

Using capability classes to classify and match CC/PP
And UAProf profiles

Mark H. Butler
Client and Media Systems Laboratory
HP Laboratories Bristol
HPL-2002-89
April 16th , 2002*

E-mail: mark-h_butler@hp.com

device
independence,
composite
capabilities /
preferences
profile
(CC/PP),
resource
description
framework
(RDF),
wireless
access
protocol
(WAP),
user agent
profile
(UAProf),
capability
classes

In order for a web server to provide optimised content to different
client devices it requires a description of the capabilities of the
client known as the delivery context. In previous work we
demonstrated DELI, an open-source library that allows Java servlets
to resolve HTTP requests containing delivery context information
in CC/PP or UAProf formats. Subsequently DELI has been
incorporated into the Apache Cocoon XML publishing framework
in order to demonstrate how delivery context information can be
used in conjunction with content transformation via XSLT. During
this work, it was found that it is cumbersome to match this
information using constraints written in XPath. Furthermore there is
no easy method of abstraction so that common sets of constraints
may be reused in multiple stylesheets. This report describes an
alternative mechanism for delivery context matching called
capability classes (patent pending). This report outlines how to
implement capability classes and how they may be applied to
various content specialization techniques such as content
transformation, negotiation or generation. It also compares and
contrasts capability classes with device classes and media queries.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 1

Using capability classes to classify and match CC/PP
and UAProf profiles
Mark H. Butler
mark-h_butler@hp.com
18 / 02 / 2002

Abstract
In order for a web server to provide optimised content to different client devices it
requires a description of the capabilities of the client known as the delivery context. In
previous work we demonstrated DELI, an open-source library that allows Java
servlets to resolve HTTP requests containing delivery context information in CC/PP
or UAProf formats. Subsequently DELI has been incorporated into the Apache
Cocoon XML publishing framework in order to demonstrate how delivery context
information can be used in conjunction with content transformation via XSLT. During
this work, it was found that it is cumbersome to match this information using
constraints written in XPath. Furthermore there is no easy method of abstraction so
that common sets of constraints may be reused in multiple stylesheets. This report
describes an alternative mechanism for delivery context matching called capability
classes (patent pending). This report outlines how to implement capability classes and
how they may be applied to various content specialisation techniques such as content
transformation, negotiation or generation. It also compares and contrasts capability
classes with device classes and media queries.

Keywords
Device Independence, Composite Capabilities / Preferences Profile (CC/PP),
Resource Description Framework (RDF), Wireless Access Protocol (WAP), User
Agent Profile (UAProf), Capability Classes

1 Introduction
Different web-enabled devices have different input, output, hardware, software,
network and browser capabilities. In order for a web server to provide optimised
content to different clients it requires a description of the client capabilities. Recently
two new compatible standards have been created for describing delivery context
based on the Resource Description Framework (RDF)1: Composite Capabilities /
Preferences Profile (CC/PP) 2 created by the W3C and User Agent Profile (UAProf)
created by the WAP Forum3.

Previous work4 described DELI, an open-source library developed at HP Labs that
allows Java servlets to resolve HTTP requests containing CC/PP or UAProf
information. DELI has subsequently been incorporated5 in the Apache Cocoon XML
publishing framework6 in order to demonstrate how CC/PP or UAProf information
can used in conjunction with content specialisation methods such as content
transformation via XSLT7,8. Typically this requires creating conditionals in XSLT
that query the profile using a related standard called XPath9. During this work, it was
found that specifying constraints for matching device profiles in XPath is complicated
and cumbersome. Furthermore there is no easy method of abstraction so that common
sets of constraints may be reused in multiple stylesheets. This report describes an
alternative mechanism for profile matching called capability classes. This works as

 2

follows: a number of capability classes are defined where each class is associated with
a set of constraints. When a server receives a profile, it evaluates each set of
constraints to determine if the target device belongs to one or more of the capability
classes. Once it has determined which capability classes are supported by the device,
this information is passed to the stylesheet to guide transformation. The same
mechanism may also be used for other types of content specialisation such as
selecting stylesheets, performing content negotiation or content generation.

This report is structured as follows: first it outlines an existing method of matching
devices to transformations called device classes. This method is compared and
contrasted with the new capability class solution. Next it explains how to specify
conditionals based on device profiles using XPath within XSLT stylesheets. Then it
describes a method of implementing capability classes that does not require complex
constraints in XPath. The advantages of this approach are outlined and there is an
explanation of how it may be used with various methods of content specialisation.
Finally capability classes are compared and contrasted with media queries, a new
mechanism for adapting web content for specific target devices within cascading
stylesheets. The report suggests that ideally media queries and capability classes
should be combined to provide a single approach to adapting and styling content
based on device capabilities at both the client or the server. It is also proposed this
work should leverage proposals for a modular set of capability vocabularies within the
W3C Device Independence activity.

