
Porting Linux to IA-64

Stéphane Eranian David Mosberger

Hewlett-Packard Laboratories
1501, Page Mill Road Palo Alto CA 94303 USA

feranian,davidmg@hpl.hp.com

Abstract

The IA-64 architecture, co-developed by HP and Intel, is
going to reach market some time next year with Merced
as its first implementation. Major industry players have
endorsed this new architecture and technical details are
gradually becoming publicly available. However, the
complete architecture will not be fully disclosed until
machines become available. To provide for early avail-
ability of Linux on IA-64, in February 1998 HPLabs
began a project to bring Linux to this new architecture
with the eventual goal of releasing it to the open source
community. This paper gives an overview of the IA-64
architecture and describes our effort so far.

1 Introduction

At HPLabs, we have been working on porting Linux to
the IA-64 architecture since February 1998, an activ-
ity which is now part of a broader industry effort. The
initial goal of our project was to produce a self host-
ing system that would be available when the first IA-64-
based products would appear. Given the progress made
so far, we are now looking into producing a fully opti-
mized, complete Linux distribution with most standard
packages available. We intend to release all the code to
the open source community for eventual integration into
the official code base when machines become generally
available sometime next year.

Bringing Linux to a new architecture is more than just
porting the kernel. To become really usable a system
must include a development environment i.e., a complete
tool chain, a kernel, the C and math libraries and thou-
sands of tools and commands.

This paper gives an overview of IA-64 architecture with

code samples to illustrate some key features. We de-
scribe how we brought the various pieces together by
first producing a complete tool chain and creating a com-
fortable simulation environment, then working on the
kernel and the C library until we reached the point where
building real applications became possible.

2 IA-64 overview

The first implementation of the HP/Intel co-designed IA-
64 architecture i.e., the Merced CPU, will reach market
sometime next year and will be quickly followed by the
faster McKinley[1] in 2001, Madison and Deerfield in
2002. This new architecture builds upon lessons learned
from RISC, CISC and VLIW processors. It introduces a
new computing paradigm called EPIC (Explicitly Paral-
lel Instruction-set Computing). The basic idea is to ex-
pose instruction level parallelism (ILP) to the compiler
and use faster and relatively simpler hardware. The com-
piler operates at a much higher level and has potentially
a broader understanding of what the program is trying to
accomplish leading to more optimization opportunities.

instruction 2 instruction 1 instruction 0 template

127 0128-bit bundle

41 41 541

Figure 1: IA-64 Instruction Format

As for VLIW processors, IA-64 instructions are grouped
into bundles as shown in Figure 1. Each bundle contains
three instruction slots of 41 bits each and a 5-bit template
field that encodes which execution unit types are needed
by the instructions (M-unit for memory access, I-unit for
integer operations, F-unit for floating point or B-unit for
branching) and where a stop bit is needed. This syn-
chronization point (barrier) may be necessary between



instructions to avoid conflicting operations, like a regis-
ter read after write dependency, for instance. Parallelism
can span more than one bundle and the stop bit can be
introduced in the middle of a bundle.

A total of 128 integers registers of 64 bits each and
128 floating point registers of 82 bits each are avail-
able. Integer registers between 32 and 127 are called
“stacked registers” and are used with the stack engine
during function calls. The architecture uses a simple
load/store model like RISC and introduces some new
features along with the more traditional capabilities ex-
pected from a modern CPU, such as multimedia instruc-
tions.

The following C code:

r2 = r1 == 0 ? r4+r5: r3+r6+1;

gets translated into:

cmp.eq p1,p2=0,r1;;
(p1) add r2=r4,r5
(p2) add r2=r3,r6,1

Figure 2: example of predication

The concept of predication is implemented using 64
predicate registers of 1 bit each (true or false ). Most
instructions can be predicated; if the predicate evaluates
to false , the instruction is simply not executed. This
mechanism can avoid costly branches as is demonstrated
in figure 2 with a classicif-then-else statement.
Predicatep1 will be set totrue if r1 equals zero, p2
will take the opposite value (p2=!p1 ) and only one of
the twoadd instructions will be executed, without re-
quiring any branches.

Another feature of IA-64 is control and data specula-
tions, which provide ways to safely move loads off the
critical execution path without having to worry about ex-
ceptions that could occur, like NULL pointer derefer-
ence. A compiler can take advantage of this mechanism
to hide memory access latency. Speculation is available
for both integer and floating point loads.

Control speculation is the execution of an operation be-
fore the branch which guards it. Data speculation is
the execution of a load instruction before a potentially
conflicting store (aliased address) and is also called ad-
vanced load.

