schema is available from this URL. The Trium profile contains two
unrecognised attributes - SoftkeysCapable and WmlscriptCapable. I think the problem

 9

here is caused by incorrect use of capitals e.g. WmlscriptCapable should be
WmlScriptCapable.

Q: Isn’t SoftkeysCapable in one of the SINs? (For people not familiar with UAProf,
a SIN is a specification information note i.e. an approved specification change
document)

A: Perhaps but in my opinion that isn’t good enough. UAProf has been created so
content providers can deliver optimized content and optimized services to different
devices in a seamless fashion. In order to guarantee this, we need processors to load
the correct information on demand, not hope that the processor contains hard-coded
information that meets the latest revision of the specification. We also need to guard
against errors using standard quality control methods like data validation. I think it’s
fair to say that at the moment RDF has less support for data validation than XML.
This is primarily because RDF is designed to be used in an extensible manner.
Extensibility comes at a price though: for example how does a processor determine
whether “WmlscriptCapable” is a typing mistake or an attempt to extend a
vocabulary?

Q: So are there any other problems with profile resolution?

A: Yes. To recap, we have parsed our profile fragments using Jena and we need to
perform profile resolution. Unfortunately this is difficult to implement in RDF. Both
CC/PP and UAProf clients split up profile information in order to send it to the server
in an efficient way. They do this by using a standard profile, known as a reference
profile, and a list of overrides specific to the requesting device known as a profile diff.
Other devices in the communication path, such as proxies, may also add profile diffs.
The process of reassembling the final profile from the reference profile(s) and profile
diff(s) is known as profile resolution. CC/PP does not specify the exact mechanism
for profile resolution, apart from requiring that default attribute values are always
overridden by non-default attribute values. UAProf on the other hand specifies a set of
resolution rules that apply to non-default values. Each attribute in the UAProf
vocabulary is associated with a specific resolution rule that is applied when multiple
attribute values are encountered. In UAProf these resolution rules are order
dependent; for example, locked means take the first value encountered whereas
override means take the last value encountered. Unfortunately these rules are difficult
to implement in RDF, as RDF models do not have any implicit concept of ordering
statements. Ordering must be done explicitly, e.g. using an RDF Sequence. This is in
contrast to XML, which does implicitly order elements in documents. As statements
in an RDF model are unordered it is impossible to apply the UAProf resolution rules
to a single RDF model. UAProf keeps the reference profile and diffs as separate RDF
models in the W-HTTP protocol, and in theory each model should only define an
attribute once. If they did define an attribute twice, then currently the resolved value
would be determined in an undefined way. DELI makes the assumption that each
separate RDF model will only define an attribute once and “bodges” the resolution
problem by converting the profiles to an intermediate data structure that stores
attribute order before performing profile resolution. It then merges this data structure
rather than the RDF models.

Q: So how do you use the CC/PP information once you’ve resolved it?

 10

A: Well there are two problems with using this information in UAProf. Firstly
UAProf does not define any semantic meaning for attribute values. This means that
two phones from two different vendors might use different attribute values to describe
the same functionality i.e. one might call a Keyboard “keypad” whereas another might
call it “numeric”. Alternatively they might use the same attribute value to describe
different functionality. Even if there is a standard attribute with a common meaning,
CC/PP and UAProf does not define any rules regarding capitalization or use of white
space in attribute values. This, along with mistyping and the lack of profile validation
techniques means we may not be able to use information from attribute values. Ideally
there should be some means of validating attribute values as well as attribute names,
although this would not resolve the problem of semantic meaning. XML Schema has
mechanisms for specifying constraints on attribute values.

Assuming we have solved the problem of attribute values, the next problem is what
operators you can use in association with those values. UAProf defines four data
types: Boolean, Numeric, Dimension and Literal. Boolean can use operators such as
True or False, whereas Numeric can use equals, not equal, less than, more than, less
than equals and more than equals. However operators for Dimension and Literal are
more problematic. The Dimension datatype contains two numbers separated by an X
e.g. 101x48 or 160x160. Hence standard less than and more than does not work as a
value could be greater than a comparison value in one dimension but less than the
other comparison value in the other dimension. Clearly there is a need for some
standard operators to be defined such as canContain and canBeContainedBy to
determine which of two dimension values is larger or smaller. The Literal datatype
also causes problems: on first glance equals and notEquals seem the most appropriate
operators here but UAProf uses Literals to represent version numbers as Numeric can
only store integer values. We might want to test if the device is compatible with a
certain version or higher. This seems to indicate UAProf need a version number
datatype and a backwardCompatible operator.

