O}

invent
Zebra Copy: A Reference Implementation of Federated Access
Management
Jun Li, Alan H. Karp
Advanced Architecture Laboratory
HP Laboratories Palo Alto
HPL-2007-105
June 28, 2007*
Services Oriented Federated Identity Management (FIdM) is being applied to Services Oriented
Architecture, SOA, Architecture (SOA) deployments that cross enterprise boundaries. These
web services, systems have been found to be inflexible, unscalable, and difficult to use,
access control, manage, and upgrade. We contend that a major reason for these difficulties is
Federated Identity that FIdM solves the wrong problem. Specifically, FIdM says nothing about
Management, FIdM federating access policies. What is needed instead of FIdM is a system for

Federated Access Management (FAccM). This report demonstrates the benefits
of FAccM over FIdM for SOA deployments and includes a step-by-step
explanation of code needed to deploy, manage, and use a sample service.

* Internal Accession Date Only Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Zebra Copy: A Reference Implementation

of Federated Access Management?
Jun Li and Alan H. Karp
Hewlett-Packard Laboratories
Palo Alto, California

Abstract
Federated |dentity Management (FIdM) is being applied to Services Oriented
Architecture (SOA) deployments that cross enterprise boundaries. These systems have
been found to be inflexible, unscalable, and difficult to use, manage, and upgrade. We
contend that a major reason for these difficultiesis that FIdM solves the wrong problem.
Specifically, FIdM says nothing about federating access policies. What is needed instead
of FIdM is asystem for Federated Access Management (FAccM). This report
demonstrates the benefits of FAccM over FIdM for SOA deployments and includes a
step-by-step explanation of code needed to deploy, manage, and use a sample service.

1. Introduction

The Services Oriented Architecture (SOA) [22,27] may yet deliver on the promise of
loosely coupled application development that didn’t materialize from earlier attempts,
such as CORBA [29,11]. The SOA is based on Web Services standards - SOAP for
invocation [26], WSDL for interface definition [31], and UDDI for service discovery
[28], all of which use XML [7] asthe communications format. These standards remove
many dependencies on machine architecture and operating system, making composition
of independently developed components far easier.

One of the things holding back the widespread use of the SOA is the delay in reaching
consensus on how to securethe services. There are a number of aspects of securing web
services, such as encryption, message integrity, authentication, authorization, etc., and
there appears to be at |east one standard for each of them, XML DSIG [32], XACML [6],
etc. Therelevant standard for a discussion of access control is the Security Assertion
Markup Language (SAML) [21]. The goal of SAML isto provide a means for
exchanging security information across organizational boundaries, a requirement if the
SOA isto reach its full potential.

The SAML specification is quite general in the kind of assertions that can be made, but
most of the examples include a specification of the user’sidentity. For example, the
SAML Technical Overview [21] includes the statement, “At the heart of most SAML
assertions is asubject (a principal — an entity that can be authenticated — within the
context of a particular security domain) about which something is being asserted.” The
Liberty Alliance, which is developing a framework for distributed identity management,
has adopted SAML 2.0, another indication of the importance of identity assertionsin
SAML.

! This document expands upon [14] and freely copies some of the text.

It is no surprise, then, that most implementations based on the SOA tie access control
decisions to the identity of the requester. This approach is spelled out in the introduction
to the SAML specification [21], which states,

“For example, atypical assertion from an identity provider might convey that
‘This user is John Doe, he has an email address of john.doe@company.com, and
he was authenticated into this system using a password mechanism.” A service
provider could choose to use this information, depending on its access policies, to
grant access to local resources.”

To judge by the preponderance of talks at security conferences, such as RSA 2007 [25],
most implementers assume that a Federated Identity Management (FIdM) framework is
needed to associate an access policy with agiven identity when crossing organizational
boundaries. Based on the problems they report encountering, people implementing these
systems are learning that federating access policies is much harder than federating
identities.

Left unspecified in the SAML specification is how the service provider uses the identity
of the requester to make access control decisions. Typically, the service uses the identity
to look up the appropriate policy in some local database and bases the access decision on
that information. So, it appears that the identity of the requester isn’t the critical
information; it isthe authorization information in the database that matters. If that is
indeed the case, why not just have the request convey the authorization information
instead of or in addition to the requester’ s identity? This report shows that managing
access policies using explicit authorizations with Federated A ccess Management
(FAccM) is simpler than managing access policies using FIdM.

In the remainder of this report, we'll describe the Zebra Copy scenario, explain why

FIdM is not a good solution, show the advantages of FAccM using Authorization-Based
Access Control (ABAC), and show how to express FAccM with SAML assertions. Inthe
Appendix, we'll walk through sample code that implements the Zebra Copy scenario.

2. The Scenario

Zebra Copy has just introduced a service for printing high quality brochures of up to 20
pages in press runs ranging from 10 to 10,000. HP has a contract with Zebra Copy for
other services that are used by about 2,000 HP employees. That contract has just been
extended to include the new service.

The Hewlett-Packard marketing department provides brochures customized for each
trade show where HP has a booth.? Employees of that department are eager to use the
new service from Zebra Copy. Some employees in this department work the large trade
shows, but Bob is responsible for the smaller ones. He never needs to print more than
500 copies for any show.

2 \We have no ideaiif this statement is true, but we'll assumeit is for the scenario.

The files to be printed are quite large, and Zebra Copy doesn’t want to hold them until the
job is processed. Instead, Zebra Copy requires HP provide a service that it can invoke to
get the files for printing. The service invocation specifies the file to be used for that
particular print job.

Bob works with a number of contractors to produce the brochures. When he gets busy or
isto be away from the office, he often needs one of them to handle the routine work of
ordering the brochures. These people come and go quite frequently, so Bob needs to
keep close tabs on exactly what they’ re allowed to do.

Zebra Copy bills HP for al jobs ordered by people with the proper rights. HP wants to
track those orders so it can bill back to the department the order came from. That’s not
too hard for regular employees, but it is an issue for contractors who work for more than
one department. Bob is expected to monitor how much is spent on brochures for the
trade shows he deals with. That way he can immediately report any errors or misuse.

In the next two sections, we'll contrast how Bob's access to the service is managed with
Federated Identity Management (FIdM) based on Identification-Based Access Control
(IBAC) and Federated Access Management (FAccM) based on Authorization-Based
Access Control (ABAC). We'll assume that all accesses are viaweb services running as
part of a Services Oriented Architecture (SOA) environment.

3. The Federated Identity Approach

HP needs to specify which of its employees may use the Zebra Copy Brochure service. If
the service was run by HP, that policy could be expressed by an entry in an access control
list. The problem isthat HP doesn’'t control the Zebra Copy ACL. Instead, HP needs a
policy engine to express such rules.

Let’ s say that HP maintains such a policy engine describing which employees may use
the Zebra Copy Brochure service and how large a press run each is allowed to order. HP
can set up an automated system that will forward policy changes to the relevant parties.
So, when Bob is granted the right to order press runs of up to 500 copies®, the Brochure
service gets amessage telling it to set up an account for Bob with that limit. The web
service returns a credential Bob can use to identify himself to Zebra Copy. That’s needed
because Zebra Copy and HP may use different authentication mechanisms. Bob gets an
email with his credential and aWSDL description of the Zebra Copy web service.

Since Zebra Copy needs to be able to upload the file, Bob has to do some setup. Let's
assume HP runs a web service something like Microsoft SharePoint. |If Bob doesn’t
already have a directory on the HP File Content service, he needs to get one®. Next, he
sets up an account for the Brochure service to use. He also creates a folder to contain the
files to be printed and adds read permission for the account he just created.

3 How that decision is made is left as an exercise for the reader.

Bob needs to set up his account at Zebra Copy before he can order any jobs, so he
invokes the Zebra Copy setup service. Among other things, this service alows Bob to
provide Zebra Copy the credential it will need to read the files to be printed.

When Bob wants to place an order, he runs a program that invokes the Zebra Copy
Brochure web service. The parameters to that service include the name of the file and the
number of copies to be printed. When Bob’s order is submitted to Zebra Copy, the
identity associated with the order is checked against the list of authorized users. If Bob's
credentials match an entry in the Zebra Copy database, the system verifies that the order
is consistent with the policy associated with Bob. In this case that means the number of
copies must be less than 500. Only then isthe order processed. When Bob needs Alice,
a contractor to order brochures for him, he must tell HP to tell Zebra Copy to set up an
account for her.

HP
HP File HP
Content Service
Manager 5
Marketing\ Bob
14 \Department (Saff) 10 3
12 \
1
Alice 4
(Contractor)
'\ 15\ 11 8
/
19 I\
16 \ - Zebra
Corporate Service
18 N (service account Copy
17 management)
\‘ Brochure
’< Service
Al

Figure 1: Workflow with Identification Based Access Control.

Figure 1 summarizes the scenario using Identification Based Access Control. Notice the
absence of aline in the figure connecting Alice and Bob. That indicates the lack of an
easy way to know that Bob is responsible for Alice’s access to the Brochure service.

1. HPsigns acontract with Zebra Copy.

2. Bob requests permission to use the Brochure service.

3. If approved, the request is forwarded to Zebra Copy.

4. Zebra Copy creates an account for Bob, puts an entry in its ACL, and returns his
credentialsto him.

5. Bob gets an account at the HP File Content service and creates an account for
Zebra Copy.

6. The HP File Content service returns credentials for Zebra Copy to use.

7. Bob creates adirectory in the file service, setting the ACL appropriately.

8. Bob creates his account at Zebra Copy, providing to Zebra Copy the credentials
for the HP File service.

9. Bob asks HP to set up an account for Alice at Zebra Copy.

10. If approved, the request is forwarded to Zebra Copy.

11. Zebra Copy creates an account for Alice, puts an entry in its ACL, and returns his
credentials to her.

12. Alice gets an account at the HP File Content service and creates an account for
Zebra Copy. (She may not know that one already exists.)

13. The HP File Content service returns credentials for Zebra Copy to use.

14. Alice creates a directory in the file service, setting the ACL appropriately.

15. Alice creates her account at Zebra Copy, providing to Zebra Copy the credentials
for the HP File service.

16. Alice submits her order to the Brochure service.

17. The Brochure service uses its credentials to request the file.

18. The contents of the file are returned to the Brochure service.

19. The Brochure service returns the status report.

The way Zebra Copy manages its services was a good example of FIdM based on

| dentification-Based Access Control (IBAC). It's quite familiar, but there are a number
of problems. Note that Role-Based Access Control (RBAC) [8] and Policy-Based Access
Control (PBAC) [2] don’'t help much since they address only the manageability problems.

3.1. Manageability

There is substantial management overhead. When Bob changes jobs, HP must make sure
its policy is updated, which should result in Bob losing some of his rights and gaining
others. In our example, Zebra Copy will have to update its ACL s to reflect these
changes. Companies like HP can havel0,000 or more business partners. Even small
companies like Zebra Copy often have hundreds of customers. The cost of updating the
access lists can be substantial.

The approach is unmanageable for users, too. Bob may work with dozens of business
partners. He may well end up with a different credential for each of them. Worse, each
might be based on a different technology, perhaps as ssimilar as SAML 1.1 and SAML 2.0
or as different as X.509 and Kerberos. Bob will have to learn how to use each of them.
The number of tools being developed to simplify things for usersis proof that the
problemisreal. These toolsinclude avariety of Single Sign-On (SSO) products|[1, 4,
24], and identity management tools, such as Card Space [19]. The problem is getting all
the business partners Bob deals with to agree on a single approach.

3.2. Ambient Authorities

Every request Bob makes to Zebra Copy is accompanied by proof of hisidentity. Zebra
Copy searches its policy database entries for him looking for a match with the request. If
amatch isfound, the request is honored. It isvery hard for Bob to give a process running
on hisbehalf a subset of hisrights. That means a virus running in Bob’s browser can do
anything Bob is allowed to do, even if he doesn’'t want it done. For example, Bob might
have logged in to check his account balance, but the virus orders 500 copies of a 20 page
brochure containing Bob’s medical records. Single Sign-On exacerbates the problem by
giving each process Bob runs even more authority.

3.3. Delegation

Bob is busy as the deadline for a trade show approaches. He'd like his new contractor,
Alice, to handle ordering the needed brochures. He tells HP to authorize Alice to make
up to 100 copies at Zebra Copy. HP, inturn, tells Zebra Copy. Zebra Copy sets up an
account for Alice. Bob also needs Alice to have access to the directory where she’ll put
the file to be printed. If Alice doesn’t already have an account at the HP File Content
service, Bob will have to arrange to have one set up. Once that’s done, Bob can add
Aliceto the list of authorized users. In many cases Bob won’'t have permission to change
the ACL on his directory will have to ask a sysadmin to do it for him. This processis so
onerous that people often share credentials, such as passwords and private keys [23].

3.4. Revocation

Bob returns and takes over ordering brochures again. He needs to remove Alice sright to
do that job and her access to the directory holding the files to be printed. He changes the
ACL at the HP File Content service if he can or asks a sysadmin to do it for him. He also
tells HP to tell Zebra Copy to remove Alice' s entries from their databases. But what if
Alice had access for a reason independent of Bob? For example, Alice may aso be
preparing brochures for Edward at HP. By revoking Alice's access, Bob isinadvertently
preventing Edward from getting his job done.

3.5. Responsibility tracking

An order was placed telling Zebra Copy the name of the file to be printed. The HP
computers can audit the fact that Zebra Copy accessed the file and that the filewasin a
directory assigned to Bob. The HP computers have no way of verifying that Alice placed
the order. That’s not much of an issue for a sales brochure, but it is for medical records
accessed at a hospital. Furthermore, there is no easy way to know that Bob authorized
Alice to make such requests.

3.6. Confused Deputy

Bob invokes the brochure service, providing the names of the file to be uploaded and an
image file at Zebra Copy. The brochure service uploads the input file, writes the image

file, and updates the accounting records. Bob needs to know the name of the accounting
file so he can monitor his expenditures. If Bob specifies the name of the accounting file
where he should have put the name of the image file, Zebra Copy will end up using its

privileges to overwrite the accounting information with the image. That happens because
Zebra Copy has no way to assign Bob' s rights to arguments of its invocations.

3.7. Transitivity

Let’s say the brochure service uses afile read service to get Bob'sfile. The question is
whose authentication gets used. It can't be Bob's because the file read service never
heard of him. However, care is needed because the Brochure service is likely to have
rightsit doesn’t want to exercise on Bob's behalf, such as the ability to update accounting
records.

Another issue comes up when the file read service reads the file from the HP file service.
It can’t use its own identity because HP never heard of it, so it must impersonate the
Brochure service. That might be a seriousissue if the file read service is run by one of
Zebra Copy’ s business partners. There are also many cases where such impersonization
isn’'t enough. Something as simple as outFile.write(infile.read()) won't be allowed unless
one identity has both permission to read the input file and permission to write the output
file.

3.8. Policy Compliance

Unbeknownst to Bob, only HP employees are allowed to use Zebra Copy’ s Brochure
service. When Bob tries to delegate to Alice, HP denies the request, and the policy is
enforced. Unfortunately, all delegations are difficult, and most of them don’t violate
policy. People get around this problem by sharing credentials. In our scenario, Bob tells
Alice his Zebra Copy password, and the policy is violated.

4. Using Federated Access Management

A simpler approach is to implement FAccM with Authorization-Based Access Control
(ABAC). Mog of this report consists of a detailed description of the code that
implements the Zebra Copy scenario with FAccM. This section summarizes the
workflow of that implementation within the SOA framework. Details come with the
discussion of the code.

The owner of the Brochure service at Zebra Copy creates a SAML certificate containing
the location and name of the service, the owner’s public key, and an authorization field
specifying that press runs of up to 10,000 will be approved. That certificate is delegated
to whoever in Zebra Copy is responsible for handling contracts to use the Brochure
service. Delegation involves creating a new certificate containing the public key of the
delegatee and a copy of the assertion being delegated. It is only valid for someone who
knows the private key corresponding to the public key in the assertion. This new
certificate is signed by the delegator.

When Zebra Copy signs its contract with HP, it delegates to HP a SAML certificate
representing the right to use the Zebra Copy service. HP delegates to Bob the right to
order press runs of up to 500 copies based on information in the HP policy. If Bob wants

to print 37 brochures, he generates a new key pair, creates a SAML certificate specifying
the new public key, and sets the job limit to 37. Bob then passes that certificate and the
new private key to the program that will place the order. Bob delegates to Alice the right
to make press runs of up to 100 copies the same way.

Bob gets an authorization to create files maintained by the HP File Content service. Bob
uses his authorization to create afile that the Brochure service will upload and a SAML
certificate granting read access to that file. When Bob submits his job, he delegates this
certificate to the service he isinvoking and uses the assertion in it to designate the file to
be read. The brochure service uploads the file by presenting this certificate to the HP file
service.

HP
HP

HP File
Content \
Service \
Marketing \
Department Bob 2
(Staff) 3

/
Alice

(Contractor)

A\

11

8 / / Zebra

Corporate Service | Copy
(service account
13 12 management)

A
\ .

] Brochure Service ‘

Figure 2: Workflow with Federated Access M anagement.

When Alice moves on to another job, Bob sends a message directly to the brochure
service telling it to stop honoring the certificate Bob delegated to Alice's. Once that’s
done Alice won't have the right to order copy jobs, so any delegations she made will be
invalid.

Figure 2 shows the workflow when using Federated Access Management.

1. The owner of the Brochure service creates a self-signed certificate granting all
rightsto the service to Zebra Copy Corporate.

HP and Zebra Copy sign a contract granting HP the right to use the service.
Zebra Copy delegates to HP a certificate granting the part of itsrights.

Bob asks for access to the Brochure service.

HP delegates some of his rights to Bob.

Bob asks the File Content service for authorization to create afile.

The File Content service sends an authorization for that file to Bob.

Bob delegates to Alice a subset of his rights to use the Brochure service.

. Alice asks the File Content service for authorization to create afile.

10. The File Content service sends an authorization for that file to Alice.

11. Alice invokes the Brochure service, delegating to it the right to read the file.
12. The Brochure service uses that authorization to read the file.

13. The File Content service returns the contents of the file.

14. The Brochure service sends Alice the status report.

©CONOOA~WLDN

Using FAccM with ABAC has a number of advantages.

1. Manageability: The flow of authority is exactly the way we have been managing
companies and the military for hundreds of years. People with responsibilities
delegate to their subordinates without needing approval from some third party
who may lack adequate knowledge of the situation to make an informed decision.

2. Ambient authorities. There are none. Bob gave the process acting on his behalf
exactly the subset of hisrights that he wanted it to have.

3. Delegation: Delegation isthe key to simplifying distributed policy management.
Note the way Bob manages his rights without needing to bother people who know
nothing about his organization.

4. Revocation: Revocation is simple and only involves the two end-points of the
request. That reduces the delay in revoking access and simplifies the mechanism.
Further, there is no danger that Bob revoking the rights that he delegated to Alice
will affect the authorization Alice received from Edward.

5. Confused deputy: Deputies cannot become confused because the authorization
and the designation are combined. Each resourceistied to exactly the intended
set of rights.

6. Transtive access. Forwarding rightsis ssmple. Should the Brochure service
need to invoke a web service provided by a business partner, it smply delegates
the needed rights. Some of those may come from Bob; some may come from the

Brochure service. Hence, outFile.write(inFile.read()) works when the necessary
authorizations have been delegated.

7. Policy Compliance: Delegation is easy, even if it violates policy. However,
identity and attribute information can be required with the authorization. That
information can be used to enforce policy. In our scenario in which only HP
employees may use the brochure service, the service can deny Alice' s request
because she can’t prove sheis an HP employee.

5. Using SAML Certificates as Authorizations

So far, the discussion hasn't provided any details of how to use SAML assertions as
authorizations. In this section, we'll walk through some of the examples generated from
the sample code described in Appendix D. The sample code is available for download
from HP [16].

The basic ideais to have a service create a certificate issued to its organization. Inthe
following example, the Brochure service issues a certificate to Zebra Copy Corporate
granting full rightsto the service. When a contract is signed with HP, Zebra Copy
Corporate can delegate a subset of itsrightsto HP. The evidence that the Brochure
service should honor arequest sgned by HP is the assertion granting Zebra Copy
Corporate the rights being delegated. Subsequent delegations allow further limits to the
rights being granted, right down to the process running on behalf of the user. The
approach presented here is similar to the way HP' s e-speak product [12] used Simple
Public Key Infrastructure certificates [5].

a. Initial Authorization Certificate

The assertion named ZebraCopyCorporateBrochureSevice.xml in ApplicationDir under
the ZebraCopySample directory represents the right to use al aspects of the service and
specifies any limits that the service will not exceed. Here, Zebra Copy Corporateis
granted the right to use this service. This certificate is created when the brochure service
isready to be brought on line. It starts with some XML boiler plate specifying the
version and character encoding.