The safety of the operation is ensured by the fact that
failed speculative loads don’t generate faults but instead
mark their target register as invalid using a NaT (Not a

Thing) bit i.e., the 65th bit of each register. In the case
of floating point registers, a special value called NatVal
is used instead of an extra bit. Several check instructions
can be used to determine whether the load succeeded or
not. In case of failure, a normal load can simply be ex-
ecuted or a jump to a recovery code is possible when
more operations are required. Advanced loads rely on
an internal table called ALAT (Advanced Load Address
Table) which is used to check whether or not the target
register of the advanced load contains stale information
with regards to stores which might have happened af-
ter it. Figure 3 shows how a load can, speculatively, be
moved before a branch. If the load (ld8.s ) fails then
the NaT bit will be set onr1 and the check (chk.s )
will jump to the recovery code.

(p1) br.cond label
ld8 r1=[r5];;
add r2=r1,r3

Can be transformed into:

ld8.s r1=[r5]
// do something else

(p1) br.cond label
chk.s r1, recovery_label
add r2=r1,r3

Figure 3: Example of control speculation

To avoid unnecessary registers spills and fills operations
on function calls, IA-64 provides a dynamic register
renaming scheme which is depicted in figure 4:rXX
shows the logical numbers whereas the bars represent
the physical register file. Registersr47-r51 are hold-
ing parameters to pass to functionB. The branch instruc-
tion (br.call ) causes the stack frame to “virtually”
move forward by renamingr47 to r32 . The alloc
instruction simply resizes the current frame to accom-
modate local variables. So each time you enter a new
function a “fresh” set of registers is available and the
compiler does not have to worry about spilling/restoring
callee/caller save registers. Registers outside of the cur-
rent stack frame are considered “dirty” and if no more
physical registers are available to satisfy thealloc in-
struction, the register stack engine (RSE) will spill the
“dirties” onto a designated backing store location in
memory. When returning from a function call, the saved
registers are automatically restored from memory.

Finally, IA-64 provides a powerful register rotation
mechanism to do software pipelining and unroll loops
without incurring code expansion. Integer, floating point
and predicate registers can be rotated during a loop cre-

2



outputs

r32

Inputs locals

Inputs

r32

r32 r52r37 r47

outputs

dirty

dirty

5 10

r37

4

r41

br.call function B

B: alloc r32=ar.pfs,5,4,0,0

function A

current stack frame

current stack frame

r37

5

5

5

locals

Figure 4: RSE behavior on function call

ating the illusion of a pipeline. We’ll give an example of
this feature in section 4.

More details about the disclosed capabilities of the
architecture can be found on HP’s IA-64 web site1

and in the Application Instruction Set Architecture
Guide[2]. Intel’s web site also provides online archi-
tecture overview tutorials[3].

3 First steps

This is possibly the first time that Linux is being ported
to a new platform before any hardware is available. This
means not only that we have to rely on simulation for
most of the project but also that very few development
tools exist.

Linux heavily relies on using a GNU C compiler for both
the kernel as well as for user level code, like the C li-
brary. Such a tool did not exist for IA-64, therefore we
decided to work on it first. The obvious candidate was
egcs , a very active branch off the gcc development tree.
Creating an optimizing compiler for EPIC is not a triv-
ial task and would have required changes to theegcs
front-end. Such effort was clearly out of the scope of this
project. Instead, we focused our attention on producing
a functional back-end which generates correct code but
doesn’t try to use EPIC features like speculation or reg-
ister rotation, for instance. Cygnus maintains the GNU
C compiler and has officially announced last April that
they will produce an optimized version of the GNUPro
toolkit for IA-642. So as compilers improve, we expect
to simply recompile our code in order to get better per-
formance.

A compiler by itself is not enough; the GNU assembler,

1Seehttp://www.hp.com/go/ia64
2Seehttp://www.cygnus.com/news/ia-64.html

GNU linker, binary object manipulation library (BFD)
and tools likenm, objdump , ar are also required. So
we ported the GNUbinutils package. The tool
chain usesLP64 as the programming model (Longs and
Pointers are 64 bits) and the binary format is the offi-
cial ELF64 as defined for IA-64. By June 1998, the
tool chain was able to pass thegcc test suite and the
"Hello World!" program was generated correctly.

For the execution environment we use a simulator, de-
veloped by HP, which emulates the full instruction set
of the CPU but not the whole platform i.e., no PCI nor
BIOS emulation. It supports two modes of execution:
user or system. The former allows us to run user-level
applications and execution traps into the simulator for
system call emulation. In system mode, kernel bring up
is possible as the full VM and interrupts are simulated.
Access to I/O devices is achieved by having special de-
vice drivers in the kernel which trap into the simulator
and get service from the host OS. To simplify user-mode
emulation, we have ported this simulator from HPUX to
Linux/x86 which allowed a one to one mapping for sys-
tem calls and parameter marshaling resorted, most of the
time, only in 64 to 32 bits conversions.

Once the tool chain and the simulator were in place,
the whole development environment was running on
Linux/x86 and work on the kernel could really begin.