2 Device Classes
Many current approaches to device independence10 that provide content for different
devices e.g. PCs, phones, PDAs etc use an abstraction called device classes. Device
classes are often used to map a specific device onto a transform that adapts content for
the target device. This works as follows: each device or browser is associated with an
identifier called a user-agent string that is unique to that make, model or version.
When the device makes a HTTP request to the server, it includes the user-agent string
in the HTTP request headers e.g.:

User-agent: Mozilla/4.04 (X11; I; SunOS 5.4 sun4m)

Unfortunately the user-agent string may not be unique as several devices use
cloaking. This is when a device or browser, e.g. Microsoft Internet Explorer, claims to
be another browser, e.g. Mozilla, in order to ensure web servers will send it the
correct content. Therefore when we use the user-agent string in this context we need
to disambiguate any cloaking that may be occurring. When the server has received the
request, it looks up the user-agent string in a database. Typically disambiguation is
done by searching for devices in a specific order so that impersonating devices are
identified prior to the devices they are trying to impersonate. This enables the
database to map user-agent strings onto device classes. In an XML publishing
framework content, represented as XML11, is then transformed using an XSLT
stylesheet that has been identified using the device class of the requesting device and
the item of content requested.

There are a number of problems with this approach. Firstly it does not scale well for a
large number of capabilities. In content negotiation12, a specific type of content
specialisation, if a capability is critical to content specialisation and cannot be inferred

 3

from another capability then it is commonly referred to as an axis of negotiation . With
device classes, the number of classes increases factorially with the number of axes of
negotiation. Therefore if we use a one to one mapping between device classes and
XSLT transforms, a small number of axes of negotiation will require a large number
of device classes and hence a large number of XSLT stylesheets. For example
consider a situation where we need to consider two axes of negotiation: screen size
and keyboard type. For simplicity we assume that screen size can take three values
(small, medium and large) whereas keyboard can take two values (QWERTY or
keypad). To represent all the possibilities we need six device classes i.e. small
QWERTY, medium QWERTY, large QWERTY, small keypad, medium keypad, large
keypad i. This means we need to define six stylesheets, one for each class. If we use
different schemes for marking up different pages of content, we may need six
stylesheets for each page of XML content.

By contrast, the capability class approach scales much better for large numbers of
capabilities. Here instead of using monolithic descriptions of web pages, we break
those web pages down into component parts. Typically we try to break the page into
resources where each resource uses a single modality. This means we only need to
consider a small subset of the available capability classes for any specific component
resource as it only uses a single modality. For example in the above scenario in order
for the server to decide what size of graphic to include in a web page we would need
to specify alternates or transforms for small, medium and large devices in advance.
Alternatively for the server to decide what kind of input method to use we would need
to specify alternates or transforms for QWERTY input and keypad input. In the first
situation we need to specify three alternates rather than six whereas in the second
situation we need to specify two alternates rather than six.

One solution previously proposed to reduce the complexity of device classes is to use
device class hierarchies in order to reduce the complexity of specifying content
specialisation methods for multiple devices. For example we might use a class
hierarchy as shown in Figure 1. This can be used with stylesheets as follows: we use
one stylesheet to convert content to HTML and one stylesheet that converts it into
WML. Once content is in HTML, it can receive additional content specialisation
depending on whether the target browser is Netscape or Microsoft IE. This approach
reduces replicated code in the stylesheets. However we still require a large number of
stylesheets to support a few devices - in this case we need six to support four devices.
In addition determining what styling is common to all HTML devices whereas what
styling is common to a specific HTML device can sometimes be trial and error.
Capability classes, by contrast, can be thought of as providing a multiple inheritance
mechanism as shown in Figure 2.

A second problem with device classes is that the device capability information is
implicit in the mapping from devices to device classes to transforms. For an example
of implicit information, consider a web author creating some content. Typically when
authors do this they are creating the content for a specific device, i.e. the device they
are using, which uses a specific browser, has a specific screensize, color capability

i Often device class solutions choose to ignore some possible combinations to reduce the number of
device classes. However those assumptions may not be justified - for example an Internet TV might
well qualify as a large keypad device, whereas a mobile phone like the Ericsson R380s might qualify as
a medium keypad device.