<?xm version="1.0" encodi ng="utf-8"?>

Next we see the first tag that describes what the XML file contains. The tag “certificate-
log” isused for logging and debugging. It is not part of the SAML authorization
certificate. It explains what the enclosed assertion is about and when it was produced.
Each time you run the sample code, the time stamp will change.

<certificate-1og
ti mest anp="5/7/2007 10:18: 07 AM
| abel =" Zebra Copy Corporate Authorization to Brochure Service">

The assertion contains statements the issuer makes about the rightful user of the
certificate. Therightful user is whoever knows the private key corresponding to the
public key contained in the SubjectConfirmationData in the assertion. In a system based

10

on Identity- or Role-Based Access Control (IBAC, RBAC), certificates are used to make
assertions about identity or role of the rightful user. In aPolicy-Based Access Control
(PBAC) system, certificates are used to make assertions about properties the rightful user
has, such as employment or citizenship. When using the certificate as an authorization in
an Authorization-Based Access Control (ABAC) system, we only need one assertion that
specifies the rights being granted.

In the following Assertion, we see that the issuer is the Brochure Service Authority.
Each assertion also has a unique ID and atime stamp set to the time the certificate was
created. Version information that we won’t be using is included.

<saml : Assertion Mj or Version="1" M nor Ver si on="1"
Assertionl D="_cc0a2088- 905f - 41f 8- a47c- dbd720f c2f cO"
| ssuer="Brochure Service Authority"
| ssuel nst ant =" 2007- 04- 03T16: 57: 512"
xm ns: sam ="urn: oasi s: nanes: tc: SAM.: 1. 0: assertion">

We can set atime interval during which this certificateisvalid. Inan IBAC, RBAC, or
PBAC system, theinterval is usually made short because it is so difficult to revoke a
privilege. That's not the case with ABAC, so we'll set the maximum possible range.

<sanl : Condi ti ons Not Bef or e="0001- 01-01T00: 00: 00Z"
Not OnOr Af t er =" 9999- 12-31T23: 59: 597" />

The next part of the certificate specifies the service that will be invoked. In this case, the
certificate permits access to the Zebra Copy Brochure service.

<saml : Aut hori zat i onDeci si onSt at enrent
Resource="http://ww. zebr acopy. com servi ces/ Brochur eSer vi ce. asnx"
Deci sion="Pernmt">

Next we provide information of who is the rightful user of the certificate, Zebra Copy
Corporate in our example. Note that the name is specified as an X.509 distinguished
name. We're only using two of the possible fields, CN for common name and O for
organization. The Brochure service gets the subject information it will need from the
Zebra Copy Corporate X.509 certificate. The SubjectConfirmationData is a Base64
encoding of the subject’s X.509 certificate. The ellipsis denotes that there are many
charactersin this field that have been elided.

<sanl : Subj ect >
<saml : Nanel dentifier
NanmeQual i fier=""
For mat =
"urn:oasis:nanmes:tc: SAM.: 1. 1: nanei df or mat : X509Subj ect Nane" >
CN=" Cor porat e O=Zebra Copy"
</ sam : Nanel dentifier>
<saml : Subj ect Confi rmati on>
<sami : Confi r mati onMet hod>
urn: oasi s: nanes:tc: SAM_: 1. 0: cm bear er
</ sam : Confirmati onMet hod>
<sami : Subj ect Confi r mat i onDat a>
M | BKTCB+w ERWP+/ | ANBgkghki GOWOBAQQFADAQ. . .

11

</ sam : Subj ect Conf i r mat i onDat a>
</ sam : Subj ect Confi r mati on>
</ sam : Subj ect >

The next field specifies which actions on the brochure service are being authorized.
Notice that revocation is done by invoking a method on the service. This method alows
delegators to revoke certificates they delegate to others.

<sam : Action
Nanespace="htt p://wwmv. zebr acopy. conif servi ces/ Brochur eServi ce. asnx" >
Print
</ sam : Acti on>
<sam : Action
Nanespace="htt p://wwmv. zebr acopy. conif servi ces/ Brochur eSer vi ce. asnx" >
Revoke
</ sam : Acti on>

That ends the first authorization statement.

</ sanl : Aut hori zat i onDeci si onSt at enent >

Next, we specify any restrictions on the use of the service. Note that the subject field
inside the AttributeStatement block isidentica to the previous
AuthorizationDecisionStatement, so it’s been elided. It seems redundant to have the
same subject appear in both places, but most people use AttributeStatements to say things
about subjects. Sinceit would be an error not to provide a Subject in that case, the XML
serializer provided by the SAML SDK that we used requires each AttributeStatement
include a Subject.

<sanl : Attri but eSt at enent >
<sanl : Subj ect >

</ sé;ﬁ. : Subj ect >

The brochure service alows press runs of up to 10,000 copies. Note that the SOA
standards don’t specify how to tie an Attribute specifying any limits on the use of the
service to the Action of the corresponding method. That’s not a problem for this
example, but it could be for one with multiple methods that take arguments of the same
type. Thetrick we useisto define a distinct Namespace URI for each Action/Attribute
pair. Notice in the snippet below the end of the value of the AttributeNamespace is the
Action this AttributeVaue appliesto. There is no name space explosion problem
because the scope of the name space is limited to the SAML Assertion it appearsin.

<sam : Attribute
AttributeName="PrintLimt"
At tri but eNamespace="urn: zebr a: copy: brochure_service:Print">
<sam : Attri but eVal ue>
10000
</sam : Attri buteVal ue>
</sam : Attribute>

That’ s the end of what this certificate authorizes.

12

</sanl: Attri but eSt at enent >

Next is the signature needed to protect the certificate from changes and forgery and use
by those who don’t know the corresponding private key. First, thereis the information
on the algorithm used to sign the certificate. See the SAML documentation [21] for
details

<Signature xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >
<Si gnedl nf o>
<ds: Canoni cal i zat i onMet hod
Al gorithnm="http://ww. w3. org/ 2001/ 10/ xm - exc- c14n#" \
xm ns: ds="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" />
<Si gnhat ur eMet hod
Al gorithm="http://ww.w3. org/ 2000/ 09/ xm dsi g#r sa- shal" />
<Ref erence URI ="# 97fcf 75e-fcd2-4781-bff9-cc3762643652" >
<Tr ansf or ns>
<Transform
Al gorithne
"http://ww. w3. org/ 2000/ 09/ xm dsi g#envel oped- si gnature" />
<Transform Al gorithnr
"http://ww. w3. org/ 2001/ 10/ xm - exc- c1l4n#" >
<ec: I ncl usi veNanespaces
PrefixLi st="#default code ds kind rw sanml sanm p typens”
xm ns: ec="http://ww. w3. org/ 2001/ 10/ xm - exc- c1l4n#" />
</ Tr ansf or n»
</ Tr ansf or ns>
<Di gest Met hod
Al gorithn="http://ww. w3. org/ 2000/ 09/ xm dsi g#shal" />
<Di gest Val ue>1vcLB7+KYAdf | O J58S1bR1obPs=</ Di gest Val ue>
</ Ref erence>
</ Si gnedl nf 0>

The next piece is the Base64 representation of the signed hash of the document. The
ellipsis denotes that much of the content has been elided.

<Si gnat ur eVal ue>
Ya3l eEcW CC2TnRAJCOl W3k Ji . . .
</ Si gnat ur eVal ue>

The last piece of the signature is information on the key used to compute the
SignatureValue. Inthiscaseit isthe Base64 representation of the issuer’s X.509
certificate. As before, much of the content has been elided.

<Keyl nf 0>
<X509Dat a>
<X509Certificate>
M | BhDCCAQUCBEV] / . . .
</ X509Certificate>
</ X509Dat a>
</ Keyl nf 0>
</ Si gnat ur e>

Finally, we close the remaining open tags, and we're done.

13

</sam : Assertion>
</certificate-log>

Zebra Copy Corporate is now authorized to use its own Brochure service.

b. Delegation to HP

When the contract between the two companiesis signed, Zebra Copy delegatesto HP a
portion of its rights to use the brochure service. This certificateis called
ZebraCopyToHP.xml in the ApplicationDir. After the boilerplate and logging tag, the
certificate has a single assertion. Thistime the issuer is Zebra Copy corporate.

<saml : Assertion Mj or Version="1" M nor Versi on="1"
Assertionl D="_7c629054- f dc3-4911- 95ba- 3467b522b71a"
| ssuer="Zebra Copy Corporate Centralized Authority"
| ssuel nst ant =" 2007- 04- 04T23: 22: 182"
xm ns: sam ="urn: oasi s: nanes: tc: SAM.: 1. 0: assertion">

The conditions are set as before, except now the valid interval of the certificate is the
contract term.

<sanl : Condi ti ons
Not Bef or e="2007- 04- 01T0OO: 00: 00Z"
Not OnOr Af t er =" 2008- 04- 01TOO: 00: 00Z" />

Next is the actual authorization, which isthe right to use the brochure service.

<sami : Aut hori zat i onDeci si onSt at enmrent
Resource="http://ww. zebr acopy. com servi ces/ Brochur eSer vi ce. asnx"
Deci sion="Pernm t">

As before, the authorization statement specifies who may use the authorization, HP in
this case.
<sanl : Subj ect >
<sanl : Nanel dentifier NameQualifier="" Fornmat=
"urn:oasis:nanmes:tc: SAM.: 1. 1: nanei d- f or mat : X509Subj ect Nane" >

CNE"HP O=Hewl ett - Packard Comnpany"
</ sam : Nanel dentifier>

Except for the actual data, the SubjectConfirmation is the same as before, so its content
has been elided.

<sami : Subj ect Confi rmati on>

</ sam : Subj ect Confi r mati on>
</ sam : Subj ect >

Zebra Copy gets to decide which of the methods that it is allowed to use that it wishes to
grant to HP. Inthis case, there is only one method (ignoring revocation), so it is granted.

<sanl : Acti on

14

Nanespace="htt p://wwmv. zebr acopy. coni servi ces/ Brochur eSer vi ce. asnx" >
Print
</ sam : Acti on>
<sam : Action
Nanespace="htt p://wwmv. zebr acopy. coni servi ces/ Brochur eServi ce. asnx" >
Revoke
</ sam : Acti on>

The Brochure service will need to know that the delegation comes from someone
authorized to do so. We use the assertion from Zebra Copy Corporate’ s authorization
certificate as that proof. The elided text isthe rest of the Assertion granting rights to
Zebra Copy Corporate, which is exactly what was described in Section 5a.

<sanl : Evi dence>
<saml : Assertion Mj or Version="1" M nor Versi on="1"
Assertionl D="_cc0a2088- 905f - 41f 8- a47c- dbd720f c2f cO"
| ssuer="Brochure Service Authority"
| ssuel nst ant =" 2007- 04- 03T16: 57: 512"
xm ns: sam ="urn: oasi s: nanes: tc: SAM.: 1. 0: assertion">

</ sanl : Evi dence>

That ends the
</ sanl : Aut hori zat i onDeci si onSt at enent >
Now we specify the attributes associated with each allowed action.

<sanl : Attri but eSt at enent >

Zebra Copy Corporate has the authority to print press runs of up to 10,000 copies.
However, the contract with HP is limited to press runs of no more than 5,000 copies.
<sam : Attri bute
AttributeNanme="PrintLimt"
At tri but eNamespace="urn: zebr a: copy: brochure_service:Print">
<sam : Attri but evVal ue>
5000

</sanl: Attri but eval ue>
</sanl: Attribute>

That’ s the end of what this certificate authorizes.
</ sam : Attri but eSt at enent >

Next, we see the signing information. It's similar to that in the previous certificate except
that the issuer is Zebra Copy Corporate instead of the Brochure service.

<Signature xm ns="http://ww. w3. or g/ 2000/ 09/ xm dsi g#" >

</ Si gnat ur e>

Finally, we close the remaining open tags, and we' re done.

15

</sam : Assertion>
</certificate-log>

We now see the pattern. When HP delegates to Zelda, it includes its authorization
certificate as evidence. That certificate includes as evidence the certificate authorizing
Zebra Copy Corporate to use the service. That process continues through all subsequent
delegations. At each delegation the rights that are authorized can be constrained, and
typically get reduced when the certificate is delegated. Each certificate shows the
complete delegation chain, which is exactly what is needed for responsibility tracking. If
any of the certificates is revoked, all downstream delegations will be invalid because the
Evidence won't pass the verification test.

6. Conclusions

Large scale distributed systems are inherently different from stand-alone computers.
Thereislittle reason to think that designs for the latter are applicable to the former. Yet
that’s what Identification-Based Access Control does. It takes an access model designed
to deal with mainframe users and tries to make it work in a distributed environment.
Authorization-Based Access Control, which has advantages even on stand-alone
computers, is a better match to the requirements of distributed systems that span
administrative domains.

The SOA is quite different from the familiar systems that use Identity-Based Access
Control. The SOA crosses administrative domains; it has far more users and separate
components; it is far more dynamic in the rate and number of things that change; and no
one party isin charge of managing updates. If the SOA isto achieveitsgoals, it is
critical to reduce the coupling between domains to the greatest possible extent. Identity-
Based Access Control results in atightly coupled system, one that requires federated
identity management, results in information leakage between domains, and makes
delegation and upgrade difficult. Authorization-Based Access Control can simplify
federated access management while increasing system flexibility and responsiveness to
the people trying to get work done inside the system.

We have discussed one possible format of the authorizations, but there are many options.
Which one is chosen by a domain depends on many factors. The approach described here
isto use SAML to assert the authorization. Although the SAML documentation focuses
on providing identity information, the specification alows other assertions. All we need
do is assert that an accessis allowed, and we' ve converted the SAML assertion from one
about identity to one about authorization.

Zebra Copy was areal company, a Mom and Pop shop, near HP Corporate headquarters
with a contract with HP. It controlled access with Identification-Based Access Control,
employing a person to manually check the name on print orders. Managing the access
list must have been a substantial burden. Zebra Copy is no longer in business. The cost
of managing that list isn’t the only reason the company failed, but it may have been a
factor.

16

Acknowledgements

We would like to thank Joe Pato for getting us to implement the Zebra Copy scenario and
Ra) Rajagopalan for figuring out how to show ABAC in action. We'd also like to thank
Suhayl Masud and Cat Okita for suggesting improvements to the text.

Refer ences

1.

2.

3.

o N

10.
11.
12.
13.

14.

15.

16.

17.

18.
19.

Activeldentity, Single Sign-On,
http://www.actividentity.com/solutions/technology/esso _overview.php

Blaze, M.; Feigenbaum, J.; Lacy, J., “Decentralized trust management,”
Proceedings of |EEE Symposium on Security and Privacy, pp. 164-173, 1996.
ComponentSpace, SAML .NET Toolkit,
http://www.componentspace.com/saml.net.aspx

Computer Associates, Single Sign-On,
http://www.ca.com/us/products/product.aspx? d=166

Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., and Ylonen, T.,
"SPKI Certificate Theory", IETF RFC 2693. http://www.ietf.org/rfc/rfc2693.txt
Extensible Access Control Markup Language (XACML) V1.1, http://www.oasis-
open.org/committees/xacml/repository/cs-xacml-specification-1.1.pdf
Extensible Markup Language (XML), http://www.w3.org/XML/

Ferraiolo, D. F. and Kuhn, D. R, "Role Based Access Control" 15th National
Computer Security Conference, 1992.

Ferrara, A. and MacDonad, M., Programming .NET Web Services, O'Reilly
Media, Inc., 2002.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J, Design Patterns. Elements of
Reusable Object-Oriented Software, Addison-Wesley, Addison, Mass., 1995
Henning, M. and Vinoski, S., Advanced CORBA Programming with C++,
Addison-Wesley, 1999.

Hewlett-Packard, e-speak Architectural Specification, Release A.03.14.00, 2001.
Housley, R, Ford, W., Polk, W., Solo, D. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF RFC 2459, January 1999.
http://www.ietf.org/rfc/rfc2459.txt.

Karp, A. H., "Authorization Based Access Control for the Services Oriented
Architecture”, Proc. 4th Int. Conf. on Creating, Connecting and Collaborating
through Computing (C5 2006), Berkeley, CA, |EEE Press, January (2006),
http://www.hpl.hp.com/techreports/2006/HPL -2006-3.html

Knuth, D. E., Literate Programming, CSLI Lecture Notes #27, Center for the
Study of Language and Information, Stanford, California, 1992.

Li, J. and Karp, A., “Zebra Copy sample code’,
http://www.hpl.hp.com/personal/Alan_Karp/ZebraCopy.zip

Li, J. and Karp, A., “Zebra Copy sample code with SOAP interception”,
http://www.hpl.hp.com/personal/Alan_Karp/ZebraCopyExtension.zip

Microsoft, MSDN, http://www.msdn.microsoftcom.

Microsoft, “Introducing Windows CardSpace”, http://msdn2.microsoft.com/en-
ug/library/aa480189.aspx

17

20.

21.

22.

23.

24,
25.
26.
27.
28.
29.
30.
31

32.

Microsoft, “Using SOAP Extensionsin ASP.NET”,
http://msdn.microsoft.comymsdnmag/i ssues/04/03/A SPColumn/

OASIS, “Security Assertion Markup Language (SAML) 2.0 Technical Overview,
Working Draft 05", 10 May 2005, http://www.oasis-

open.org/committees/downl oad.php/12549/sstc-saml-tech-overview-
2%5B1%5D.0-draft-05.pdf

Papazoglou, M.P and Georgakopoulos, D., “ Service-Oriented Computing,”
Communications of the ACM, Vol. 46, No. 10, pp. 25-8, Oct. 2003.

Ping Identity, “Reducing Account Sharing with Federated Single Sign-On”,
Webinar,

http://www.pingidentity.com/p/03yV cBgM ?el g=F993B4D596D54D5B91838E8F
7ECD6DE6

Ping Identity, Single Sign-On, http://www.pingidentity.com/resources/88

RSA Conference 2007, http://www.rsaconference.com/2007/US.

Simple Object Access Protocol (SOAP) 1.1, W3C Note,
http://www.w3.0rg/TR/2000/NOT E-SOA P-20000508/

Stojanovic, Z. and Dahanayake, A. (eds), Service-Oriented Software System
Engineering: Challenges and Practices, |dea Group Publishing, 2005.

Universal Description, Discovery, and Integration (UDDI), http://www.uddi.org/.
Vinoski, S., “CORBA: Integrating Diverse Applications within Distributed
Heterogeneous Environments,” |EEE Communications Magazine, vol.35, no.2,
pp. 46-55, Feb. 1997.

Web Services Addressing (WS-Addressing), http://www.w3.org/Submission/ws-
addressing/.

Web Services Description Language (WSDL) 1.1, W3C Note,
http://www.w3.org/ TR/wsdl.html.

XML-Signature Syntax and Processing, W3C Recommendation,
http://www.w3.org/TR/xmldsig-core/

18

Appendix A. Introduction to the Sample Code

We have implemented all the web services in the Zebra Copy scenario in C# with the
Microsoft .Net Framework 2.0 using Microsoft Visua Studio 2005 Professional Edition.
A file containing the code can be downloaded from HP [16]. The distribution includes
the ComponentSpace library [3] for .Net 1.1. This commercial package has a number of
useful functions for manipulating SAML certificates. You may only use this package for
the purposes of running the sample code. If you want to develop your own applications,
thereisatrial verson you may use free for 30 days.

There are seven directories in the distribution.

1. ApplicationDir: The various key stores and certificates needed to run the sample
applications. All SAML certificates generated during arun are also stored here.

2. Authorization: The code used to validate the generic part of the authorizations.
The application specific checks, such as verifying the number of copies, are done
in the actual service code.

3. ExternalLibraries. Contains the external DLLs that you will need to manipulate
the SAML certificates.

4. HPWebSite: Code for the HP web service that handles the authorization from

Zebra Copy and the HP web service Zebra Copy uses to upload the file to be

printed.

ServiceClassLibrary: Client side code that is specific to the brochure service.

User Application: The code used to run the scenario.

ZebraCopyWebSite: Code for Zebra Copy corporate web service and the

Brochure service.

No o

We assume the reader is familiar with the tools being used and can configure the various
web services. Seethe Microsoft documentation at MSDN online [18] or one of the many
reference books [9, for example] for assistance.