Another problem concerns merging requests containing different vocabularies. As
already noted, there are already several different versions of the UAProf vocabulary
currently in use. Therefore it is possible that a phone and a proxy used in combination
could use different vocabulary namespaces. Currently under CC/PP and UAProf, even
if the phone and the proxy made statements about the same attributes then those
attributes would not be merged as they are in different namespaces. However
intuitively it seems that attributes should be merged if they are identical in two
different UAProf vocabularies but there are no rules defined for doing this. This task
is made harder as between different versions of the UAProf specification; some
attributes have retained the same name but changed type, parent component or
resolution rule. How should the merge be done in such situations?

Q: So how should this be solved?

A: Well the CC/PP recommendation says don’t create attributes if suitable attributes
already exist. However the UAProf interpretation was to re-use attributes but place
them in new namespaces. Perhaps the advice should be “if a suitable attribute already
exists, use it in the namespace already defined”. This would automatically overcome
these namespace problems and merging would be carried out automatically.

 11

Q: So you’ve talked a lot about UAProf, what does this tell us about CC/PP?

A: Here’s a quick summary of the issues:

The notion of profile resolution should be part of the core CC/PP recommendation
rather than being specified in the protocol. This would bring it inside the current
CC/PP working group charter. CC/PP would not have to specify resolution rules like
UAProf but it should define a standard processing model. Specific resolution rules for
a given vocabulary would need to be compatible with this processing model to ensure
that resolution can be performed on RDF models.

The CC/PP recommendation also needs to introduce the notion of profile validity.
This would be done by defining a fixed set of rules that are used to determine if a
profile is valid or not. These rules would specify how a validating processor would
work. Such rules should not require the creation of new technology; rather they
should leverage RDF schema and XML schema where necessary.

The importance of defining semantic meaning for attribute values within vocabularies
needs to be emphasised in the CC/PP recommendation. People should not be
encouraged to use vocabularies where attribute value meaning has not been defined.
Validation should be extended to cover attribute values as well as attribute names.

CC/PP needs to propose a proper method of describing data-types, and operators that
can then be used on those datatypes. This could reuse work currently underway on
datatypes in RDF.

The advice the CC/PP recommendation gives on creating new attributes should be
updated to encourage people to re-use existing namespaces, not just to re-use existing
attribute names.

A more major change would be to reconsider the role of RDF in CC/PP. For example
if CC/PP adopted an alternative serialisation then this could be designed so it is easier
to parse CC/PP and perform XPath queries. However such a serialisation could still be
converted to RDF so you would still be able to use RDF tools if necessary.

I’m working on a more formal issue list, along with a number of possible proposals to
submit to the W3C.

Q: Are these the reasons why UAProf has not yet been widely deployed?

A: I’m not sure. I would be interested to hear the phone vendors’ position on this.
Apparently concern about UAProf is phone vendors have been trying to work out
what kind of server capability they need for their profile repository. Apparently some
people base their assumptions on the idea that the origin server queries the repository
every time the phone makes a request. This leads to a very high estimated value for
repository server usage, which in turn would require a considerable investment in
infrastructure. This could put people off deploying UAProf! Several implementations,
including DELI, cache profiles at the origin server, whic h drastically reduces such

 12

estimates. Perhaps caching needs to be discussed in the CC/PP and UAProf
documents.

On a different note, I’d recommend you read this paper15 as it provides an amusing
account of why getting people to provide metadata can be difficult.

1 DELI, http://www-uk.hpl.hp.com/people/marbut/deli/
2 DELI: A Delivery Context Library for CC/PP and UAProf, http://www-
uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm
3 CC/PP: Structure and Vocabularies, http://www.w3.org/TR/2001/WD-CCPP-struct-vocab-20010315/
4 RDF Model and Syntax Specification, http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
5 Composite profile information, Carl Binding, Reto Hermann, Andreas Schade,
http://www.w3.org/2002/02/DIWS/submission/aschadeCompositeProfileInformation.html
6 XSmiles, http://www.xsmiles.org/
7 Co-Parsing of RDF and XML, Jeremy Carroll, http://www-uk.hpl.hp.com/people/jjc/docs/r292.pdf
8 Jena, http://www.hpl.hp.com/semweb/jena-top.html
9 Apache Cocoon, http://xml.apache.org/cocoon/
10 CC/PP exchange protocol using HTTP Extension Framework, http://www.w3.org/TR/NOTE-
CCPPexchange
11 Ericsson T68 profile, http://mobileinternet.ericsson.com/UAprof/T68R1.xml
12 Ericsson T39 profile, http://mobileinternet.ericsson.com/UAprof/T39.xml
13 CC/PP and UAProf: Issues, improvements and future directions, http://www-
uk.hpl.hp.com/people/marbut/deliverycontextFinal.html
14 Mitsubishi Trium profile http://www.mitsubishi-telecom.com/profiles/eclipse.ua
15 The Seven Straw Men Of The Meta-Utopia, http://www.well.com/~doctorow/metacrap.htm