4 The kernel

We started working on the kernel in late October 1998.
Our goals for the kernel were as follows:

� deliver a straight port minimizing the changes to the
machine independent part of the code

� follow very closely the development of the offi-
cial kernel as this would make the final integration
phase much smoother.

We have kept our modifications very localized creating
new files in two machine dependent directories, namely
arch/ia64 andinclude/asm-ia64 , which made
it quite easy to follow the latest official kernel develop-
ments. In October 1998, we started with2.1.126 and
we are currently running2.3.X .

The kernel is running in native 64-bit mode and uses
little-endian byte ordering for obvious compatibility rea-
sons with x86. The page size is currently 8KB and the

3



virtual address space of a user process is 43 bits (8TB).

In order to get access to I/O, we developed a series of
interrupt driven device drivers which trap into the simu-
lator to get service from host OS. We built a SCSI driver
(simscsi ), a console driver (simserial ) and later
an Ethernet driver (simeth ). The SCSI driver is very
simple and calls the simulator for read/write requests us-
ing [offset,size] tuples. The disk is emulated us-
ing a file on the host as a disk image. Using theloop de-
vice, we can easily transfer files back and forth between
the host and target. This driver also allows us to exercise
the complete SCSI code. The serial console driver traps
into the simulator for get/put character and anxterm
is used as the front-end. The Ethernet driver manages
raw Ethernet frames which are obtained, via the simula-
tor, from the real interface on the host using raw sockets.
The interface is put in promiscuous mode and using a
block packet filter, we were able to allocate a specific IP
address to the simulated kernel.

We took the incremental approach of bringing up sub-
systems one by one. We began in late October with an
almost completely commented outstart kernel()
function. At that point we had only the kernel banner
working. Since, we have been enabling components like
VM and interrupts which allowed us to get through the
famousBogoMips loop. Shortly after we added con-
text switches and by Christmas we were able to create
and run kernel only threads.

Then, we added support for system calls and we landed
in user mode in January and were able to execute the
"Hello world!" program produced a few months
ago. At that time we did not have a complete C library,
therefore it was impossible to recompile standard appli-
cations and run them on the kernel. Instead, we had a
�libc i.e., an extremely small subset of a classic which
we used to rewrite simple test programs like a tiny shell
(tsh ), ls , cat , mount , halt , etc. Those tools helped
us recreate a familiar and comfortable test environment.

In early March, the network stack was up and running.
The system had its own IP address and you could ping in
and out as well as login from any remote machine. Here
again, we rewrote simple versions ofping , rlogin ,
inetd andifconfig . By Easter, we had signal sup-
port and a few weeks laterptrace was in place (includ-
ing system call tracing, single stepping and peek/poke)
and it became possible to use thestrace program for
debugging purposes.

As an example of how to combine control specula-
tion with register rotation inside the kernel, we show,

...
init p6 to true
add r17=8,r16

1:
ld8.s r32=[r16],16
ld8.s r34=[r17],16
czx1.r r14=r33
czx1.r r15=r35
;;
cmp.eq.and p6,p0=8,r14
cmp.eq.and p6,p0=8,r15

(p6) br.wtop.dptk.few 1b
...

Figure 5: core loop of strlenuser()

in Figure 5, an actual code sequence extracted from
strlen user.S 3. Normally, this function uses an op-
timistic exception scheme to avoid systematic bounds
checking. When a fault is detected, execution goes
through an exception table and branches back slightly
later in the code with some registers holding special er-
ror codes. This example demonstrates how one can use
control speculation to achieve exactly the same goal4.
We use two pipelines of depth 2,[r32-r33] and
[r34-r35] . We load 8 characters at a time (ld8.s )
speculatively which is handy to safely look way forward
in the string. Each iteration loads 16 bytes5 taking ad-
vantage of the memory bandwidth (2 memory operations
allowed per bundle) and looks for the zero byte in the
previous 16 bytes. Registersr16 and r17 are initial-
ized 8 bytes apart and used as base pointers on the string.
They are automatically incremented (by16) by the load.
Theczx instruction returns the position of the zero byte
or 8 if not found.

Data is inserted inr32 and r34 and gets “rotated”
each time we go around the loop, it is eventually con-
sumed when it reachesr33 and r35 at the next iter-
ation. In reality registers are simply renamed (no data
copied) by group of eight ([r32-r39] ). The illusion
of smaller pipelines is created by always entering data at
fixed “stages”, like we do forr34 . In case we go too far
ahead and hit a page that’s not mapped, when the regis-
ter gets used in stage 1, its NaT bit will be set and the
parallel compare instructions will result inp6 set to 0
(p0 acts as a sink in this case) forcing the execution out
of the loop.