Appendix B. Real Life versus the Sample

In rea life, HP and Zebra Copy run independent web sites, and they start their web
services independently. Each company has its own way of identifying its employees and
services. A timeline of the scenario might look like the representation in Figure A1. The
vertical dashed lines separate the two web sites and the user application. The solid
horizontal lines represent requests; the horizontal dotted lines, responses.

Although other orderings are possible, Figure A1 shows the HP web site starting the HP
Corporate web service (H), the Zebra Copy web site starting its Corporate web service
(2). The HP web site starts it File web service (F) while the Zebra Copy web siteis
starting the Brochure web service (B). B creates the SAML certificate granting Z the
right to use B. Next we see H signing the contract with Z and getting back a delegation
of Z'sright to use B. User Bob (U) asks to use B and HP delegates some of its rights to
U. U asksF for theright to read and write the file to be printed and del egates the read
authority to B. U then invokes B. B asks F for the file and prints the contents.

19

Bob HP Zebra Copy
HP Corporate i Zebra Copy
S - E ng)\?iroae.te Brochure
File Content ! Service
Service !
i Request Self Issue
! Authorization Authorization
LEE : Certificate Certificate
Sign Service Contract , |
! : » Returnthe
Request Brochure | < ! g:‘r?igf?tc:mtde
Service Authorizatidn Return Delegated '
' R Authorization Certificate '
Return Delegated i
Authorization '
Certificate '
Request File Conten:t Service i
= |
Return Delegated A:uthorization Certificate '
Submit Order (Delegated Certificatefor Brochure !
Service, DelegateCertificate for File Content Service) |
5 Reald File (Delegated Certificate
i for File Content Service)
i i Return|File Content s
Return Brochure Printing Status

Figure Al: A possiblereal-world timeline for the scenario

Our sample was designed so that single stepping through the code starting with the user’s
application will eventually reach all the components, including the startup of the relevant
web services. We do that by deferring the instantiation of each web service until the first
timeitisinvoked. Figure A2 showsthetimeline. User U instantiates the HP Corporate
web service H, which instantiates the Zebra Copy Corporate web service Z, which in turn
instantiates the Brochure service B. B creates the authorization certificate for Z, which Z
delegatesto H and H delegatesto U. U then instantiates the HP File service F and gets
back the authorization to afile. U delegates this certificate to B and invokes the service.
B reads the file and prints the job.

Appendix C. ApplicationDir

This directory contains the certificates used to represent authorizations in the sample
system and the files containing the signing keys of al parties. In an actual deployment,
the files containing the keys would be stored with the corresponding entities.

20

Bob

User

Request Brochure

Service Authorizati

=]

Return Delegated :
Authorization Certificate

i

HP
HP Corporate
Service
File Content
Service

Sign Service Contract

Return Delegated
Authorization Certificate

Zebra Copy
Zebra Copy
Corporate
Service
Brochure
Service
Request
Authorization
Certificate
> Self Issue
Authorization
Certificate
Return the Delegated
Certificate

A

A

Request File Contertt Service Aluthorization

A

Return Delegated Authorization Certificate
Submit Order (Delegated Certificate for

Brochure Service, Del
File Content Service)

pgated Certificate for

Return B

rochure Printing Status

Read File (Deld
iFiIeCor

A

gated Certificate for
tent Service)

Return Fil

e Content Read

A

Figure A2: Thetimelinein the sampleimplementation for the scenario.

The sample code uses X.509 [13] certificates to hold the keys used for authorization and
delegation. In areal deployment the Brochure service would already have Zebra Copy’s
certificate, HP would have the certificates for Bob and Alice and would provide them to
the file service; Bob would get Alice's certificate from HP; and HP would provide its
certificate to Zebra Copy when the contract for the serviceissigned. At no pointisa
Certificate Authority needed.

All needed certificates are provided in ApplicationDir. If you encounter a problem with
them, you can use the keytool that comes with the Java 1.5 distribution to generate the
needed key pairs and certificates. On a Windows system keytool is often found in the bin
directory of the JRE, e.g.,

C:\Program Fi |l es\ Java\ JREL1. 5. 0_10\ bin

21

Generate a public/private key pair for each participant. The examples that follow assume
that keytool isin your execution path. Note that each command must be entered on a
single line.

keyt ool -genkey -keystore brochure.pfx -alias brochure -keypass
password -dnanme "CN=Brochure Service O=Zebra Copy"

keyt ool -genkey -keystore zebracopy.pfx -alias zebracopy -keypass
password -dnane " CN=Cor porate O=Zebra Copy"

keyt ool -genkey -keystore hp. pfx -alias hp - keypass
password -dnanme "CN=HP O=Hew ett - Packard Conpany"

keyt ool -genkey -keystore hpfiles. pfx -alias hpfiles - keypass
password -dnanme "CN=File Server O=Hew ett-Packard Conpany"

keyt ool -genkey -keystore bob. pfx -alias bob - keypass
password -dnanme "CN=Bob Doe O=Hew ett - Packard Conpany"

keyt ool -genkey -keystore alice. pfx -alias alice - keypass

password -dnanme "CN=Alice Jones O=Consultants R Us"

Y ou will need to set the environment variable RSAHome to point to the directory holding
these key stores. Say the sampleisinstalled in C:\temp\ZebraCopySample. Then the
response to

C:\t emp\ Zebr aCopySanpl e>echo %RSAHone

should be

C:\t emp\ Zebr aCopySanpl e\ Appl i cati onDi r

Appendix D. Code Walk-through

The sample code consists of two web sites, each running two web services, and a user
application. Normally, each service in these two web sites is instantiated independently.
For example, the Zebra Copy web site would start and initialize the Brochure Service and
the service representing Zebra Copy Corporate. That's the right way to run your web
services but not best if you want to explain them and see the service initializations. We
have designed the sample code so that all of the code istouched if you start in the user
application by initializing each service when the first request for it arrives. In this
Appendix we'll single step the program to show all the steps in applying Federated
Access Management to the Zebra Copy scenario.

We have left out all error checking code in the reference implementation. If something
goes wrong during arun, you'll get an unhandled exception, and your web service will
crash. That’s not good coding practice, but it simplifies the tutorial.

Open the solution by double clicking on ZebraCopySample.sin in the ZebraCopySample
directory. After Visual Studio opens, right click on the UserApplication project and set it
as the StartUp Project. Open UserApplication.csin the UserApplication project, and set a
breakpoint at the line containing

User bob = new User ("bob. pfx", "password");

22

If thisis the first time you’ ve opened the project, do a Rebuild. If thisisnot the first time
you' re running the application, make sure to stop the two web servers used for the HP
and Zebra Copy web services. They don’t show up in the list of Applicationsin the
Windows Task Manager, but you can see them in the process list as
WebDev.WebServer.EXE.

Y ou're now ready to run the program. Hit F5. A command shell window should appear,
and Visual Studio will stop at your breakpoint. Wait for the startup of the two web
servers that host the HP and Zebra Copy web sites. Y ou should see them in your System
Tray. If you simply hit F5, the program will run to completion. After afew seconds
delay, you'll see some text in the command shell window. Then, a browser will open
showing you the certificate granting Bob the right to use the Brochure service. Press
Enter in the command shell window. After afew seconds, some more text will appear in
the command shell window, and another browser will open showing Bob’ s authorization
to read and write the file to be printed. Press Pressing Enter takes you to the next step.
Once more and you'll see Bob's delegation to Alice. Eventually, the sample code will
run to completion. The command shell window will close when you press Enter one last
time. You can examine the displayed certificates to see how the delegations are
represented.

In the remainder of this Appendix, we'll single step through the code, which involves
separate processes for the user application and the two web sites. We describe all the
code, even code that seems obvious. It has been our experience that “obvious’ isin the
eye of the beholder. Think of this approach as Literate Programming [15].

Since you're unlikely to finish the program in a single setting, you can set a break point
to get back to where you left off more quickly. Be careful to set the break point only in
code running in the user application process. You can set break pointsin the various web
services, but you have to start your program differently to see them. You may aso find
that the web services time out as you single step. Y our only recourse is to set a break
point in the user process, stop the debugging session, and restart. You don’t have to stop
the web services, though, because you' ve already seen the initialization up to that point.

Stop the two web servers. You can right click on the icon in the system tray and select
Stop, or kill them from the Process list in the Task Manager. When they have been
stopped, hit F5in Visual Studio. Execution stops at your break point.

User bob = new User ("bob. pfx", "password");

We see that the constructor for the User class takes two strings, the name of the user’s
key store and the password needed to accessits private key. In areal application, this
code would be in a process running in the user’s account.

Step into the User constructor. Note that we' ve removed some indentation from the
included code in order to help readability.

public class User

23

private KeyPair keyPair;
private X509Certificate x509Cert;
public User(string fil enane, string password)

{

keyPair = new KeyPair (fil enane, password);

There are two members of this class, one for the user’ s public/private key pair and one
for the user’s X.509 certificate. Single step three more times to enter the KeyPair
constructor. The KeyPair class has two members, the user’s X.509 certificate and the
private key. We've also included a static variable that getsthe location of
ApplicationDir from the environment variable RSAHome. Note that you cannot use a
relative path here because this variable is accessed by code running in a variety of
directories.

public class KeyPair

{
private X509Certificate x509Certificate = null;

private System Security. Cryptography. RSA privateKey = nul | ;
public static string baseDir =
Envi ronnent . Get Envi r onnment Var i abl e(
"RSAHonme") . Tri nEnd(@\ ". ToChar Array()) + "\\"

As you continue to hit single step, you’ Il move through the code that extracts these
elements from the key store file. We now construct the file name.

pfxfileName = directory + pfxfil eNaneg;

Next, we declare variables to hold the contents of the file and use static methods from the
ComponentSpace library to read in the key store and extract the certificates it holds.

CertificateContext[] certificateContexts = null;
CertificateStore certificateStore = nul | ;

WEe' ve set up the key stores to hold only one certificate, so we can easily extract the
user’s X.509 certificate and private key. An exception means that you forgot to set the
RSAHome environment variable, the key store you created isin the wrong format, or that
the key store is protected by a different password.

certificateStore = CertificateStore. | nportPfxFil e(
pf xfil eNanme, password);
certificateContexts =
CertificateContext.FindAllCertificates(certificateStore);
x509Certificate = certificateContexts[0].X509Certificate;
privateKey = certificateContexts[0].PrivateKey;

Finally, we close the key storefile.

certificateStore. d ose();
CertificateContext.C oseCertificateContexts(certificateContexts);

24

Back in the User constructor in Users.cs, we set the key and certificate members and
return to UserApplication.cs.

x509Cert = keyPair.Certificate;
}

Although it looks like a ssimple access of a member of KeyPair, the code actually invokes
agetter in KeyPair.cs.

public X509Certificate Certificate

{
get{return this.x509Certificate;}

A few more single steps and you' re back in UserApplication.cs. If you don't get past this
point, either the RSAHome environment variable is not set correctly, or you forgot to
supply the key stores.

The next step isfor Bob to get permission to use the Brochure service. This process will
take us to the HP web service, the Zebra Copy Corporate web service, the Brochure
service, and back again. To see how that works step into the GetBrochureServiceToken
method of the User class, where we see our first interaction with aweb service. Inorder
to use aweb service, aclient needs alocal object to handle all the communication with
the remote service.

Servi ceC assLi brary. HPWs. HPSer vi ce hpService =
new Servi ced assLi brary. HPWs. HPSer vi ce() ;

The HPService class is a proxy class that defines such things as the communication
protocol, SOAP, and namespace for the interface schema. Stepping into this constructor
takes us to some system generated code in Settings.Designer.csin the
ServiceClassLibrary.

public static Settings Default
{ get{return defaultlnstance;} }

Stepping into through this method takes us to more system generated code that contains
configuration information for the service. In particular, it specifiesthe URL of the
service.

[gl obal : : System Confi guration. ApplicationScopedSetti ngAttribute()]
[gl obal : : System Di agnosti cs. Debugger NonUser CodeAt tri bute()]
[gl obal : : System Confi gurati on. Speci al SettingAttribute(
gl obal : : System Confi gurati on. Speci al Setti ng. WebSer vi ceUrl)]
[gl obal : : System Confi guration. Defaul t Setti ngVal ueAttri bute(
"http://1ocal host: 1499/ HP\WebSi t e/ HPSer vi ce. asnx")]
public string Serviced assLi brary_ HPW_HPServi ce

{
get {return ((string)(this["Serviced assLibrary HPW_ HPService"]));}

}

25

Single stepping takes us back to Users.cs where we set along timeout on this service, so
we can single step without getting a time-out exception.

hpSer vi ce. Ti neout = 3600000;

Bob will provide his X.509 certificate to HP when he requests access to the Brochure
service. HP will use his public key to delegate an authorization to him. The defined
interface requires the certificate be in the form of a byte array, as the native
X509Certificate object isnot XML seriaizable in .NET web services. Then we invoke
the service at the HP web site to get the authorization certificate for the Brochure service.

byte[] userCertificate = _x509Cert. Export (X509Cont ent Type. Cert);
Xm El enent hpServi ceToken =
hpSer vi ce. Obt ai nSer vi ceCapability(userCertificate);

This invocation takes us to the HP web site, where we enter the ObtainServiceCapability
method of HPService.cs. We are now looking at code running in the process running the
HP web server. Since this processis different from the process running UserApplication,
break points and console output won't be seen.

Note that we didn’t need any authorization to use this service. We would expect that for
a service that we want lots of people to use, such buying from our online catalog. We
might also expect the service to be open if it were only accessible inside the corporate
firewall. That's not the case here. The HP File Content service is accessible to anyone
who knows the URL. In areal implementation, we would distribute the authorization to
use this service to all employees. We didn’'t want to illustrate this bootstrap step for the
sample code. Instead, we implemented a very simple access policy that you' |l see soon.

We first instantiate the class that does the actual work for the web service. While we
could include this code in the class implementing the web service, it’'s easier to test code
if itisinaloca classand later expose its functionality as web service methods.
Normally, this class would be defined as a Singleton [10] and started by the web service,
but then we wouldn’t be able to see the initialization. Note that the space between the
constructor and the declaration [WebMethod)] is significant

[WebSer vi ce(Nanespace = "http://ww. hp. conl servi ces")]
[WebSer vi ceBi ndi ng(ConfornsTo = Wi Profiles.BasicProfilel 1)]
public class HPService : System Wb. Servi ces. WebSer vi ce

{
public HPService () {}

[WebMet hod]
public Xm El enent Obtai nServi ceCapability(byte[] certificate)

HP | ocal HP = new HP();

Class HP has three members, the filename of HP' s key store, HP’ s key pair, and Bob’'s
public key in the form of astring. Bob’s public key wouldn’t normally be here, but we

26

want to implement a very ssmple access policy that allows only Bab to get authorization
to use the Brochure service. In area deployment there would be some policy engine
used to make such decisions. However it is done, this policy shows how identity can
enter into Federated Access Management. Note that some characters in Bob’s public key
have been elided.

private string bobKey = "30818902818100856E3...";
public const string testCertificateFileNane_HP = "hp. pfx";
private static KeyPair hpKeyPair;

Asyou single step, you should reach the statement assigning hpKeyPair. 1f you don't,
that’ s because you forgot to stop your web servers before you started debugging
UserApplication.cs. HP'sKeyPair is defined as a static variable, which means it stays set
aslong as the HP web server isrunning. At any rate, if you did reach this statement, you
can step over (F10) the call because you've already seen what it does.

public HP()
if (null == hpKeyPair)

hpKeyPai r = new KeyPair(testCertificateFil eName_HP, "password");

}
}

On returning to HPService.cs, we invoke GetTokenForHP, which will ask Zebra Copy
Corporate for authorization to use the Brochure service. Next we'll step into the method
that gets the authorization.

Assertion assertion = | ocal HP. Get TokenFor HP() ;

This call takes us back to HP.cs, where alocal proxy for the Zebra Copy Corporate web
service isinstantiated, initialized with data needed to sign the SOAP message, and set
with along time out. This service represents the entity at Zebra Copy that negotiates the
contract with HP. Note that single stepping didn’t take us into the system generated
code for the ZebraCopyCorporateService because the compiler doesn’'t generate
debugging symbolsin the DLLs of proxy classes.

Zebr aCopyCor por at eWs. Zebr aCopyCor por at eServi ce srv =
new Zebr aCopyCor por at eWs. Zebr aCopyCor por at eSer vi ce() ;
srv. Ti meout = 3600000;

Next, we invoke the service, asking for the right for press runs of up to 5,000 copies.
First, we need to convert HP' s X.509 certificate into a byte array that can be transferred
to the Zebra Copy web site. Stepping into its SignCopy ServiceContract takes us to the
Zebra Copy web site.

byte[] certificate =
hpKeyPair. Certificate. Export (X509Cont ent Type. Cert);
Xm El enent assertion = srv. SignServiceContract (5000, certificate);

27

That takes us to the SignCopyServiceContract in ZebraCopyCorporateService.cs on the
Zebra Copy Web site. This class configures the web services parameters and provides a
static variable to hold the authorization to use the Brochure service. Inared
implementation, this authorization would be handled differently.

[WebSer vi ce(Nanespace = "http://ww. zebracopy. com ")]
[WebSer vi ceBi ndi ng(ConfornsTo = Wi Profiles.BasicProfilel 1)]
public class ZebraCopyCor porateService : System Wb. Servi ces. WbSer vi ce

{

private static Assertion serviceCertificate = null;

publ i c Zebr aCopyCor porateService () {}

The SignCopyServiceContract method' s arguments are the size of the largest allowed
press run and a byte array containing the requester’s X.509 certificate. The method also
needs the SOAP signing information.

[WebMet hod]
[SoapHeader (" nsgSi gni ngHeader ™, Directi on = SoapHeaderDirection.In)]
public Xm El enment Si gnCopyServi ceContract (i nt numnber,

byte[] certificate) {

Thefirst thing we do isinstantiate an instance of the Zebra Copy Corporate class. As
before, in areal deployment, the Zebra Copy web site would take care of thisstep. The
constructor sets up the key pair for this entity.

Zebr aCopyCor por at e corporate = new Zebr aCopyCor porate();

The setup in ZebraCopyCorporate.cs is the same as for HP Corporate, with one
difference. Zebra Copy Corporate provides a static method so that its services can read
its X.509 certificate.

private const string pfxFileName = "zebracopy. pfx";

private static KeyPair keyPair;

public static X509Certificate getCert(){ return keyPair.Certificate; }
publ i c Zebr aCopyCor por at e()

if (null == keyPair)
{

keyPai r = new KeyPai r (pf xFi | eNane, "password");

}
}

Back in ZebraCopyCorporateService.cs, we instantiate alocal Brochure object, called the
service surrogate, for the corresponding Bochure web service and create the
authorization certificate. Inreal life, this certificate would be created by the Brochure
service when it is started by the web site.

if (null == serviceCertificate)

{

28

Brochure brochure = new Brochure();

Initializing the Brochure service surrogate consists of getting its key pair and the X.509
certificate for Zebra Copy Corporate, which is stored in a static variable for later use. In
areal implementation, the Zebra Copy web site would provide this certificate to the
Brochure service.

public class Brochure

{

private const string certificateFileName = "brochure. pfx";
private static KeyPair brochureServiceKeyPair;

private static X509Certificate zebracopyX509;

public Brochure()

if (null == brochureServi ceKeyPair)

{

br ochur eSer vi ceKeyPai r = new
KeyPai r(certificateFil eNane, "password");
zebracopyXx509 = Zebr aCopyCor porate. getCert();

The getter in ZebraCopyCorporate.cs returns the requested X.509 certificate.

public static X509Certificate getCert(){ return keyPair.Certificate; }

The return takes us through the Brochure constructor back to
ZebraCopyCorporateService.cs. Here we invoke the BrochureStartUp method which
returns the authorization token for Zebra Copy Corporate to use the Brochure service.

serviceCertificate = brochure. BrochureStartUp();
First, we'll instantiate an assertion authorizing use of the Brochure service.

public Assertion BrochureStart Up()
{

Assertion brochure_assertion = BrochureAssertion();

We then step into the BrochureAssertion method in thisfile. This method builds the
actual SAML certificate.

It instantiates a new Assertion from the ComponentSpace library and defines a human
readable string to denote the certificate issuer. Next, it sets a condition specifying the
valid lifetime of the certificate. In an IBAC, RBAC, or PBAC system, revocation is hard.
(See Section 3.4 if you forgot why.) People simplify their lives by making certificates
with short lifetimes. Later we'll see how easy revocation is with ABAC, so we're free to
set along lifetime on the certificate. In this case, the Brochure service sets the maximum
possible interval.

private Assertion BrochureAssertion()

{

Assertion assertion = new Assertion();
assertion.lssuer = "Brochure Service Authority";
assertion. Conditions = new Conditions(

29

Dat eTi me. M nVal ue, Dat eTi me. MaxVal ue) ;

Next, we extract the subject information from Zebra Copy Corporate’ s X.509 certificate.

Nanel dentifier nanmeldentifier =
new Nanel dentifier("", Naneldentifier.Formts. X509Subj ect Nane,
zebracopyX509. Subj ect) ;
Subj ect Confirmati on subject Confirmation =
new Subj ect Confirmati on(Confirmati onMet hod. Met hods. Bearer);

We then convert that X.509 certificate into a string for inclusion in the SAML assertion
as the subject confirmation data. We also construct a Subject object instantiated with the
name identifier in the X.509 certificate and this confirmation data.

byte[] exportResult = zebracopyX509. Export (X509Cont ent Type. Cert);
string result = Convert. ToBase64Stri ng(exportResult);
subj ect Confirmati on. Subj ect Confirmati onData =
new Subj ect Confirmati onData(result);
Subj ect subject = new Subject (naneldentifier, subjectConfirmation);

Next, we state what is being authorized in an AuthorizationDecisionStatement, which
specifies the Brochure web service, the action (web service method) being allowed on it,
and the decision, which in this case is “Permit”. It also specifies a Revoke method.
Normally, Revoke would be a generic service provided automatically for every web
service. Here, however, we leave the implementation to the web services. Every
authorization should include the ability to revoke delegated certificates.

Aut hori zat i onDeci si onSt at ement aut hori zati onDeci si onSt at enent =
new Aut hori zati onDeci si onSt at enent () ;
aut hori zati onDeci si onSt at enent . Resource =
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx";
Action print = new Action(
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx",
"Print");
Action revoke = new Action(
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx",
"Revoke");

Next we add the authorized actions and the Subject to the
AuthorizationDecisionStatement and add it to the Assertion being constructed.

aut hori zati onDeci si onSt at ement . Acti ons. Add(print);

aut hori zati onDeci si onSt at ement . Act i ons. Add(r evoke);

aut hori zati onDeci si onSt at enent . Deci si on = Deci sion. Permt;
aut hori zati onDeci si onSt at ement . Subj ect = subj ect;
assertion. St at enment s. Add(aut hori zati onDeci si onSt at enent) ;

Next, we use an AttributeStatement to specify any application dependent constraints, a
press run limit of 10,000 in our example. Note that the second parameter to the Attribute
method isa URN. This URN has the same data as the URL in the resource specification
in the decision statement plus the name of the method that this constraint appliesto. Note

30

that we must include a subject. That seems odd, since we just included the same Subject
in the AuthorizationDecisionStatement. However, if we leave it out, the serializer of the
toolkit we're using fails. We believe that happens because the normal use of
AttributeStatements is to say something about a Subject, in which case not including a
Subject would be an error.

AttributeStatement attributeStatement = new AttributeStatenent();
attribut eSt at enent. Subj ect = subject;
attributeStatenment. Attributes. Add(
new Conponent Space. SAM_. Assertions. Attribute("PrintLimt",
"urn:zebra: copy: brochure_service: Print", "10000"));

Finally, we add this statement to the assertion and return to BrochureStartUp in thisfile.

assertion. Statenents. Add(attri buteStatenent);
return assertion;

Next, we use the static SignAssertion method of AuthZUtilitiesto sign the assertion to
prevent tampering and forgery. The arguments are the assertion we just created, the
Brochure service X.509 certificate, and its private key.

Assertion signedBrochureAssertion =
AuthzUtilities. SignAssertion(brochure_assertion,
br ochur eServi ceKeyPair. Certificate,
br ochur eSer vi ceKeyPai r. Pri vat eKey) ;

In AuthZUtilities.cs in the Authorization project, we start by converting the assertion to
XML because that is the form it will be delivered in.

public static Assertion SignAssertion(Assertion assertion,
X509Certificate certificate,
System Security. Cryptography. RSA pri vat eKey)

Xm El enent xm El ement = assertion. ToXm ();

The method in the ComponentSpace library that generates the signature takes the XML
representation of the assertion, the private signing key, and X.509 certificate of the issuer
and adds a signature field in XML to the assertion.

AssertionSi gnat ure. Generat e(xnl El enent, privateKey, certificate);

We then define a name space manager for parsing the SAML assertion, extract the
signature as an XML node, and add it to the assertion and return the signed assertion. We
use Xpath instead of the signature retrieval method provided by the ComponentSpace
SAML toolkit because it doesn’t support nested certificate chaining.

Xm NanmespaceManager nsm = new Xml NanespaceManager (new NaneTabl e());
nsm AddNanmespace("sam ", "urn:oasis:nanes:tc: SAM.: 1. 0: assertion");
nsm AddNanespace("dsi g", SignedXm .Xm Dsi gNanespaceUrl);
Xm Node si gNode = xm El enent. Sel ect Si ngl eNode(

"/sam : Assertion/dsig: Signhature", nsnj;

31

assertion. Signature = (Xm El enent) si gNode;
return assertion;

Back in BrochureStartUp, we return the resulting signed assertion.

return signedBrochureAssertion;

We are now back in the SignServiceContract method of ZebraCopyCorporate.cs, where
we write the SAML certificate to disk so you can seewhat’sin it.

AuthZzUtilities. Qutput AssertionToFil e(
serviceCertificate,
"Zebra Copy Corporate Authorization to Brochure Service",
" Zebr aCopyCor por at eBr ochur eSer vi ce. xm ") ;

Stepping into OutputAssertionToFile takes us to AuthZUtilities of the Authorization
project. It shows that we get the directory from the static variable set in KeyPair.cs and
construct the fully qualified name of the output file.

public static void QutputAssertionToFil e(Xm El enent xm El enment,
string | abel, string fn)
{

string baseDir = KeyPair.baseDir;
string filename = baseDir + fn;

We next convert the assertion to XML and instantiate a new XML document. If thefile
exists, we delete it and instantiate a file stream to create the output file.

Xm El enent xm El ement = assertion. ToXm ();

Xm Document dom = new Xm Docunent () ;

FileStreamfs = null;

if (File.Exists(filenanme)) { File.Delete(filename); }
fs = new FileStrean(fil enane, Fil eMbde. Create);

We start the output document with the XML boiler plate described in Section 5. Next,
we get atime stamp to include in the certificate-log tag. Then, we add the label passed in
as an input parameter to the heading. Finally, we add the assertion to the output file and
write it to disk.

Xm Decl arati on xm Decl = dom Creat eXm Decl aration("1.0","utf-8", null);
dom I nsert Bef ore(xm Decl, dom Docunent El enent) ;
Xm Node root Node = dom Creat eNode(Xml NodeType. El enment ,
"certificate-log", String.Enmpty);
dom AppendChi | d(r oot Node) ;
Xm Node tineAttributeNode =
dom Cr eat eNode(Xml NodeType. Attri bute, "tinmestanp”, String. Enpty);
ti meAttri but eNode. | nner Text = DateTi me. Now. ToString();
root Node. Attri but es. Append((Xm Attribute)timeAttri but eNode);
Xm Node | abel Attri buteNode =
dom Cr eat eNode(Xm NodeType. Attri bute, "label"™, String.Enmpty);
| abel Attri but eNode. I nner Text = | abel;
r oot Node. Attri but es. Append((Xm Attribute)l abel Attri but eNode);

32

Xm Node newNode = dom I nport Node(xm El ement, true);

r oot Node. AppendChi | d(newNode) ; Xnl Node newNode =
dom I nmpor t Node(xm El ement, true);

r oot Node. AppendChi | d(newNode) ;

fs.Position = O;

dom Save(fs);

fs.d ose();

Back in ZebraCopyCorporate.cs, we define the certificate that will grant HP the right to
use the Brochure service. The IssueCertificate method of ZebraCopyCorporate takes its
authorization, HP s X.509 certificate, the largest authorized press run, and the dates the
project isvalid. Here we set the contract to start now and run for ayear. That meansa
new certificate will have to be issued if the contract is renewed, but it also means that no
specia action is needed if the contract is allowed to expire.

Assertion resultCertificate = null;
Dat eTi me begi n = Dat eTi ne. Now,
Dat eTi me end = Dat eTi me. Now. AddDays(365. 0) ;
if (serviceCertificate '=null) {
resultCertificate = corporate.lssueCertificate(
serviceCertificate, certificate, nunber, begin, end);

The first step done by the IssueCertificate method in ZebraCopyCorporate.csisto define
the assertion specifying the rights being granted to HP. Its arguments are Zebra Copy
Corporate' s authorization certificate, HP' s X.509 certificate, the largest press run being
allowed, and the begin and end dates of the contract.

Assertion del egat edBrochureAsserti on = Del egat eBr ochur eAsserti on(
servi ceAssertion, cert, number, begin, end);

We are now in the DelegteBrochureAssertion method in ZebraCopyCorporate.cs. After
instantiating a new assertion, we set the valid time interval of the certificate to be the
specified begin and end times.

private Assertion Del egat eBrochureAssertion(
Assertion incom ng_assertion, byte[] requester X509,
i nt nunber, DateTi ne begin, DateTi ne end)
{
Assertion assertion = new Assertion();
assertion.lssuer = "Zebra Copy Corporate”;
assertion. Conditions = new Conditions(begin, end);

We next take the byte array form of HP's X.509 certificate and turn it into an object. As
before, we get the subject information from that certificate.

X509Certificate x509Certificate = new X509Certificate(requesterX509);
Nanel dentifier nanmeldentifier = new Naneldentifier("",

Nanel dentifi er. For mat s. X509Subj ect Nane, x509Certifi cate. Subject);
Subj ect Confirmati on subjectConfirmati on = new

Subj ect Confirmation(Confirmati onMet hod. Met hods. Bearer);
string result = Convert. ToBase64Stri ng(requester X509);
subj ect Confirmati on. Subj ect Confirmati onData = new

33

Subj ect Confirmati onData(result);
Subj ect subject = new Subject (naneldentifier, subjectConfirmation);

Next, we add the AuthorizationDecisionStatement. There is one addition to what was
done before. The AuthorizationDecisionStatement now includes an Evidence member,
which consists of the assertion supplied as the first argument. This assertion is the one
that grants Zebra Copy Corporate the right to use the service. We'll see how this
evidence is used when we walk through an invocation of the Brochure service.

Aut hori zat i onDeci si onSt at ement aut hori zati onDeci si onSt at enent =
new Aut hori zati onDeci si onSt at enent () ;

aut hori zati onDeci si onSt at enent . Resource =
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx";

Action action = new Action(
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx",
"Print");

Action revoke = new Action(
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx",
"Revoke");

aut hori zati onDeci si onSt at ement . Acti ons. Add(acti on);

aut hori zati onDeci si onSt at ement . Act i ons. Add(r evoke);

aut hori zati onDeci si onSt at enent . Deci si on = Deci sion. Permit;

aut hori zati onDeci si onSt at ement . Subj ect = subj ect;

aut hori zati onDeci si onSt at enent . Evi dence =
new Evi dence(i ncom ng_assertion);

The AttributeStatement, specifies that HP is alowed press runs of up to the specified
amount. Finally, we return.

assertion. St atement s. Add(aut hori zati onDeci si onSt at enent) ;
AttributeStatement attributeStatement = new AttributeStatenment();
attribut eSt at enent. Subj ect = subject;
attributeStatenment. Attributes. Add(
new Conponent Space. SAM_. Assertions. Attri but e(

"PrintLimt", "urn:zebra:copy: brochure_service:Print",

nunber. ToString()));
assertion. Statenments. Add(attri buteStatenent);
return assertion;

Back in IssueCertificate of ZebraCopyCorporate.cs we sign the certificate with Zebra
Copy Corporate’s private key using a method we' ve previously stepped through.

Assertion signedHPAssertion = AuthZUilities. SignAssertion(
hpcopyAssertion, keyPair.Certificate, keyPair.PrivateKey);

We write the certificate to afile so you can examine it, and return the result to the
SignCopyServiceContract method in ZebraCopyCorporateService.cs, where we return
the XML form of the certificate.

AuthzUtilities. Qutput AssertionToFil e(signedAssertion,
"Zebra Copy Corporate Service","ZebraCopyToHP. xm ") ;
return signedAssertion;

That takes us back to the SignServiceContract method in ZebraCopyCorporateService.cs
where we return the XML form of the authorization.

We are now back at the HP Corporate web service on the HP web site in method
GetTokenForHP in file HP.cs. There we convert the assertion to an object and return.

return (new Assertion(assertion));

That takes us back to the ObtainServiceCapability method of HPService.cs where we
write out the authorization granted to HP and invoke the GetTokenFromHP method in
HP.csthat will delegate a portion of HP srights to Bob.

string verification = "";
AuthzUtilities. Qutput AssertionToFil e(
assertion,
verification,
"HPBr ochur eServi ce. xm ") ;
Assertion resultAssertion = | ocal HP. Get TokenFr onHP(
assertion, certificate);

The arguments are the SAML assertion representing HP' s right to use Zebra Copy’s
Brochure service and a byte array containing Bob’s X.509 certificate.

public Assertion Get TokenFronHP(Assertion i ncom ngAssertion,
byte[] certificate)

i f (hpKeyPair.Loaded)

Assertion userAssertion = CreateUserAssertion(
i ncom ngAssertion, certificate);

The CreateUserAssertion method of HP.cs implements atrivial access policy. It checks
the public key in the input X.509 certificate to see if it matches the value stored in
member bobKey. That means that only someone who can use Bob’s private key can get
an authorization to use the Zebra Copy Brochure service. The previous sentence is
carefully worded to make it clear that people can and do share private keys. In redity,
there would be some policy engine within HP that would be invoked to make the access
decision. This code does show that identification can play arole in Federated Access
Management, just a different role than in Federated |dentity management. In FAccM,
identity can be used to distribute rights, but, aswe’ll see, not to make an access decision
at request time. With FIdM, identity is used for both. The implications of this seemingly
small difference are significant.

Our sample does not show how Bob proves the right to use the authorizations. That's
because it’ s done the same way Bob proves the right to use an authentication assertion
submitted in an IBAC system. In both, Bob would sign the entire SOAP body of the
request message and embed the signature in the SOAP header. The service can then

35

verify that the signature matches the SOAP body and uses the same public key as the one
appearing in the assertions. We show how that’s done in Appendix E.

private Assertion CreateUserAssertion(Assertion inconi ng_assertion,
byte[] certificate)

X509Certificate x509Certificate = new X509Certificate(certificate);
string pubkey = x509Certificate. GetPublicKeyString();
i f (pubkey != bobKey) return null;

We declare the issuer to be the HP Brochure Service Authority, Zeldain the scenario
described in Section 2. Note that we can safely set the valid time span to be the
maximum possible. That’s because this certificate will be valid only so long asHP' sis
valid, but that interval has been set to be the duration of the contract.

Assertion assertion = new Assertion();
assertion.lssuer = "HP Brochure Service Authority";
assertion. Conditions = new Conditions(
Dat eTi me. M nVal ue, Dat eTi me. MaxVal ue) ;

Therest of the assertion is similar to what we' ve seen before, except this time the
Evidence is HP s authorization certificate, and Bob’s print limit is set to press runs of no
more than 500.

Aut henti cati onSt at ement aut henti cati onSt atenent =
new Aut henti cati onSt at enent (
Aut hent i cati onSt at enent . Aut henti cati onMet hods. X509Publ i cKey) ;

Nanel dentifier nanmeldentifier = new Naneldentifier("",

Nanel denti fi er. For mat s. X509Subj ect Nane, x509Certifi cate. Subject);
Subj ect Confirmati on subject Confirmati on = new Subj ect Confi rmati on(

Confi rmati onMet hod. Met hods. Bearer);
string result = Convert. ToBase64String(certificate);
subj ect Confirmati on. Subj ect Confirmati onData = new

Subj ect Confirmati onData(result);
aut henti cati onSt at enent . Subj ect = new Subj ect (nanel dentifier,

subj ect Confirmation);
assertion. St atenent s. Add(aut henti cati onSt at enment) ;
Aut hori zat i onDeci si onSt at ement aut hori zati onDeci si onSt at enent =

new Aut hori zati onDeci si onSt at enment () ;
aut hori zati onDeci si onSt at enent . Resource =

"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx";
Action print = new Action(

"http://ww. zebracopy. com servi ces/ BrochureServi ce.asnx", "Print");
Action revoke = new Action(
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx", "Revoke");

aut hori zati onDeci si onSt at ement . Acti ons. Add(print);
aut hori zati onDeci si onSt at ement . Act i ons. Add(r evoke);
aut hori zati onDeci si onSt at enent . Deci si on = Deci sion. Permt;
aut hori zati onDeci si onSt at ement . Subj ect =
aut henti cati onSt at emrent . Subj ect ;
aut hori zati onDeci si onSt at ement . Evi dence = new Evi dence(
i ncom ng_assertion);
assertion. St at enment s. Add(aut hori zati onDeci si onSt at enent) ;
AttributeStatement attributeStatement = new AttributeStatenment();

36

attribut eSt at enent. Subj ect = aut henti cati onSt at enent . Subj ect ;
attributeStatenment. Attributes. Add(
new Conponent Space. SAM_. Assertions. Attribute("PrintLimt",
"urn:zebra: copy: brochure_service: Print", "500"));
assertion. Statenents. Add(attri buteStatenent);
return assertion;

After returning to GetTokenFromHP, we make sure access was alowed. If it was, we
sign the certificate with HP' s private key and return the result to the
ObtainServiceCapability method of the HP web service. That method converts the
certificate to XML and returnsit to the GetBrochureServiceToken in Users.cs.

if (resultAssertion == null)
return null;
el se return (resultAssertion. ToXm ());

That means we' ve gone from the user application to the HP web service to the Zebra
Copy Corporate web service to the surrogate of the Brochure web service and back to
Users.cs. We write a console message and convert the XML form to an object.

if (hpServiceToken == null) return null;
string userName = _x509Cert. Subject;
System Consol e. Wit eLi ne(user Nane +

" obtained a copy service certificate fromHP...");
Assertion hpServiceAssertion = new Assertion(hpServi ceToken);
return hpServiceAssertion;

We are now back at the second executable statement in Main of UserApplication.cs
where we write the certificate to afile, display it in abrowser, and pause execution so
you have time to examine the certificate.

if (null !'= bobBrochureAuthorization)

AuthzUtilities. Qutput AssertionToFil e(
bobBr ochur eAut hori zat i on,
"Bob's Authorization to Use Zebra Copy's Brochure Service",
"BobBr ochur eServi ce. xm ") ;
Show(" BobBr ochur eServi ce. xm ") ;

The local method Show displays the contents of the specified file in a browser using the
system diagnostic class ProcessStartinfo.

static void Showstring fnane)

{
string baseDir = KeyPair.baseDir;
string filename = baseDir + fnane;

ProcessStartinfo startinfo = new ProcessStartlnfo("i expl ore.exe");
startInfo.FileName = fil enane;

startlnfo.Verb = "COpen";

Process. Start(startlnfo);

37

Next we pause execution so you have time to examine the certificate.

Pause();

The Pause method simply waits for console input. Pressing Enter continues the execution
of the program.

static void Pause()

{

System Consol e. WiteLine("Press Enter to continue ...");
Syst em Consol e. ReadLi ne() ;

}

The next step is for Bob to get an authorization to read and write afile provided by the
HP File web service. In this case, we hardwire the name of thefile.

string fil eName = "Feder at edAccessManagenent . pdf *;

We step into GetFileContentServiceToken, of Users.cs, which takes the name of the file
asan argument. Thefirst thing we do is create a service proxy to interact with the HP
File web service.

public Assertion CetFil eContentServiceToken(string fil enane)

{
Servi ceC assLi brary. HPFi | eCont ent W. HPFi | eContent Service fs =

new Servi ceCd assLi brary. HPFi | eCont ent Ws. HPFi | eCont ent Ser vi ce() ;

That takes usto a system generated file that sets up some configuration information.