3Usually found inarch/ia64/lib
4The whole function is not shown for space reasons
5r33 ,r35 are properly initialized before the loop

4



5 The User land

Once you have a kernel, the work is far from being done
as most of the code lives at the user level. First, the C
and math libraries need to be ported, then thousands of
commands, tools and extra libraries need to be recom-
piled and sometimes fixed.

While we were doing kernel work at HPLabs, CERN6

decided to join our effort and started working on those
libraries. The first goal was to deliver a generic port and
then, look at doing EPIC optimizations for performance
critical routines. Linux is using the GNU libc version
2.1 on the major platforms and was, thus, the obvious
choice.

After just three weeks of intense work, they were able to
run the"Hello World!" . With the first code drop
from CERN we were able to compile real world ap-
plications. We quickly managed to recompile a com-
plete login sequence withinit , mingetty , login
directly using RPMs7 from standard distributions. Soon,
we had the other basic packages likeutil-linux ,
sh-utils , fileutils and evennetkit-base .

Because we were still missing some libraries, noticeably
curses some packages were still incomplete but we
managed to get shells likepdksh andbash . We also
got our first full screen editor withvim , a vi-clone.

Porting existing packages can be very tedious as code
quality varies a lot. Most of the problems we’ve encoun-
tered so far revolve around non 64-bit clean code. As
an example, the basicping command is still not clean
even though one can argue that it runs on Linux/Alpha
but it’s simply because it relies on the unaligned access
trap handler. This is clearly not a long term solution and
programs must be gradually fixed.

It is our goal to get a complete distribution, so the basic
libraries and utilities are just the first step and work is
needed to port other, possibly larger, packages. Clearly
a GUI is needed and X11 i.e., XFree86, its associ-
ated applications, toolkits and desktop environment like
GNOME and KDE will need to be ported. A decent
debugger, namelygdb , must be also be available for
any serious development to become possible. Nowdays
a system wouldn’t be complete without a web browser
thus Mozilla must also be worked on. Languages like
Java, Perl, Tcl/Tk, GNU Fortran, Python must also be
ported.

6Centre Europ´een de la Recherche Nucl´eaire – Geneva, Switzer-
land, seehttp://www.cern.ch

7Redhat Package Manager, seehttp://www.rpm.org

6 Next steps

As of today, we have a complete IA-64 development en-
vironment hosted on Linux/x86 and based onegcs-
1.1.2 , gas-990404 and GNU libc v2.1. Our tool
chain produces functional code and has proven to be
quite robust to get us that far. We have a working kernel
with major subsystems enabled. Many real world appli-
cations are running on our kernel and also directly on
Linux/x86 using the user-mode simulation.

We are actively collaborating with other industry part-
ners like Cygnus, Intel, SGI and VA Linux Systems
(Trillian project) and expect to see a major development
speed up from this broader effort.

In the near term, we’re planning on working on the ker-
nel to fill out the missing pieces like SMP support, the
platform specific code, the boot loader and also the IA-
32 emulation. Our CERN partners will continue to work
on the libraries and noticeably on the dynamic linker and
various optimizations. As Cygnus moves forward with
their compiler work, we expect to see major improve-
ment to our code. We also intend to tackle the large ap-
plication space.

While this project still needs to be protected by strict
non-disclosure agreements (NDAs), we are keeping
Linux developers abreast of our progress and intend to
share as much as we can as more information about the
architecture is disclosed to the public. Even though it
may be hard to join this project, you can still help signif-
icantly by making sure than any code you write or read
is 64-bit clean. This not only means looking at all abu-
sive casts but also at things like hardcoded data structure
sizes and others bad coding habits. We discovered that
many of the packages used with Linux don’t have good
validation tests, so another way of helping would be to
develop good test suites. While no tests can be perfect,
it would help catch some errors very early on.

7 Conclusion

After giving a rapid overview of the major features of
IA-64 we have described what it really takes to port a
complete Linux system to this new architecture. At this
point in time we have brought forward a complete GNU-
based tool chain, a simulator, most of the kernel and the
beginning of a real Linux distribution.

While the non-disclosure restrictions make it hard to

5



work completely in the open, we are trying to stay as
close as possible to the spirit of open source projects
by working with outside partners whenever and wher-
ever appropriate. By doing so, we’ve made significant
progress and think we are on time to deliver a com-
plete distribution to the open source community some-
time next year when machines become available. We
also hope that our effort will jumpstart a Linux commu-
nity around this new exciting architecture.

References

[1] Linley Gwennap. Intel outlines high-end roadmap.
Microprocessor Report, pages 16–19, October
1998.

[2] Hewlett-Packard Company/Intel Corporation.IA-64
Application Instruction Set Architecture Guide.
http://www.hp.com/go/ia64.

[3] Intel Corporation. Merced Processor & IA-64 Ar-
chitecture.
http://developer.intel.com/design/IA64.

6