[gl obal : : System Confi guration. Applicati onScopedSettingAttribute()]
[gl obal : : System Di agnosti cs. Debugger NonUser CodeAt tri bute()]
[gl obal : : System Confi gurati on. Speci al SettingAttribute(
gl obal : : System Confi gurati on. Speci al Setti ng. WebSer vi ceUrl)]
[gl obal : : System Confi guration. Defaul t Setti ngVal ueAttri bute(
"http://1ocal host: 1499/ HP\WbSi t e/ HPFi | eCont ent Ser vi ce. asnx")]
public string Serviced assLi brary_ HPFi | eCont ent Ws_HPFi | eCont ent Servi ce

{
get {return ((string)
(this["Serviced assLi brary_HPFi | eCont ent W_HPFi | eCont ent Service"]));}

}

Back in Users.cs, we provide the information needed to sign the SOAP messand and set a
long timeout on the service so we can single step the program. Bob serializes his X.509
certificate to a byte array and invokes the GetFileA ccessCapability method of the HP File
web service.

fs. Ti meout = 3600000;

byte[] nyCertificate = this._keyPair.Certificate. Export(
X509Cont ent Type. Cert);

Xm El enent hpFSToken = fs. GetFil eAccessCapability(

38

filenane, nyCertificate);

Method HPFileContentService.cs is part of the web service hosted by the HP web site.
Don't forget the blank line needed between the constructor and [WebMethod].

[WebSer vi ce(Nanmespace = "http://ww. hp. conl services")]
[WebSer vi ceBi ndi ng(ConfornsTo = Wi Profiles.BasicProfilel 1)]
public class HPFileContentService : System Wb. Servi ces. WebSer vi ce

{

private string service =
"http://ww. hp. coni servi ces/ HPFi | eCont ent Ser vi ce. asnx”;
public HPFil eCont ent Service() {}

In the GetFileAccessCapability method we instantiate alocal file service object as the
local surrogate for the corresponding web service. As before, we do this here for the
purposes of thistutorial. Inreality, the HP web site would start the service as a Singleton
for us.

[WebMet hod]
public Xm El enent GetFil eAccessCapability(string fil enane,
byte[] certificate)

HPFi | eContent fc = new HPFil eContent();

Asin the HP web service, we have avery ssmple policy that states that subjects who can
use Bob'sor Alice s private key may get a certificate for any file they name.
HPFileContent also has a member for the name space manager needed to parse the
certificates and one to hold a reference to the HP web service, which should also be a
Singleton started by the web server.

public class HPFi | eCont ent
{
private string bobKey
private string aliceKey
private static HP hp;
private Xm NanespaceManager nsm =
new Xnl NamespaceManager (new NanmeTabl e());
publ i c HPFi |l eContent ()

{
if (hp == null) { hp = new HP(); }

"30818902818100856E32A. . . ";
"308189028181008F9C6DA. . . ";

nsm AddNanmespace("sam ", "urn:oasis:nanes:tc: SAM.: 1. 0: assertion");
nsm AddNanespace("dsi g", SignedXm .Xm Dsi gNanespaceUrl);

}

The next step back in GetFileAccessCapability in HPFileContentService.csis to create
the actual certificate.

Assertion assertion = fc. CreateFil eAccessAssertion(
filenane, certificate);

39

In the CreateFileAccessAssertion of HPFileContent.cs we see that only subjects who can
use Alice’'s or Bob's private key may use this service under our trivial access policy.

public Assertion CreateFil eAccessAssertion(string fil enane,
byte[] pubkey)

X509Certificate x509Certificate = new X509Certifi cate(pubkey);
string pubkeystr = x509Certificate.GetPublicKeyString();
if (!'(pubkeystr == bobKey || pubkeystr == aliceKey)) return null;

Since Bob's X.509 certificate was provided, we'll create the certificate. Next we see
another aspect of the policy. Bob will get a certificate that doesn’t expire, but everyone
else gets one that expiresin 30 days. Again, such policies should be provided by some
external policy engine.

Assertion assertion = new Assertion();
assertion.lssuer = "HP File Content Service Authority"”;
i f (pubkeystr == bobKey)
assertion. Conditions = new Conditions(
Dat eTi me. M nVal ue, Dat eTi me. MaxVal ue) ;
el se
assertion. Conditions = new Conditions(new Ti meSpan(720, 0, 0));

The rest of this method is similar to the others. Note that we include WriteFile and
Revoke even though we don’t invoke those methods or implement them. That’sjust to
avoid having any dead code in the sample application.

Nanel dentifier nanmeldentifier =
new Nanel dentifier("", Naneldentifier.Formts. X509Subj ect Nane,
x509Certificate. Subject);
Subj ect Confirmati on subject Confirmation =
new Subj ect Confi rmati on(Confirmati onMet hod. Met hods. Bearer);
string result = Convert. ToBase64Stri ng(pubkey);
subj ect Confirmati on. Subj ect Confirmati onData =
new Subj ect Confirmati onData(result);
Subj ect subject = new Subject (naneldentifier, subjectConfirmation);
Aut hori zat i onDeci si onSt at ement aut hori zati onDeci si onSt at enent =
new Aut hori zati onDeci si onSt at enent () ;
aut hori zati onDeci si onSt at enent . Resource =
"http://ww. hp. conl servi ces/ HPFi | eCont ent Ser vi ce. asnx”;
Action readAction = new Acti on(
"http://ww. hp. conl servi ces/ HPFi | eCont ent Ser vi ce. asnx”,
"ReadFil e");
Action witeAction = new Action(
"http://ww. hp. conl servi ces/ HPFi | eCont ent Ser vi ce. asnx”,
"WiteFile");
Action revoke = new Action(
"http://ww. hp. conl servi ces/ HPFi | eCont ent Ser vi ce. asnx”,
"Revoke");
aut hori zati onDeci si onSt at ement . Act i ons. Add(readActi on);
aut hori zati onDeci si onSt at ement . Acti ons. Add(witeAction);
aut hori zati onDeci si onSt at ement . Act i ons. Add(r evoke);
aut hori zati onDeci si onSt at enent . Deci si on = Deci sion. Permt;
aut hori zati onDeci si onSt at ement . Subj ect = subj ect;

40

assertion. St atenments. Add(aut hori zati onDeci si onSt at enent) ;
AttributeStatement attributeStatenment = new AttributeStatenment();
attribut eSt at enent. Subj ect = aut horizati onDeci si onSt at enent . Subj ect ;
attributeStatenment. Attributes. Add(
new Conponent Space. SAM.. Assertions. Attribute("File",
"http://ww. hp. conl servi ces/ HPFi | eCont ent Ser vi ce. asnx/ ReadFi | e",
filenane));
attributeStatenment. Attributes. Add(
new Conponent Space. SAM.. Assertions. Attribute("File",
"http://ww. hp. conl servi ces/ HPFi | eCont ent Servi ce. asnx/ WiteFile",
filenane));
assertion. Statenents. Add(attri buteStatenent);
return assertion;

We return the assertion to the GetFileA ccessCapability method of
HPFileContentService.cs and sign it with the HP private key if access was allowed. We
could also sign it with a key specific to the HP File web service. We' ve done it thisway
to illustrate two subjects, HP Service and HP File Content Service, sharing an identity via
aprivate key.

if (null == assertion)

{
}

Assertion result = fc. SignFil eAccessAssertion(assertion);

return null;

We return the XML version of the certificate back to the user code to
GetFileContentServiceToken of Users.cs.

return (result. ToXm ());

If al went well, that code convertsit into an object which gets returned to
UserApplication.cs, where we write a status message, convert the XML form of the
assertion to an object and return.

System Consol e. Wit eLi ne(

"Cbtained a file service certificate fromHP...");
Assertion hpFSAssertion = new Assertion(hpFSToken);
return hpFSAssertion;

Back in UserApplication.cs, we write the certificate to afile and display it in a browser.

AuthzUtilities. Qutput AssertionToFil e(
bobHpFi | eCont ent Ser vi ceAsserti on,
"Bob's Authorization to Read/ Wite a File at the HP File Service",
"BobFi | eService. xm ");

Show(" BobFi | eService. xm ");

Pause();

From the WSDL specification of the Brochure service, Bob knows that the service will
need the authorization to read hisfile. He can allow that by delegating to the Brochure

41

service hisread permission. He knows the service's public key because it isin the
certificate granting Bob the right to use the service.

Assertion bobDel egat edHPFi | eCont ent Servi ceAssertion =
bob. Del egat eCertificat eOnFil eServi ce(
bobHpFi | eCont ent Ser vi ceAsserti on,
bobBr ochur eAut hori zati on, fil eNamne);

That delegation is done in the method Del egateCertificateOnFileService of Users.cs. The
arguments are the delegator’ s certificate authorizing use of the file and the delegator’s
certificate authorizing use of the service to be granted access to the file. Note that we
don’'t specify the name of the file, which will be taken from the delegator Token.

public Assertion Del egateCertificateOnFil eService(
Assertion del egat or Token, Assertion servi ceToken)

The class MyAuthZCertDelegator, which has a null constructor, contains methods for
delegating and signing certificates, so we ask it to delegate access, supplying the
delegator’ s X.509 certificate in addition to the two input assertions.

MyAut hZCer t Del egat or del egat or = new MyAut hZCert Del egat or () ;
Assertion token = del egator.Del egateFileCertificate (
del egat or Token, serviceToken, this.keyPair.Certificate);

The DelegateCertificateOnFileService method of MyAuthZCertDelegator starts by
extracting the name of the file from the user’ s authorization certificate. Note that one or
more of the delegations could have incorrectly specified a different filename. Not to
worry. We'll check for that error at access time.

public Assertion Del egateFileCertificate (
Assertion del egat or Token, Assertion serviceToken,
X509Certificate del egatorCertificate)

Xm NanmespaceManager nsm = new Xl NanespaceManager (new NaneTabl e());
nsm AddNanmespace("sam ", "urn:oasis:nanes:tc: SAM.: 1. 0: assertion");
Xm El enent token = del egat or Token. ToXm () ;
Xm NodelLi st chai nedAssertions =

t oken. Sel ect Nodes("//sam : Attri but eval ue", nsm;
string fileName = chai nedAssertions[O0]. I nnerText;

The next step isto get the Brochure service' s X.509 certificate out of Bob's authorization
to use the service, which is done in GetServicePublicKeyCertificate in AuthZUtilities.cs
in the Authorization project.

X509Certificate del egateeCertificate =
AuthzUtilities. GetServicePublicKeyCertificate(serviceToken);

There we convert Bob's authorization certificate to XML and define a namespace
manager that understands the SAML assertion schema.

42

public static X509Certificate GetServicePublicKeyCertificate(
Assertion certificate)

Xm El enent xm El ement = certificate. ToXm ();

X509Certificate enbeddedCertificate = null;

Xm NanmespaceManager nsm = new Xml NanespaceManager (new NaneTabl e());
nsm AddNanmespace("sam ", "urn:oasis:nanes:tc: SAM.: 1. 0: assertion");

Next, we extract all Assertion nodes from the certificate. The innermost certificate, the
one that belongs to the service, is the last one in the sequence.

Xm Nodeli st chai nedAssertions = xmnl El enent . Sel ect Nodes(
"//sam : Assertion”, nsm;
int [ast = chai nedAssertions. Count - 1,
return AssertionSignature.GetCertificate(
(Xm El enent) chai nedAssertions[last]);

Back in the DelegateFileCertificate method of MyAuthZCertDelegator.cs, we build the
certificate. There are two thingsto note. First, we set the authority to end on the first day
of the trade show the brochures are for. That means the Brochure service can use the
same authorization to read all versions, and there is no risk if nobody remembers to
revoke access. Second, we only grant read and revoke authority, showing how easily we
can enforce least privilege.

assertion.lssuer = delegatorCertificate. Subject;
Dat eTi me end = Dat eTi me. Now. AddDays(45) ;
assertion. Conditions = new Conditions(DateTime.M nVal ue, end);
Aut henti cati onSt at ement aut henti cati onSt atenent =
new Aut henti cati onSt at enent (
Aut hent i cati onSt at enent . Aut henti cati onMet hods. X509Publ i cKey) ;
Nanel dentifier nanmeldentifier =
new Nanel dentifier("", Nameldentifier. Formats. X509Subj ect Nane,
del egateeCertificate. Subject);
Subj ect Confirmati on subject Confirmation =
new Subj ect Confirmati on(Confirmati onMet hod. Met hods. Bearer);
byte[] exportResult =
del egateeCertificate. Export (X509Cont ent Type. Cert);
string result = Convert. ToBase64Stri ng(exportResult);
subj ect Confirmati on. Subj ect Confirmati onData =
new Subj ect Confirmati onData(result);
aut henti cati onSt at ement . Subj ect = new Subj ect (
nanel dentifier, subjectConfirmation);
assertion. St at enment s. Add(aut henti cati onSt at ement) ;
Aut hori zat i onDeci si onSt at ement aut hori zati onDeci si onSt at enent =
new Aut hori zati onDeci si onSt at enment () ;
aut hori zati onDeci si onSt at enent . Resource =
"http://ww. hp. coni servi ces/ HPFi | eCont ent Ser vi ce. asnx”;
Action read = new Action(
"http://ww. hp. coni servi ces/ HPFi | eCont ent Ser vi ce. asnx”,
"ReadFil e");
Action revoke = new Acti on(
"http://ww. hp. coni servi ces/ HPFi | eCont ent Ser vi ce. asnx”,
"revoke");
aut hori zati onDeci si onSt at ement . Act i ons. Add(r ead) ;

43

aut hori zati onDeci si onSt at ement . Act i ons. Add(r evoke);
aut hori zati onDeci si onSt at enent . Deci si on = Deci sion. Permt;
aut hori zati onDeci si onSt at ement . Subj ect =
aut henti cati onSt at emrent . Subj ect ;
aut hori zati onDeci si onSt at ement . Evi dence = new Evi dence(del egat or Token) ;
assertion. St atenment s. Add(aut hori zati onDeci si onSt at enent) ;
AttributeStatement attributeStatement = new AttributeStatenment();
attribut eSt at enent. Subj ect = aut henti cati onSt at enent . Subj ect ;
attributeStatenment. Attributes. Add(
new Conponent Space. SAM_. Assertions. Attri but e(

"File",

"http://ww. hp. conl servi ces/ HPFi | eCont ent Ser vi ce. asnx/ ReadFi | e",

fileNane));
assertion. Statenents. Add(attri buteStatenent);
return assertion;

Back in the DelegateFileCertificate method of Users.cs we sign the certificate with Bob's
private key and return to UserApplication.

Assertion del egat edToken =
AuthzUtiliites. SignDel egateCertificate(token,
this. _keyPair.Certificate, this._keyPair.PrivateKey);
return del egat edToken;

Back in UserApplication.cs, we write the certificate to disk and display it so you can
examine it.

AuthzUtilities. Qutput AssertionToFil e(
bobDel egat edHPFi | eCont ent Ser vi ceAsserti on,
"Bob's Del egated File Certificate to Brochure Service",
"BrochureFil eService.xm");

In areal implementation, Bob will probably start a new process to invoke the brochure
service. Here, we'll just invoke it in-line. However, because we' re using FAccM, Bob
can enforce least privilege. Inthis case, he wantsto print 37 copies. He could invoke the
Brochure service directly, but an error or avirusin his program could print up to Bob's
limit of 500. Instead, what Bob does is create a dummy user, bob2, to act as his agent.

User bob2 = new User ("bob2. pfx", "password");

Bob2 has its own private key, so Bob delegates a subset of his rights to bob2.

Assertion bobToBob2Token = bob. Del egat eBrochureCertificate (
bobBr ochur eAut hori zati on, bob2, 37);

Step into DelegateCertificateOnCopyService in Users.cs. We seethat it createsa
delegator and invokes its DelegateCertificate on Copy service. The arguments are the
delegator’ s right to use the service, the user to be granted the right, and the limit on the
size of the maximum press run in the resulting authorization. We next instantiate an
object to do the delegation and pass it the certificate to be delegated, Bob’s X.509
certificate, bob2' s X.509 certificate, and the maximum authorized press run.

public Assertion Del egateCertificateOnCopyService(
Assertion serviceToken, User other, int limt)

MyAut hZCer t Del egat or del egat or = new MyAut hZCert Del egat or () ;
Assertion token = del egator. Del egat eBrochureCertificate (
servi ceToken, this.keyPair.Certificate,
ot her. KeyPair.Certificate, limt);

We create the new certificate in DelegateBrochureCertificate in MyAuthZCertDelegator
in the ServiceClassLibrary project.

public Assertion Del egateCertificateOnCopyService(
Assertion del egat or Token, X509Certificate del egatorCertificate,
X509Certificate del egateeCertificate, int pageLimt)
{
Assertion assertion = new Assertion();
assertion.lssuer = delegatorCertificate. Subject;

Bob doesn’t care about the time interval the certificate is valid because he's going to
revoke it once the service invocation returns.

assertion. Conditions = new Conditions(
Dat eTi me. M nVal ue, Dat eTi me. MaxVal ue) ;

The rest of the certificate creation is sSimilar to what we' ve seen before.

Aut henti cati onSt at ement aut henti cati onSt atenent =
new Aut henti cati onSt at enent (
Aut hent i cati onSt at ement . Aut hent i cati onMet hods. X509Publ i cKey) ;

Nanel dentifier nanmeldentifier =

new Nanel dentifier ("",

Nanel denti fi er. For mat s. X509Subj ect Nane,
del egateeCertificate. Subject);

Subj ect Confirmati on subject Confirmation =

new Subj ect Confi rmati on(Confirmati onMet hod. Met hods. Bearer);
byte[] exportResult =

del egateeCertificate. Export (X509Cont ent Type. Cert);
string result = Convert. ToBase64Stri ng(exportResult);
subj ect Confirmati on. Subj ect Confirmati onData =

new Subj ect Confirmati onData(result);
aut henti cati onSt at ement . Subj ect =

new Subj ect (nanel dentifier, subjectConfirmation);
assertion. St at enment s. Add(aut henti cati onSt at enment) ;
Aut hori zat i onDeci si onSt at ement aut hori zati onDeci si onSt at enent =

new Aut hori zati onDeci si onSt at enment () ;
aut hori zati onDeci si onSt at enent . Resource =

"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx";
Action print = new Action(

"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx",

"Print");
Action revoke = new Action(

"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx",

"Revoke");

45

aut hori zati onDeci si onSt at ement . Acti ons. Add(print);
aut hori zati onDeci si onSt at ement . Act i ons. Add(r evoke);
aut hori zati onDeci si onSt at enent . Deci si on = Deci sion. Permt;
aut hori zati onDeci si onSt at ement . Subj ect =

aut henti cati onSt at ement . Subj ect ;
aut hori zati onDeci si onSt at ement . Evi dence = new Evi dence(del egat or Token) ;
assertion. St atenments. Add(aut hori zati onDeci si onSt at enent) ;
AttributeStatenment attributeStatement = new AttributeStatenment();
attribut eSt at enent. Subj ect = aut henti cati onSt at enent. Subj ect ;

Note that there are two permitted actions, print and revoke. We use the namespace to
determine which action the PrintLimit attribute belongs to.

attributeStatenment. Attributes. Add(
new Conponent Space. SAM_. Assertions. Attri but e(
"PrintLimt",
"urn:zebra: copy: brochure_service:Print",
[imt.ToString()));
assertion. Statenents. Add(attri buteStatenent);
return assertion;

Back in Users.cs, we sign the certificate and return it if al went well.

Assertion del egat edToken = AuthZUtilities. SignAssertion(
token, keyPair.Certificate, keyPair.PrivateKey);
return del egat edToken;

Back in UserApplication.cs we write bob2’ s certificate to afile so you can examine it.

AuthZzUtilities. Qutput AssertionToFil e(
bobToBob2Token,
"Bob2's Brochure Service Authorization",
"Bob2Br ochureService. xm ");

We are now ready for bob2 to invoke the service. First we set up the proxy to handle
communication with the service and a local object to represent the remote service.

Servi ceC assLi brary. Brochur eWs. Brochur eServi ce srvProxy =
new Servi ceCd assLi brary. Brochur eWs. Brochur eServi ce();

That takes us to some system generated code that configures the proxy.

[gl obal : : System Confi guration. Applicati onScopedSettingAttribute()]
[gl obal : : System Di agnosti cs. Debugger NonUser CodeAt tri bute()]
[gl obal : : System Confi gurati on. Speci al SettingAttribute(

gl obal : : System Confi gurati on. Speci al Setti ng. WebSer vi ceUrl)]
[gl obal : : System Confi guration. Defaul t Setti ngVal ueAttri bute(

"http://1ocal host: 1502/ Zebr aCopyVebSi t e/ Br ochur eSer vi ce. asnx")]
public string Serviced assLi brary_BrochureWs_BrochureService {

get {return ((string)
(this["Serviced assLi brary_BrochureWs BrochureService"]));}

46

Back in UserApplication.cs we provide the information needed to sign the SOAP request
and set along timeout on the service. Next, bob2 invokes the Brochure service with the
authorization delegated from Bob, the authorization to read the file that Bob delegated to
the Brochure service, and the size of the pressrun. Note that bob2 does not need nor get
an authorization to read the file being printed.

Servi ceC assLi brary. Brochur eWs. Servi ceProcessi ngResult result =
srv. Print(bobToBob2Token. ToXm (),
bobDel egat edHPFi | eCont ent Ser vi ceAssertion. ToXm (), 37);
srvProxy. Ti neout = 3600000;

This invocation takes us to the Print method in BrochureService in the
ZebraCopyWebSite project. The first member points to the page providing the service,
and the second will hold the information needed to verify the signature on the SOAP

message.

[WebSer vi ce(Nanmespace = "http://ww. zebracopy. com services")]
[WebSer vi ceBi ndi ng(ConfornsTo = Wi Profiles.BasicProfilel 1)]
public class BrochureService : System Wb. Servi ces. WbServi ce

{

private string service =
"http://ww. zebracopy. com servi ces/ BrochureServi ce. asnx";

public BrochureService(){}

That takes us to the Print method in BrochureService.cs, which instantiates the already
instantiated Brochure service, converts the authorization token from XML to alocal
object, and validates the token.

[WebMet hod]
public ServiceProcessingResult Print(Xm El ement serviceToken

Xm El enent fil eAuthorization, string jobName, int pressRun)
{

Brochure copyService = new Brochure();

Assertion assertion = new Assertion(servi ceToken);

Servi ceProcessi ngResult processResult = brochureService. Val i dat eToken(
assertion, service, "Print", pressRun);

The ValidateToken method in Brochure.cs that validates the authorization takes the

SAML authorization, the service being invoked, the method of that service, and the
requested number of copies. It then invokes alocal method to do application independent
checks of the certificate.

public ServiceProcessi ngResult ValidateToken(Assertion signedAssertion
string service, string nmethod, int pressRun)
{

Servi ceProcessi ngResult result =
Val i dat eToken(si gnedAssertion, service, nethod);

a7

This ValidateToken method, also in Brochure.cs, runs through a series of tests. The
verification is done using methods inAuthZCertVerifier in the ZebraCopyWebSite
project.

public ServiceProcessi ngResult Validat eToken(
Assertion signedAssertion, string service, string nethod)
{

bool verified = fal se;
Servi ceProcessi ngResult result = new Servi ceProcessi ngResult();
MyAut hZCert Verifier certVerifier = new MyAut hZCertVerifier();

Although the constructor for MyAuthZCertVerifier is empty, the constructor for its
superclass, AuthZCertVerifier defines the name space manager for parsing the XML
representation of the SAML certificates. We also put the revocation list here for
convenience. In area implementation, we' d use a persistent database to hold the
reovkation list.

public class AuthzZCertVerifier

{
prot ected Xm NanespacelManager nsm

private static Hashtable revocationLi st = new Hasht abl e();
public AuthzCertVerifier()

{

nsm = new Xm NanespaceManager (new NaneTabl e());
nsm AddNanmespace("sam ", "urn:oasis:nanes:tc: SAM.: 1. 0: assertion");
nsm AddNanespace("dsi g", SignedXm .Xm Dsi gNanespaceUrl);

}

Back in Brochure.cs, we initialize the status flag and check each signature on the
delegation chain. Note that these checks may throw exceptions, but we won't catch them
in the sample implementation

result.status = true;
verified = certVerifier.CheckSi gnature(signedAssertion);

The CheckSignature method in AuthZcertVerifier.cs converts the certificate to XML, and
extracts all the Assertions.

public bool CheckSignature(Assertion assertion)

Xm El enent xm El ement = assertion. ToXm ();
bool verified = fal se;
Xm Nodeli st chai nedAssertions =
xm El enent . Sel ect Nodes("//sam : Assertion”, nsm;

Next, it steps through the assertions and verifies that each is correctly signed. Since the
Evidence that a delegation is valid is the Assertion authorizing the delegator, this step
catches all attempts to forge an authorization. We return false if the certificate didn’t
pass the verificaton test.

foreach (Xm Node anode in chai nedAsserti ons)

{

48

Xm El enent assertionNode = (Xm El enent) anode;
verified = AssertionSignature. Verify(asserti onNode);
if (!verified) break;

return verified;

}

We return to ValidateToken in Brochure.cs. If verification failed, we specify the reason
and return. If it succeeded, we provide the status message and check the expiration date.

if ('verified)
{
result.status = fal se;
result.statusMsg = "Brochure: SAM. token signhature is incorrect" +
Envi ronnent . NewLi ne;
return result;
} else result.statusMsg = "Brochure: SAM. token signature verified" +
Envi ronnent . NewLi ne;
verified = certVerifier.CheckExpiration(signedAssertion);

The CheckExpiration method in AuthZCertVerifier.cs should look familiar.

public bool CheckExpiration(Assertion assertion)
{
Xm El enent xm El ement = assertion. ToXm ();
bool verified = fal se;
Xm Nodeli st chai nedAssertions =
xm El enent . Sel ect Nodes("//sam : Assertion”, nsm;
foreach (Xm Node anode in chai nedAsserti ons)

Xm El enent assertionNode = (Xm El ement) anode;
verified = CheckExpiration(asserti onNode);

The CheckExpiration method that examines an XML node returnstrue if the current time
falls between the beginning and ending times specified in the certificate. Otherwise, it
returns false.

private bool CheckExpiration(Xm El enent el enent)
{
bool verified = fal se;
Xm Node not After Node = el ement . Sel ect Si ngl eNode
("sam : Condi ti ons/ @ot OnOr After™, nsnj;
Xm Node not Bef or eNode = el enent. Sel ect Si ngl eNode
("sam : Condi ti ons/ @\ot Bef ore"”, nsm;
Dat eTi me begTi me = Dat eTi ne. Par se(not Bef or eNode. | nner Text) ;
Dat eTi me endTi me = Dat eTi me. Par se(not Aft er Node. | nner Text) ;
Dat eTi me now = Dat eTi nme. Now;
return (DateTinme. Conpare(endTi me, now) <= 0 ||
Dat eTi me. Conpar e(now, begTine) < 0);
}

Back in the CheckExpiration method that takes an assertion as an argument, we set the
status and return.

if (!verified) break;

49

}

return verified;

Back in ValidateT oken of Brochure.cs, we set the status and make sure the issuer isin the
delegation chain.

if ('verified)
{
result.status = fal se;
result.statusMsg += "Brochure: SAM. token is expired" +
Envi ronnent . NewLi ne;
return result;
} else result.statusMsg += "Brochure: SAM. token is current" +
Envi ronnent . NewLi ne;
verified = certVerifier.Checkl ssuer(signedAssertion);

The Checklssuer in AuthZCertVerifier cs. method verifies that the issuer of the certificate
is the subject of the Evidence field. It extracts all the assertion nodes, passing each to the
Checklssuer method that takes an XML node as an argument.

publ i c bool Checklssuer(Assertion certificate)

Xm El enent xm El enent = certificate. ToXm ();
bool verified = fal se;
Xm Nodeli st chai nedAssertions = xmnl El enent. Sel ect Nodes(
"/lsam : Assertion”, nsm;
foreach (Xm Node anode in chai nedAsserti ons)
{
Xm El enent assertionNode = (Xm El ement) anode;
verified = Checklssuer(assertionNode);

This Checklssuer method extracts the Evidence node. If there is none, then we're dealing
with the innermost assertion, and there is nothing to check.

private bool Checklssuer(Xn El enent el enent)

{
X509Certificate innerSubjectCertificate = null;

bool verified = fal se;
try

Xm Node evi denceNode = el enent . Sel ect Si ngl eNode(
"saml : Aut hori zat i onDeci si onSt at enent / sam : Evi dence”, nsm;
if (evidenceNode == null)
verified true;

Otherwise, we extract the Subject from the Evidence and make sure it matches the issuer
of the delegation. If there isa Subject, then something we'll extract itsinfo.

el se {
Xm El enent evi denceEl enent = (Xm El ement) evi denceNode;
Xm Node subj ect Node = evi denceEl enent . Sel ect Si ngl eNode(
"sam : Assertion/sanl : Aut hori zati onDeci si onSt at enent/ " +
"sam : Subj ect", nsm;
Xm El enent subj ect El ement = (Xnl El enent) subj ect Node;

50

Xm Node x509CertificateNode = subjectEl enent. Sel ect Si ngl eNode(
"saml : Subj ect Confi rmati onsam : Subj ect Confi rmati onData", nsm
i nner Subj ectCertificate =
Recover X509Certi ficate(x509CertificateNode. | nnerText);

RecoverX509Certificate converts the string representation of the issuer’s X.509
certificate to an object.

private X509Certificate Recover X509Certificate(string encodedText)

{
X509Certificate x = new X509Certificate();

byte[] bytes= Convert.FronBase64Stri ng(encodedText);
X509Certificate certificate = new X509Certificate();
certificate. |l nport(bytes);

return certificate

}

Back in Checklssuer, we and verify that the Subject in the Evidence signed the
delegation.

verified = AssertionSignature.Verify(el ement,innerSubjectCertificate);

}

return verified;

Back in the Checklssuer method that takes an assertion as an argument, we're done if the
verification failed.

verified = Checklssuer(assertionNode);
if (!verified) break;

}

return verified;

Next, the ValidateToken in the Brochure service checks to see if any of the certificatesin
the delegation chain have been revoked.

if (lverified)

{

result.status = fal se;
result.statusMsg += "Brochure: SAM. token chain issuer msmatch" +
Envi ronnent . NewLi ne;
return result;
} else result.statusMsg += "Brochure: SAM. Checkl ssuer verified" +
Envi ronnent . NewLi ne;
verified = certVerifier.CheckRevocati onLi st (si gnedAssertion);

As before, we start in a method that takes an assertion and do the actual checking in a
method that looks at an individual XML node. We use the AssertionID as the key into
the hash table of revoked certificates. In areal application, we' d use a persistent store,
such as a database, to hold the list of revoked certificates along with additional metadata.
Note that we use the poor coding practice of returning a double negative.

publ i c bool CheckRevocati onLi st (Assertion assertion)

{

51

bool notVerified = true;

Xm El enent xm El ement = assertion. ToXm ();

Xm Nodeli st chai nedAssertions = xmnl El enent . Sel ect Nodes(
"//sam : Assertion”, nsm;

foreach (Xm Node anode in chai nedAsserti ons)

{
string assertionlD =
((Xm El erent) anode) . Attri butes["AssertionlD']. I nnerText;
not Verified = revocati onLi st. Cont ai ns(assertionlD);
if (notVerified) break;
}
return !I'notVerified;

}

Back now to Brochure.cs, we verify that the requester is authorized to invoke this method
of this service.

if (lverified)

result.status = fal se;
result.statushMsg +=
"Brochure: SAM. token chain revocation checking failed" +
Envi ronnent . NewLi ne;
return result;
} else result.statusMsg +=
"Brochure: SAM. token chain revocati on checki ng succeeded" +
Envi ronnent . NewLi ne;

}

verified = certVerifier.CheckMet hod(si gnedAssertion, service, nethod);

This method verifies that all delegations are for this service and include the method being
invoked. We extract the chain of assertions and check each one.

public bool CheckMet hod(
Assertion assertion, string service, string nethod)
{

Xm El enent xm El ement = assertion. ToXm ();
bool verified = fal se;
Xm NodelLi st chai nedAssertions =
xm El enent . Sel ect Nodes("//sam : Assertion”, nsm;
foreach (Xm Node anode in chai nedAsserti ons)

Xm El enent asserti onNode = (Xm El enent) anode;
verified = CheckMet hod(
(Xm El enent) asserti onNode, service, nethod);

The assertion node specifies the service and method on that service that it authorizes. |If
the service matches and the request is for any of the authorized services, we return true.

private bool CheckMet hod(
Xm El enent assertionNode, string service, string mnethod)
{

bool verified = fal se;

Xm Node servi ceNaneNode = assertionNode. Sel ect Si ngl eNode(
"saml : Aut hori zat i onDeci si onSt at enent / @Resour ce", nsnj;

52

i f (serviceNaneNode. | nner Text == service)

Xm NodelLi st acti onNodes = asserti onNode. Sel ect Nodes(
"saml : Aut hori zat i onDeci si onSt at ement / sam : Action”, nsm
foreach (Xm Node anode in acti onNodes)

{
string statedActi onNane = anode. | nner Text ;
i f (statedActionNane == met hod)
{
verified = true
br eak;
}
}

}

return verified;

}

Back in the loop over assertions, we quit if the assertion we just examined doesn’t
authorize this method on this service.

if (!verified) break;

}

return verified;

}

Back now to Brochure.cs, we' re done with all the checks, so we can return the status.

if (lverified)

{
result.status = fal se;
result.statusMsg += "Brochure: Method not authorized" +
Envi ronnent . NewLi ne;
return result;
}

el se result.statusMsg += "Brochure: Method authorized" +
Envi ronnent . NewLi ne;
return result;

Now, back in the ValidateT oken method that takes four arguments, we do the service
specific validation if we passed the previous tests.

if (result.status)

{
MyAut hZCert Verifier certVerifier = new MAut hZCertVerifier();

bool verified = certVerifier.CheckResourceConstrai nts(
si gnedAssertion, pressRun);

In CheckResourceConstraints in MyAuthZCertVerifier.cs, we convert the SAML
assertion to XML and intialize some constants..

public override bool CheckResourceConstraints(
Assertion certificate, int pressRun)

Xm El enent xm El ement = certificate. ToXm ();

53

bool validated = true;
int before = -1;
int limt = -1;

Next, we extract the assertions and step through them. For each we'll extract the
resource limit.

Xm Nodeli st chai nedAssertions = xml El enent . Sel ect Nodes(
"//sam : Assertion”, nsm;
foreach (Xm Node anode in chai nedAsserti ons)

Xm El enent assertionNode = (Xm El enent) anode;

Xm Node printLimtNode = assertionNode. Sel ect Si ngl eNode(
"sam : AttributeStatenment/sam: " +
"Attribute[@\ttributeName="PrintLimt']", nsm;

Xm Node val ueNode = printLintNode. Sel ect Si ngl eNode(
"sam : AttributeVal ue", nsnj;
i nt nunmber = Int32. Parse(val ueNode. | nner Text) ;

First we make sure that nobody has delegated a larger press run than that party is
authorized to order.

if (0 < nunber)

{
if (before < 0)

bef ore = nunber;
limt = nunber;
} else
if (before > nunber)

{

val i dated = fal se;
br eak;

bef ore = nunber;

}

If we pass that test, we make sure the order is for fewer copies than the limit set in the
outermost certificate and return the validation status.

if (validated)
if (pressRun > limt) validated = fal se;
return validat ed;

Now we return to Brochure.cs where we set the status and return to the Brochure web
service.

if (!verified)
{
result.status = fal se;
result.statushMsg +=
"Brochure: Resource Access Constraints Viol ated" +
Envi ronnent . NewLi ne;
} else result.statusMsg +=

"Brochure: Resource Access Contraints Checked" +
Envi ronnent . NewLi ne;
return result;

After along digression, we're back in the Brochure web service in BrochureService.cs
where we invoke method that implements the service. We first convert the XML form of
the file authorization into an object and then invoke the Print method of the local
surrogate for the Brochure service.

if (processResult.status)

{

Assertion fileAssertion = new Assertion (fileAuthorization);
bool status = brochureService.Print(fileAssertion, pressRun);

The Print method in Brochure.cs invokes the HP File Content service. First it setsup a
local proxy, provides the information needed to sign the SOAP request, and then invokes
the ReadFile method of the service. Note that in the real world, we would extract the
service destination from the authorization certificate when the service endpoint reference
is encoded with something like WS-Addressing [30] from the Windows Communication
Framework (WCF). Notice that we don’t specify the name of the file to be printed. The
HP File Content service will extract it from the authorization certificate.

public bool Print(Assertion callbackToken, int pressRun)

HPFi | eCont ent Ser vi ceWs. HPFi | eCont ent Service fileW =
new HPFi | eCont ent Ser vi ceWs. HPFi | eCont ent Servi ce() ;

HPFi | eCont ent Ser vi ceWs. Fi | eServi ceProcessi ngResult processi ngResult =
fileW. ReadFi | e(cal | backToken. ToXm ());

This invocation takes us to the ReadFile method of HPFileContentService on the HP
Web site.

[WebSer vi ce(Nanespace = "http://ww. hp. conl servi ces")]
[WebSer vi ceBi ndi ng(ConfornsTo = Wi Profiles.BasicProfilel 1)]
public class HPFileContentService : System Wb. Servi ces. WebServi ce

{

private string service =
"http://ww. hp. coni servi ces/ HPFi | eCont ent Ser vi ce. asnx”;
public HPFil eCont ent Service() {}

We instantiate the file service, convert the XML form of the authorization, and validate
the authorization certificate. The fourth parameter to the ValidateToken method indicates
that there are application specific checks to be done.

[WebMet hod]
public FileServiceProcessi ngResult ReadFil e(Xm El ement t oken)

HPFi | eContent fc = new HPFil eContent();
Assertion assertion = new Assertion(token);
Servi ceProcessi ngResul t val i dat edResult =
fc. Val i dat eToken(assertion, service, "ReadFile", true);

55

The validation routine does the same generic checks we just saw for the Brochure
service.

public ServiceProcessi ngResult ValidateToken(Assertion signedAssertion
string service, string nmethod, bool appSpecificConstraints)
{

bool verified = fal se;
Servi ceProcessi ngResult result = new Servi ceProcessi ngResult();
MyFi | eServi ceAut hZCert Verifier certVerifier = new

MyFi | eServi ceAut hZCert Verifier();
verified = certVerifier.CheckSi gnature(signedAssertion);
result.status = verified,
if ('verified)

{
result.statusMsg = "HP: SAM. token signature is incorrect” +
Envi ronnent . NewLi ne;
return result;
el se result.statusMsg = "HP: SAM. token signature verified" +

Envi ronnent . NewLi ne;
verified = certVerifier.CheckExpiration(signedAssertion);
result.status = verified,;
if ('verified)

{
result.statusMsg += "HP: SAM. token is expired" +
Envi ronnent . NewLi ne;
return result;
}

el se result.statusMsg += "HP: SAM. token is current” +
Envi ronnent . NewLi ne;

verified = certVerifier.Checkl ssuer(signedAssertion);

result.status = verified,

if ('verified)

{
result.statusMsg += "HP: SAM. token chain issuer m smatch" +
Envi ronnent . NewLi ne;
return result;
}

el se result.statusMsg += "HP: SAM. Checkl ssuer verified" +
Envi ronnent . NewLi ne;

verified = certVerifier.CheckRevocati onLi st (signedAssertion);

result.status = verified,

if ('verified)

{
result.statushMsg +=
"HP: SAM. token chain revocation checking failed" +
Envi ronnent . NewLi ne;
return result;
}

el se result.statusMsg +=
"HP: SAM. token chain revocation checking succeeded" +
Envi ronnent . NewLi ne;
verified = certVerifier.CheckMet hod(si gnedAssertion
servi ce, nethod);
result.status = verified,

56

if (lverified)

{
result.statusMsg += "HP: Method not authorized" +
Envi ronnent . NewLi ne;
return result;
}

el se result.statusMsg += "HP: Method aut horized" +
Envi ronnent . NewLi ne;

Now we check any application specific constraints, if there are any. In this case we want
to make sure that al delegations refer to the same file. We could simply take the file
name from the innermost certificate, but that might lead to errors.

i f (appSpecificConstraints)
{

verified = certVerifier.CheckResourceConstraints(signedAssertion);

The method in MyFileServiceAuthZCertVerifier.cs in the HPWebSite project steps
through all the nodes in the authorization to use the file and returns true only if al the
AttributeValues specify the same file name.

public override bool CheckResourceConstraints(Assertion certificate)
{
Xm El enent token = certificate. ToXm ();
Xm Nodeli st chai nedAssertions =
t oken. Sel ect Nodes("//sam : Attri but eval ue", nsm;
string fileName = "";
foreach (Xm Node anode in chai nedAsserti ons)

{
string fn = anode. | nner Text ;
if ("" == fileNane)
fileName = fn;
el se
if (fileNane !'= fn) return false;
}

return true;

}
Back in HPFileContent.cs we set up the status and return.

result.status = verified,
if ('verified)
result.statushMsg +=
"ZebraCopy: Resource Access Constraints Violated" +
Envi ronnent . NewLi ne;
el se
result.statushMsg +=
"ZebraCopy: Resource Access Contraints Checked" +
Envi ronnent . NewLi ne;
return result;

Back in HPFileContentService.cs, we' |l read the file into a byte array and return the
result to the Brochure service.

57

if (validatedResult. status)

byte[] fileAccessResult = null;
fileAccessResult = fc.ReadFil e(token);

The ReadFile method first asks for the name of the file to be read. For this sample code,
we don't actually read thefile. Instead, we return anull byte array.

public byte[] ReadFile(Xm El ement token)

{
Xm Nodeli st attributes = token. Sel ect Nodes(
"//sam : Attributeval ue", nsm;
string fn = attributes[O].InnerText;
byte[] content = null;
return content;
}

The last step in the HP File Content web service is to set the status, which includes the
data.

Fi | eServi ceProcessi ngResult returnedResult =
new Fi |l eServi ceProcessi ngResult(true, null, fileAccessResult);

The FileServiceProcessingResult consists of the status, status message, and the result of
the read.

public FileServiceProcessi ngResult (bool st, string nsg, byte[] r)

{

this.status = st;
this.statusMsg = nsg;
this.content = r;

}
Finally, we return the result to the Brochure service.

return returnedResul t;

The Brochure service can now print the job. The method DoProcessingContent is empty
for this example.

if (readStatus. status)

byte[] content = processingResult.content;
DoPr ocessi ngCont ent (cont ent, pressRun) ;

}

return readStat us. st at us;

The return takes us back to BrochureService.cs, where we set the status and return to the
user application. The result shows that Bob's agent successfully invoked the Brochure
service.

Show("Bob' s agent perfornmed service", result);

58

Then, since thejob is done, Bob revokes bob2’ s right to use the service.

result = bob. RevokeBrochureServiceCertificate(
bobBr ochur eAut hori zat i on, bobToBob2Token) ;

The revocation method in Users.cs takes two SAML assertions as arguments. Thefirstis
the one Bob delegated from. The second is the delegation certificate to be revoked. This
method sets up the proxy for the remote service, which includes providing the data
needed to sign the SOAP message, and invokes its Revoke method.

public Serviced assLi brary. BrochureWs. Ser vi ceProcessi ngResul t
RevokeBr ochureServi ceCertificate(
Assertion serviceToken,
Assertion t oBeRevoked)

Servi ceC assLi brary. Brochur eWs. Brochur eServi ce srv =
new Servi ceCd assLi brary. Brochur eWs. Brochur eServi ce();
srv. Ti meout = 3600000;
return srv. RevokeToken(servi ceToken. ToXm (), toBeRevoked. ToXm ());

We are now back in the Brochure web service at the Zebra Copy web sitein
BrochureService.cs. The method instantiates the already instantiated the local Brochure
service surrogate and converts the certificate authorizing the right to revoke to an object.
It then validates this authorization. If authorized, it then invokes the RevokeToken
method.

[WebMet hod]
public ServiceProcessi ngResult RevokeToken(

Xm El enent token, Xm El enent toBeRevoked)
{

Brochure brochureService = new Brochure();
Assertion assertion = new Assertion(token);
Servi ceProcessi ngResult result =
br ochur eSer vi ce. Val i dat eToken(
assertion, service, "Revoke");
if (result.status)
{
Assertion toBeRevokedAsserti on = new Asserti on(toBeRevoked);
result.status = fal se;
result = brochureService. RevokeToken(assertion,
t oBeRevokedAssertion);

The RevokeToken method in Brochure.cs initializes the status report and the object that
does application specific validation. Finally, we make sure that thisis a valid revocation
request.

public ServiceProcessi ngResult RevokeToken(
Assertion token, Assertion toBeRevoked)
{

Servi ceProcessi ngResult result
Aut hZCert Verifier certVerifier

new Ser Vi ceProcessi ngResul t ();
new MyAut hZCert Verifier();

59

bool verified = certVerifier.ValidateRevocati onRequest (
t oken, toBeRevoked);

Next we enter the ValidateRevocationRequest method in AuthZCertVerifier.csin the
Authorization project. It extracts the Assertionl D, a string unigue to each Assertion, and
tests to see if the Assertionl D of the authorization to revoke is the same as the

AssertionI D in the outermost Evidence field. If they are, we know that the authorization
to be revoked was delegated from the certificate used as an authorization to revoke.

public bool ValidateRevocati onRequest (
Assertion token, Assertion toBeRevoked)
{

string tokenl D = token. Assertionl D;
Xm El enent xm El enent = t oBeRevoked. ToXm () ;
Xm Node node = xml El enent . Sel ect Si ngl eNode(
"/ sam : Assertion/sam : Aut hori zati onDeci si onSt at emrent/sam : " +
"Evi dence/ sam : Assertion", nsm;
string toBeRevokedl D = node. Attri butes["AssertionlD']. | nnerText;
return tokenl D == t oBeRevokedl D;

}

Back in the RevokeToken method of Brochure.cs we set the status message and invoke
the method that does the actual revocation.

if (lverified)

{
result.statusMsg += "Token Revocati on Request Denied" +
" Due To Invalid Cient Certificate";
result.status = fal se;
}
el se
{

result.status = true;
result.statusMsg = null;

}
if (verified)
{

string resourceNanme = "";
certVerifier.RevokeCertificate(toBeRevoked, resourceNane);

The RevokeCertificate method of AuthZCertVerifier.csin the Authorization project
extracts the Assertionl D of the supplied certificate and adds it to the revocation list. Note
that the label is used as a placeholder for other data that we might want to keep with the
AssertionlD. For example, we might want to keep the expiration date of the certificate so
we can delete the entry after the certificate has expired.

public void RevokeCertificate(Assertion assertion, string |abel)

{

Xm El enent el enent = assertion. ToXm ();
string assertionlD = elenent. Attributes["AssertionlD'].InnerText;
revocati onLi st. Add(assertionl D, |abel);

}

Back in Brochure.cs we return the status report.

60

return result;

The return via BrochureService.cs and Users.cs takes us al the way back to
UserApplication.cs.

Show(" Bob revokes Bob2's certificate", result);
Pause();

The rest of the code involves Bob's delegation to Alice and her attempted uses and
misuses of the Brochure service. We' ve seen all the methods that will be invoked, so
from now on we'll just step through UserApplication.cs.

Normally, Alice would be running her own process, but here we just run her with Bob.
Once Aliceisinstantiated, Bob delegates to her the right to order press runs of up to 100
copies. We write the certificate to afile so you can examine it.

User alice = new User("alice.pfx","password");
int copyLimt = 100;
Assertion bobToAl i ceToken = bob. Del egat eBrochureCertificate (
bobBr ochur eAut hori zation, alice, copyLimt);
AuthZzUtilities. Qutput AssertionToFil e(
bobToAl i ceToken,
"Bob's Del egation of Brochure Service to Alice"
"Ali ceBrochureService. xm");
Show(" Al i ceBrochureService. xm ");
Pause();

Alice next gets her own certificate to the file to be printed.

Assertion aliceHpFil eCont ent Servi ceAssertion =
al i ce. Get Fi | eCont ent Servi ceToken(fil eNamne);
AuthZzUtilities. Qutput AssertionToFil e(
al i ceHpFi | eCont ent Servi ceAssertion
"Alice's Authorization to Read/ Wite a File at the HP File Service"
"AliceFileService.xm");

Alice delegates her right to read the file to the Brochure service. The bobToAliceToken
contains the X.509 certificate of the Brochure service.

Assertion aliceDel egat edHPFi | eCont ent Servi ceAssertion =
al i ce. Del egat eFi | eServi ceCertificate(
al i ceHpFi | eCont ent Ser vi ceAsserti on, bobToAliceToken);
AuthzUtilities. Qutput AssertionToFil e(
al i ceDel egat edHPFi | eCont ent Ser vi ceAsserti on
"Alice's Delegation to Read a File to Brochure Service"
"AliceFil eServi ceToBrochure.xm");

Alice next orders 28 brochures. Note that Aliceis being careless. Although she only
wants to print 28 copies, the process she runs will be able to order up to 100. She should

61

do what Bob did earlier and create an authorization good for the exact number of copies
she wants to make.

result = srv.Print(bobToAliceToken. ToXm (),
al i ceDel egat edHPFi | eCont ent Servi ceAssertion. ToXm (), 28);
Show("Al'i ce performed service (with 28 copies)", result);

That worked, so Alice tries ordering 150. Notice that the information needed to sign her
SOAP request doesn’'t need to be reset because it is part of her messaging layer.

result = srv.Print(bobToAliceToken. ToXm (),
al i ceDel egat edHPFi | eCont ent Ser vi ceAssertion. ToXm (), 150);
Show("Ali ce performed service (with 150 copies)”, result);

That fails when the validation detects that she is ordering more copies than specified in
her authorization. Alice now wants to continue to order brochures after Bob revokes her
authorization, so she creates an agent, alice2, and delegates her rightsto it.

User alice2 = new User("alice2. pfx","password");
Assertion aliceSel fDel egatedCertificate =
al i ce. Del egat eBrochureCertificate (bobToAliceToken, alice2, 100);
AuthzUtilities. Qutput AssertionToFil e(
al i ceSel f Del egat edCertificate,
"Alice's Delegated File Certificate to Alice2",
"Ali ceToAl i ceBrochure. xm ");

Sure enough, Bob revokes her authorization and verifies that the revocation request was
accepted.

result = bob. RevokeBrochureServiceCertificate(bobToAl i ceToken);
Show("Bob revokes Alice's certificate", result);

Alicetriesto use her certificate and finds that it has been revoked. That attempt fails
because the delegation chain is terminated at the first revoked certificate.

result = srv.Print(bobToAli ceToken. ToXm (),

al i ceDel egat edHPFi | eCont ent Ser vi ceAssertion. ToXm (), 100);
Show("Alice performed service (certificate revoked already)", result);
Pause();

That didn’'t work, so Alice tries with the certificate she delegated to alice2, but that fails,
too. Note that Alice had to reset the SOAP signing information to use alice2’' s private

key.
result = srv.Print(aliceSelfDel egatedCertificate. ToXm (),
al i ceDel egat edHPFi | eCont ent Ser vi ceAssertion. ToXm (), 100);

Show("Alice performed service with self-delegated certificate ",
result);

In afinal attempt to get access to the Brochure service, Alice asks HP for theright. Since
Aliceisn’t in the approved list, HP denies the request.

62

System Consol e. Wit eLi ne(

"Alice attenpts to get brochure service authorization.");
Assertion aliceBrochureAuthorization = alice.GetBrochureServiceToken();
if (null !'= aliceBrochureAuthorization)

AuthZzUtilities. Qutput AssertionToFil e(
al i ceBrochur eAut hori zati on,
"Alice’s Right to Use the Zebra Copy Brochure Service",
"Ali ceBrochureService. xm");
Show(" Al i ceBrochureService. xm ");
} el se System Consol e. WiteLine("Access denied.");
Pause();

That ends the detailed description of the sample application. At this point, you should be
able to gtart building your own infrastructure based on Federated Access Management.

Appendix E. SOAP Message Layer Code

There is a problem with the sample code described in Appendix D; there are no
restrictions on who can use an authorization. For example, Alice could submit Bob's
authorization if hers had been revoked. That’s because we didn’t show how to sign the
SOAP messages and coordinate that signature with the SAML Assertions that it includes.
We' d have to do the same thing if we were using the SAML certificates for
authentication or to carry attributes, but it's worth seeing how it is done.

Sample code including this verification step is available for download from HP [17].
There are two reasons we are providing different versions. The version with message
signing doesn’'t single step between processes as does the code described in Appendix D.
We also found that the hidden interaction with the messaging layer makes understanding
the control flow more difficult. Hence, we decided to present the basic mechanism
without message authentication and describe the additions separately.

Microsoft provides the Web Services Extensions (WSE) library for dealing with many
aspects of SOAP messages, including signing them and verifying the signatures. We did
not use this library because we want our sample code to be more platform independent.
Also, the latest WSE 3.0 does not provide security token classes to support directly file-
based certificate stores, such as the *.pfx files used in the sample code.

In this Appendix, we'll describe two classes that implement just the WSE functionality
we need. Thefirst class has no methods, just data members. MessageSigningHeader.cs
in the SoapExtensionLib project is used to communicate signing information between the
application and the SOAP messaging layer. The first two variables contain the file name
of the user’ s key store and the password needed to extract the user’s private key. Next
we have a variable to hold the signer’s X.509 certificate, which contains the signer’s
public key. Finaly, thereis aplace to store the actual signature and the result of
verifying it against the received message.

public class MessageSi gni ngHeader :
Syst em Web. Servi ces. Prot ocol s. SoapHeader

63

public string MessageSi gni ngCertificateStore;
public string MessageSi gni ngSt or ePasswor d;
public string MessageSi gni ngCertificate;
public Xm El ement MessageSi gni ngSi gnat ur e;
public bool VerificationResult;

In order to understand the other class, we need to see how the client and service use this
header and how the user gets access to the messaging layer.

E.1. Client and Server Changes

Some changes are needed to the code shown in Appendix D in order to set up the data
needed to manage the SOAP messages. Refer back to the point in UserApplication.cs
where bob2 is about to invoke the Brochure service. Before, bob2 simply instantiated the
service proxy and set along timeout. In order to properly sign the SOAP request, bob2
now also instantiates a MessageSigningHeader and provides the file name of akey store
and the password needed to extract the private key.

Servi ceC assLi brary. Brochur eWs. Brochur eServi ce srv =
new Servi ceCd assLi brary. Brochur eWs. Brochur eServi ce();
Servi ceC assLi brary. Brochur eWs. MessageSi gni ngHeader header =
new Servi ceC assLi brary. Brochur eWs. MessageSi gni ngHeader () ;
header. MessageSi gni ngCertificateStore = "bob2. pfx";
header . MessageSi gni ngSt or ePassword = "password”;
srv. MessageSi gni ngHeader Val ue = header;
srv. Ti meout = 3600000;

Some changes are also needed on the service side. The class embodying the service
needs a place to hold the message signing header. So, for example, the BrochureService
class adds a member

publ i c MessageSi gni ngHeader nsgSi gni ngHeader ;

and each method adds a web service declaration, i.e.,

[WebMet hod]
[SoapHeader (" nsgSi gni ngHeader ™, Directi on = SoapHeaderDirection.In)]
public ServiceProcessingResult Print(Xm El ement serviceToken,

Xm El enent fil eAuthorization, int pressRun)

These declarations let the server access the signature the client put into the SOAP header.
The server also needs to verify that the authorization presented was delegated to the
public key corresponding to the private key used to sign the SOAP request. We enable
that check by adding the signature to the parameters passed into the validation method.
For example, BrocureService.cs is changed to

Servi ceProcessi ngResult processResult = brochureService. Val i dat eToken(
assertion, service, "Print", pressRun, nsgSi gni ngHeader);

which eventually takes us to the application independent validation method in
Brochure.cs. We see that the M essageSigningHeader argument has been added and that
we check the signature verification. We'll see later how we verified the signature in a
service independent way by putting an interceptor in the messaging layer.

public ServiceProcessi ngResult Validat eToken(
Assertion signedAssertion, string service, string nethod,
MessageSi gni ngHeader header)

bool verified = fal se;

Servi ceProcessi ngResult result = new ServiceProcessi ngResult();
MyAut hZCert Verifier certVerifier = new MyAut hZCertVerifier();
result.status = true;

verified = header. VerificationResult;

if ('verified)

{
result.status = fal se;
result.statusMsg = "Brochure: Cient request signature " +
"checking failed" + Environnent.NewLi ne;
return result;
} else {

result.statusMsg = "Brochure: Cient request signature " +
"checking verified" + Environnment. NewLine; }

Once we're sure the SOAP message was properly signed, we can check that the signer’s
public key is the one the authorization was issued to. We do that by extracting the
signer’s X.509 certificate from the message header and invoking the check method.

byte[] cert = System Text.Encodi ng. Def aul t. Get Byt es(
header . MessageSi gni ngCertificate);
X509Certificate certFrondient = new X509Certificate(cert);
verified = certVerifier.Checkl ssuser Wt hRequest (
si gnedAssertion, certFronClient);

The verfication is done by the ChecklssuerWithRegquest method which we added to
AuthZCertVerifier.csin the Authorization project. This method extracts the Subject field
from the authorization assertion and gets the delegatee’ s X.509 certificate from the
SubjectConfirmationData. The public key in that certificate is then compared with the
public key in the X.509 certificate in the SOAP message header.

publ i c bool Checkl ssuer Wt hRequest (
Assertion assertion, X509Certificate certFronClient)
{

Xm El enent xm El ement = assertion. ToXm ();
Xm Node subj ect Node = xml El enmrent . Sel ect Si ngl eNode(
"/sam : Assertion/sam : Aut henti cati onSt at ement/sam : Subj ect ",
nsnj ;
Xm El enent subj ect El ement = (Xnl El enent) subj ect Node;
Xm Node x509Dat aNode = subj ect El enent . Sel ect Si ngl eNode(
"saml : Subj ect Confi rmati on/ san : Subj ect Confirmati onDat a",
nsnj ;
X509Certificate innerSubjectCertificate =
Recover X509Cer ti fi cat e(x509Dat aNode. | nner Text) ;

65

bool verified = AuthZUilities. ConpareByteArray(
i nner Subj ect Certificate. GetPublicKey(),
certFronC i ent. Get PublicKey());

if (verified) return true;

return fal se;

}

In areal implementation, the server would sign its messages to the client in the service
response path, and the client would verify those signatures. We didn’t do that for this
sample code because it isn’'t needed to demonstrate using SAML certificates as
authorizations. Hence, the changes you' ve just seen are all that is needed for the client
and server. Everything else is done below the application layer.

E.2. Message Interception Basics

The bulk of the work is done in WebServiceSOAPExtension.cs. We followed the
instructions provided by Microsoft [20] to write thisclass. That article describes what is
happening in terms of an 11S web server and the .NET framework. However, the bulk of
the code in this file is independent of them.

This WebServiceSoapExtension class works in conjunction with the
MessageSigningHeader introduced in Appendix E.1. The MessageSigningHeader allows
the client to specify the settings per invocation request required for message processing at
the SOAP message level. On the receiving side, the MesageSigningHeader alows the
server to retrieve the result from the message processing done at the SOAP message
level.

To get started, we need to understand what is happening underneath the application at the
messaging layer. The user invokes aweb service by specifying a method on a proxy.
We saw this when bob2 invoked the Brochure service with

Servi ceC assLi brary. Brochur eWs. Servi ceProcessi ngResult result =
srv. Print (bobToBob2Token. ToXm (),
bobDel egat edHPFi | eCont ent Ser vi ceAssertion. ToXm (), 37);

The proxy converts this method invocation into a SOAP request that is sent asan HTTP
message to the web server. Based on the SOAPAcction header or the request element’s
name, the server decides to which method of which class in the application to dispatch
the message and deserialized parameters.

The Extensions library sits between the client and web server and between the web server
and service as shown in Figure A3. That means we won’'t see the normal call return path.
Instead, magical things seem to happen when single stepping the code. Magically, we
enter some routine. Magically, areturn takes us to some other strange place. Of course,
it'snot really magic. It'sjust smoke and mirrors. Under the covers, we are bouncing
back and forth between the messaging layer and the code visible to us.

66

\ 4

\ 4

WSE Web WSE Server

Server

Client

A

A

Figure A3. M essage pipeine with SOAP Extension hooks.

Let'slook at the flow between the messaging layer and the extension code as shown in
Figure A4, which we copied from the article we used when writing this code. In this
figure, code in the extension isin bold. The gray boxes are message stages that code in
the ProcessM esssage method uses in a switch statement.

The interception process gets started when the client invokes a method on the service
proxy. The client is given the chance to do some setup of the interception before the
SOAP request reaches the messaging layer by invoking an implemention of the abstract
methods in the initialization phase. The messaging layer then invokes the ChainStream
method, which enables the actual interception by providing a Stream from the messaging
layer to the extension code and one from the extension code back into the messaging
layer. Theclient is given two chances to interact with the SOAP request on the way out,
before and after serialization. The serialized message is in the form of an XmlDocument
object. The serialized message is a UTF8 document consisting of the XML representing
the SOAP request, including the SOAP headers and soap:Body. Once the client-side
code is finished with the serialized message, the messaging layer puts the SOAP request
on the wire for delivery to the server.

The service has a chance to do some setup of its message interception immediately after
the message comes in over the wire. Aswith the client, in ChainStream the service sets
up the Streams that enable the interception. The service gets two chances to interact with
the message before the actual service isinvoked, before deserialization and after
deserialization. Once the post-deserialization processing is done, the actual service in the
application layer gets invoked.

67

Server Client
Initialize < Client code P
A
ChainStream > Initialize
A y
BeforeDeserialize ChainStream
A y
After Deserialize BeforeSerialize
A y
Service code AfterSerialize
\ 4
ChainStream After Deserialize
A
A
BeforeSerialize BeforeDeserialize
N
A
AfterSerialize > ChainStream

Figure A4. Flow between the message layer and the inter ception code.

Any response from the service is sent back to the client. What makes the invocation
RPC-like is the asymmetry in the message handling. Note that the return is just a SOAP
message, but it goes directly to the client’s ChainStream method instead of passing
through the initialization code. That makes it easier to correlate the return with the
request, but it complicates processing of multiple requests outstanding at the same time.

E.3. Implementing Interception

In this Section, we' |l see the actual code we wrote for signing the SOAP request and
verifying the signature. We only implement these methods for the client request. Ina
real system, the server would also sign its messages, and the client would validate the
signature. Another oddity of this reference implementation is that we use the same code
for both the client and the service. It'sjust a convenience for this sample
implementation. Also, in Appendix D we walked through the code in execution order.
The complicated interaction between the messaging layer and interception code makes

68

this approach less useful. So, here we'll present the code more or less in the order it
appears in the source files.

Y ou plug into the message stream by overriding methods in the SoapExtension class.
Before the message enters the messaging layer, you get the opportunity to do some setup
by providing a concrete implementation of some abstract classes. Here we simply do
nothing.

public override object Getlnitializer(Type serviceType)
{ return null; }
public override object Getlnitializer(
Logi cal Met hodl nf o net hodl nfo, SoapExtensi onAttribute attribute)
{ return null; }
public override void Initialize(object initializer)
{ return; }

Even though there are four lines entering an leaving each of the SOAP Extensions boxes
in Figure A3, we'll only be dealing with one message at atime. Hence, we define a
Stream for the message coming into the interceptor and one for the processed message
going out.

public class WebServcSoapExt : SoapExtension
{

private Stream outwardStream
private Stream i nwardStream

The actual interception starts by overriding the ChainStream method, which gives us the
opportunity to store the message in a Stream variable. The argument is the SOAP
message. Here we see our first bit of magic; the return takes us to the ProcessM essage
method. That’s not really what happened, of course. We really went from ChainStream
into the messaging layer which called ProcessM essage.

public override Stream Chai nStrean(Stream strean)

{

i nwar dSt r eam = stream
out war dStream = new MenoryStream();
return outwardStrean

}

ProcessM essage gets called two times on each of the sender and the receiver sides. On
the sending side, ProcessMessage isfirst invoked before the XML document containing
the SOAP request has been serialized. That gives you the opportunity to modify the
request at the object level, perhaps to add some attribute. We won'’t be doing anything,
so we simply leave the switch block.

public override void ProcessMessage(
Syst em Web. Servi ces. Prot ocol s. SoapMessage nessage)
{

string soapMsgl;

St reanReader readStr;
StreamWiter witeStr;

69

Xm Document xDoc = new Xm Docunent () ;
xDoc. PreserveWhi t espace = fal se;
swi tch (nessage. St age)

{

case SoapMessageSt age. BeforeSeri al i ze:
br eak;

Next, ProcessMessage is invoked on the sending side after serialization. At this point,
you have an XML document and can do such things as encrypt or sign the request. The
message is defined as a stream provided by ChainStream, which we convert to a string.

case SoapMessageStage. AfterSerialize:
i nwar dStream Position = 0;
readStr = new StreanReader (outwardStrean);
witeStr new StreamiNiter (i nwardStrean;
soapMsgl readSt r. ReadToEnd() ;

Since we' re using the same code for the client and server, we need to figure out which
thisinvocationisfor. Inthiscase, it'sthe client, so we'll sign the SOAP message. We'll
start by turning the serialized message into an XmlIDocument object. It seems strange to
convert the serialized message into an object instead of just signing the message before
seridlization. The differenceisthat serialization wraps the body of the messagein a
soap:Body tag. That lets us extract the entire body and sign it asa unit. Before
serialization, we would have to extract the elements in turn and sign them individually.

Once we have the XmIDocument object, we'll extract the file name of the key store and
the corresponding password. Recall, these items were put into the SOAP header before
the service proxy was invoked.

if (nmessage is System Wb. Services. Prot ocol s. Soapd i ent Message)

xDoc. LoadXm (soapMsgl);
Xm NodelLi st xPassword =

xDoc. Get El enent sByTagNane(" MessageSi gni ngSt or ePasswor d”) ;
string password = xPassword[O] . | nner Xm ;
Xm NodeLi st xCertificateStore =

xDoc. CGet El enent sByTagNane(" MessageSi gni ngCertificateStore");
string certificateStoreFil eNane = xCertificateStore[0].InnerXm ;

Next, we extract the client’s public and private keys as well as the corresponding X.509
certificate. Then we're ready to sign the message.

KeyPai r keyPair = new KeyPair(certificateStoreFil eNane, password);
byte[] nyCertificate =

keyPair. Certificate. Export (X509Cont ent Type. Cert);
string certificateString = Convert. ToBase64Stri ng(nyCertificate);
Xm El enent sig = Comput eSi gnat ur e(keyPai r, xDoc);

Once that’s done, we add the client’ s X.509 certificate and the message signature into the
SOAP header. We don't need the key store and password for the new header.

70

MessageSi gni ngHeader header = new MessageSi gni ngHeader () ;
header . MessageSi gni ngCertificate = certificateString;
header . MessageSi gni ngSi gnature = sig;

We can now add the signature to the SOAP header. After serializing the header object
into XML, we import it to the XmIDocument object containing the SOAP request. The
import works by cloning the XmlElement specified by the first argument. The second
argument says to clone the full object graph, not just the top level. The return value is the
clone of the input argument.

Xm El enent result = SerializedToXm (header);
Xm El enent i nmportedResult = (Xm El enent) xDoc. | nport Node(result, true);

We don’t want to transmit the signing information to the service, especialy the client’s
private key, so we remove them.

Xm Nodeli st messageSi gni ngHeader =

xDoc. Get El enent sByTagNane(" MessageSi gni ngHeader ") ;
nmessageSi gni ngHeader [0] . RenoveChi | d(xPassword[0]) ;
messageSi gni ngHeader [0] . RenoveChi | d(xCertificateStore[0]);

Y ou'd think we' d be done, but there isaglitch. We need to add the parent node’s
namespace to the node containing the signature. If we don't, the resulting message
contains an empty specification of "" for xmlns, which causes deserialization problems.
RemoveAttributes doesn’t remove the empty specification for xmins.

Xm Node nodel = inportedResult. Sel ect Si ngl eNode(
"/ MessageSi gni ngCertificate");
Xm Node nodel_cl one = xDoc. Creat eEl enment (
"MessageSi gni ngCertificate",
nmessageSi gni ngHeader [0] . NanespaceURl) ;
nodel cl one. | nner Text = nodel. | nner Text;
nmessageSi gni ngHeader [0] . AppendChi | d(nodel_cl one);
Xm Node node2 = inportedResult. Sel ect Si ngl eNode(
"/ MessageSi gni ngSi gnature");
Xm Node node2_cl one = xDoc. Cr eat eEl ement (" MessageSi gni ngSi gnat ure”,
nmessageSi gni ngHeader [0] . NanespaceURl) ;
node2_cl one. AppendChi | d(node2. Fi rst Chi | d) ;
nmessageSi gni ngHeader [0] . AppendChi | d(node2_cl one);

We now put the XML document containing the serialized SOAP message into the output
stream and exit the switch block. Since there is no more code, the return is into the

messaging layer.

soapMsgl = xDoc. I nner Xn ;
witeStr. Wite(soapMsgl);
writeStr. Flush();

br eak;

The messaging layer sends the SOAP request to the server’ s web server for forwarding to
the server. On the way from the web server to the server, the message passes through the

71

extension library, which calls Initialize and ChainStream. In this sample implementation,
that’ s the same code we saw on the client side. Next, ProcessMessage gets called before
deserialization. As before, we initialize a couple of Streams to handle the message on the
way in and on the way out and convert the request to a string.

case SoapMessageSt age. Bef oreDeseri al i ze:
readStr = new StreanReader (i nwar dSt rean ;
witeStr new Streamiter (outwardStream;
soapMsgl readStr. ReadToEnd() ;

Since we' re using the same library code for both the server and the client, we need to
figure out which one we've got thistime. It turns out to be the server, so we convert the
XML document into an object and extract the signing header. Those arguments get sent
to the VerifySignature method.

el se i f(nessage is System Wb. Servi ces. Prot ocol s. SoapSer ver Message)

{

xDoc. LoadXm (soapMsgl);
Xm NodelLi st headers =
xDoc. Get El enent sByTagNane(" MessageSi gni ngHeader ") ;
bool result = VerifySi gnature(xDoc, (Xm El ement)headers[O0]);

In the code we saw earlier, we simply returned the verification result. We can't do that
here because logically we're in the messaging layer. Instead, we put the verification
result into the SOAP header where the application layer verification method can get to it.
The implementation is straightforward except for one thing. Only alower case “fase’
gets through the conversion process unmodified. “False” is not alegitate boolean token
when parsed by the SOAP message deserilizer. The last step ssimply makes sure the
soap:Body conforms to the schema expected by the SOAP message’ s deserializer by
removing any attributes added for the purpose of signature construction (at the client
side) and verification process (at the server side).

Xm NodelLi st verificationResul t Nodes =

xDoc. Get El enent sByTagNanme(" Verificati onResult");
verificati onResul t Nodes[O] .l nnerText = result.ToString(). ToLower ();
Xm NanmespaceManager nsm = new Xl NanespaceManager (new NaneTabl e());
nsm AddNanmespace("soap", "http://schemas. xnm soap. or g/ soap/ envel ope/ ") ;
nsm AddNanespace("dsi g", SignedXm .Xm Dsi gNanespaceUrl);
Xm Node node = xDoc. Sel ect Si ngl eNode("// soap: Body", nsm;
Xm El enent soapNode = (Xml El enent) node;
soapNode. RenoveAl | Attri butes();

As before, the result is returned as a Stream to the messaging layer.

soapMsgl = xDoc. I nner Xn ;
witeStr. Wite(soapMsgl);
writeStr. Flush();

out war dStream Position = 0;
br eak;

72

WEe' ve aready seen how the service verifies that the signer of the SOAP request is the
rightful holder of the authorization to use the service. Now let’slook at the return path.
The return is ssimpler because the service doesn’t sign the reply, and the client knows not
to check it.

The reply goes directly from the server’s AfterSerialize into the client’ s ChainStream.
The messasging layer then invokes the client’s ProcessM ethod before deserialization.
The client does no work in this case, so we just prepare the message to be returned to the
message layer. We saw the code in the else if block when the server checked the
signature on the SOAP request. It’s shown here just as areminder.

case SoapMessageSt age. Bef oreDeseri al i ze:
readStr = new StreanReader (i nwar dSt rean ;
witeStr = new StreamWiter (outwardStream;
soapMsgl = readStr. ReadToEnd();
if (message is System Web. Servi ces. Prot ocol s. Soapd i ent Message)
xDoc. LoadXm (soapMsgl);
else if (nessage is System Web. Servi ces. Prot ocol s. SoapSer ver Message)

{ ...}
The message is put back into the messaging layer with code we saw previously.

soapMsgl = xDoc. I nner Xn ;
witeStr. Wite(soapMsgl);
writeStr. Flush();

out war dStream Position = 0;
br eak;

ProcessM essage gets invoked one more time after deserializing the reply, but thereis
nothing for the client to do, so we exit the switch block and return to the messaging layer.

case SoapMessageStage. AfterDeserialize:
br eak;

The client next gets control at the statement immediately following the invocation of the
service proxy. That’'sthe complete round trip, but we still need to see the code for
signing the request and for verifying the signature.

The method that computes the signature starts by defining an namespace manager for
parsing the document and extracts the SOAP body, the part of the message that gets
signed.

private Xm El ement Conput eSi gnat ur e(
KeyPai r keyPair, Xml Docunment docunent)
{

Xm NanmespaceManager nsm = new Xml NanespaceManager (new NaneTabl e());
nsm AddNanespace(" soap",
"http://schemas. xm soap. or g/ soap/ envel ope/ ") ;
nsm AddNanespace("dsi g", SignedXm .Xm Dsi gNanespaceUrl);
Xm Node node = docunent. Sel ect Si ngl eNode("//soap: Body", nsm;
Xm El enent soapNode = (Xm El enent) node;

73

Next, we create a new attribute “signer” as the reference ID for constructing the XML
signature.

Xm Attribute attribute = (Xml Attri bute)docunent. Creat eNode(
Xm NodeType. Attribute, "ID', "");

attribute.lnnerText = "signer";

soapNode. At tri but es. Append(attribute);

Si gnedXm signedXm = new Si gnedXm (soapNode);

We now extract the key to be used to sign the message, add it to the state of the signing
object, and specify the reference (ID “#signer”) to the part of the XML document that
will be used to construct the signature. Here that part is the entire SOAP body.

X509Certificate _x509Certificate = keyPair.Certificate;
RSA key = keyPair. Privat eKey;
si gnedXm . Si gni ngKey = key;
Si gnature XM.Si gnature = signedXm . Si gnat ure;
Ref erence reference = new Reference("");
reference. Ui = "#signer";
Xm Dsi gEnvel opedSi gnat ur eTransf orm env = new
Xm Dsi gEnvel opedSi gnat ur eTr ansf or m() ;
ref erence. AddTr ansf or m(env) ;
Xm Dsi gExcC1l4NTr ansf orm env2 = new Xm Dsi gExcCL4NTr ansf or m() ;
ref erence. AddTr ansf or m(env2) ;
XM_Si gnat ur e. Si gnedl nf 0. AddRef er ence(r ef er ence) ;

We add the client’s public key information and invoke the method that does the actual
signing computation.

Keyl nfo keylnfo = new Keylnfo();

keyl nf 0. AddCl ause(new Keyl nf 0X509Dat a(_x509Certificate));
XM_Si gnat ure. Keyl nfo = keyl nf o;

si gnedXm . Conmput eSi gnat ure() ;

Finally, we return the signature as an XmlElement that can be include in the SOAP
header.

Xm El enent xm Di gital Si gnature = signedXm . Get Xm ();
return xm Di gi tal Si gnat ure;

The SOAP header now has a signature that can be used to verify the integrity of the
SOAP body. This signature also contains the public key corresponding to the private key
used to sign the message.

When the message reaches the server, we verify the signature before the message is
deserialized. That guarantees that the message hasn’'t been tampered with. Note that we
are not checking for replay attacks. To do that, we would need to keep some state on the
server side, such as the time stamp of the last message seen from that client.

74

We start the verification by defining a name space manager for parsing the SOAP
envel ope and extracting the MessageSigningHeader that the client put into the SOAP
header. Note that we're not testing for missing or invalid headers in this sample code.
That means an incorrectly formatted message will crash the service.

private bool VerifySignature(Xm Docunent documnent, Xnml El enent header)

{

Xm NanmespaceManager nsm = new Xml NanespaceManager (new NaneTabl e());
nsm AddNanespace(" soap",

"http://schemas. xm soap. or g/ soap/ envel ope/ ") ;
nsm AddNanespace("dsi g", SignedXm .Xm Dsi gNanespaceUrl);

Xm Nodeli st si gni ngHeader Nodes= docunent . Get El enent sByTagNane (
"MessageSi gni ngHeader ") ;
Xm Node t heSi gni ngHeader Node = si gni ngHeader Nodes|[0] ;

We next step through the nodes in the header looking for the one containing the
signature. Again, we're not checking to make sure that one exists, something you'd do in
area implementation.

Xm Node si gnatureNode = nul | ;
for (int i = 0; i < theSi gni ngHeader Node. Chi | dNodes. Count; i ++)

Xm Node node = t heSi gni ngHeader Node. Chi | dNodes[i];
i f (node. Name == "MessageSi gni ngSi gnat ure")

{
si gnat ur eNode = node. Fi rst Chi | d;

br eak;

}
}

We now extract the soap body from the message and append the XML signature carried
in the SOAP header to it. We also instantiate an object that has the method that checks
the signature and supply the signature to be checked to it.

Xm Node snode = docunent. Sel ect Si ngl eNode("// soap: Body", nsm;
Xm El enent soapNode = (Xm El enent) snode;

soapNode. AppendChi | d(si gnat ur eNode) ;

Si gnedXm signedXm = new Si gnedXm (soapNode);

si gnedXm . LoadXm ((Xm El enment) si gnat ur eNode) ;

There are two checks we can do. The first makes sure that the message hasn’t been
modified and that it was properly signed. The second also verifies that the private key
used to sign the message corresponds to a particular public key. We need the latter. The
public key we're checking comes from the X.509 certificate that the client put into the
header.

byte[] certificate = System Text. Encodi ng. Def aul t. Get Byt es(
header . Get El enent sByTagNane (
"MessageSi gni ngCertificate")[O0].InnerText);
X509Certificate _x509Certificate = new X509Certificate(certificate);
X509Certificate2 certificate2 = new X509Certificate2(_x509Certificate);

75

Finally, we can check the validity of the signature. The second argument says to check
the validity of the signature but not that of the X.509 certificate.

result = signedXm . CheckSignature(certificate2, true);
return result;

There are two utility methods in WebServiceSOA PExtension.cs that are included here for
completeness. No explanation is needed. The first creates an XmlElement representation
of a MessageSigningHeader.

private Xm El ement Serial i zedToXm (MessageSi gni ngHeader header)
{
Menor ySt r eam nmenor yStream = new MenoryStream() ;
Xm Text Witer xm TextWiter = new Xml Text Witer(
menor ySt ream Encodi ng. UTF8) ;
Xm Serializer xs = new Xm Serializer(typeof (MessageSi gni ngHeader)) ;
xs. Serialize(xm Text Witer, header);
menoryStream = (MenoryStream xm Text Wit er. BaseStream
string xmizedString = (new UTF8Encodi ng()). Get Stri ng(
menor yStream ToArray());
int start = xmizedString. | ndexO (" <MessageSi gni ngHeader ") ;
int end = xmizedString. | ndexO (" </ MessageSi gni ngHeader >") ;
string content = xmizedString. Substring(start, (end - start) +
"</ MessageSi gni ngHeader >". Lengt h) ;
Xm Document doc = new Xm Docunent () ;
doc. LoadXm (content);
return (doc. Docunent El enent) ;

}

The other writes and XmlElement object to afile. Itisvery similar to the
OutputAssertionToFile method we saw in AuthZUTtilities.cs.

public static void Qutput Xm El enent ToFi | (
Xm El enent xm El ement, string | abel, string fn)
{

string baseDir = KeyPair.baseDir;
string filename = baseDir + fn;
Xm Document dom = new Xm Docunent () ;
FileStreamfs = null;
if (File.Exists(filenane))
File.Del ete(fil enane);
fs = new FileStrean(fil enanme, Fil eMbde. Create);
Xml Decl aration xm Decl =
dom Cr eat eXm Decl aration("1.0", "utf-8", null);
dom I nsert Bef ore(xm Decl, dom Docunent El enment) ;
Xm Node root Node = dom Creat eNode(Xml NodeType. El enment ,
"docunent -1 og", String. Enpty);
dom AppendChi | d(r oot Node) ;
Xm Node tineAttributeNode =
dom Cr eat eNode(Xml NodeType. Attri bute, "tinmestanp”, String. Enpty);
ti meAttri but eNode. | nner Text = DateTi me. Now. ToString();
root Node. Attri but es. Append((Xm Attribute)timeAttribut eNode);
Xm Node | abel Attri buteNode =
dom Cr eat eNode(Xm NodeType. Attri bute, "label"™, String.Enpty);

76

| abel Attri but eNode. I nner Text = | abel;

r oot Node. Attri but es. Append((Xm Attri bute)l abel Attri but eNode);
Xm Node newNode = dom I nport Node(xm El ement, true);

r oot Node. AppendChi | d(newNode) ;

fs.Position = O;

dom Save(fs);

fs.d ose();

}

That ends the description of the message interception code used to sign and verify the
signature of the SOAP messages. If you find any errors or a better way of doing
something, please contact the authors.

77