 4

etc. However generally this information is not noted anywhere so can be regarded as
implicit. In the same way in most device class aware websites, the fact that a device
has a screen of a certain capability is never recorded explicitly; just the design
descisions that are made as a result of that capability.

 A third problem with device classes is that devices have to be included in the device
identifier database in advance. If the server encounters a device with a user-agent
string it has never encountered before then it cannot classify the device. By contrast in
the capability class approach, the device capabilities are made explicit via the device
profile and the capability class constraints are made explicit via the capability class
constraints definition. Therefore capability classes can cope with new devices they
have never encountered as long as the device has a suitable device profile.

3 Using CC/PP profiles in XSLT
As previously noted DELI has been incorporated into Apache Cocoon, an open-
source XML publishing framework, to demonstrate how CC/PP and UAProf
information may be used in conjunction with XML and XSLT. One problem with
manipulating CC/PP or UAProf profiles in XSLT is that these profiles are represented
using RDF. Although RDF models can be represented in an XML serialisation, it is
difficult to manipulate this serialisation in XSLT as it can represent the same model in
many different ways. Models may vary depending on whether they use elements or

Root Class

WML HTML

Netscape Microsoft IE OpenWave Nokia

Figure 1 - Device class hierarchies

Large Screen

WML HTML

Microsoft IE Nokia

Small Screen QWERTY Keypad

Figure 2 - Capability class hierarchies

 5

attributes to indicate properties. Furthermore typically the XPath expression necessary
to query a certain property value may not be representative of the underlying RDF
structure of the profile. In order to avoid these problems DELI creates a “flattened”
version of the UAProf or CC/PP profile available to XSLT stylesheets via a parameter
called deli-capabilities. The profile is “flattened” because it is just a list of profile
properties as XML elements without any component definitions or resource typing.
The only obvious remnant of RDF is the way individual attribute values for complex
attributes are separated using elements. This heavily simplified profile form has
the additional advantage of making the XPath expression correspond to the profile
structure. For example the following profile demonstrates the flattened form:

<browser>
 <ScreenSize>90x120</ScreenSize>
 <IsColorCapable>Yes</IsColorCapable>
 <CcppAccept>
 text/html
 text/plain
 image/jpeg
 </CcppAccept>
<browser>

Flattening profiles in this way is not ideal because it means stylesheet authors
encounter profiles in non-standard form. However it does solve the problems
associated with processing profiles in XSLT. The following stylesheet demonstrates
how we can use XPath conditional to query profiles within XSLT. For example the
following stylesheet only generates a WML page if the device is WML capable,
colour capable and has a screen size 90x120 pixels.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:param name="deli-capabilities"/>
 <xsl:template match="/">
 <xsl:if test="contains($deli-capabilities/browser/CcppAccept,’wml’) and

contains($deli-capabilites/browser/ScreenSize,'90x120') and
contains($deli-capabilities/browser/IsColorCapable,’Yes’)">

 <wml>
 <card id="init" newcontext="true">
 <p>Color device with 90x120 screen</p>
 </card>
 </wml>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

In addition to the contains() function we can also use the >, >=, <, <=, =, and !=
expressions in conditionals. However UAProf, one important variant of CC/PP, uses
various data types that are difficult to process using these conditionals. Firstly
UAProf has a data type called dimension that consists of two numbers separated by an
x e.g. 90x120. It is not possible to apply numerical expressions to this data type, so
only the contains() function may be used. Secondly numbers in UAProf are integers,
so instead of representing version numbers as numbers they are represented as string
literals. Again it is desirable to have some conditionals specifically for this data type
such as isBackwardsCompatible.

In addition, typically these conditionals must be duplicated many times in XSLT files
as there is no easy way of abstracting the conditionals apart from using generating

 6

stylesheets using stylesheets13. As tweaking these conditionals may considerably
impact how well the site works with certain target devices, it is highly desirable to be
able to manipulate them using a level of abstraction.

4 Implementing Capability Classes
Capability classes overcome a number of problems described above. They avoid the
need to “flatten” profiles to simplify their use in XSLT. They can incorporate new
conditionals not supported in XPath that can manipulate new data types used in
profiles. They also provide a means of abstraction so that constraints only need to be
defined once as opposed to every XSLT file. Finally they may be used with other
methods of content specialisation apart from content transformation.

Capability classes work as follows: a capability class definition file specifies each
class name along with a set of constraints for that class. For example consider the file
shown below:

<?xml version="1.0" encoding="UTF-8"?>
<classes>
 <class name="smallScreen">
 <or>
 <lessthan value="160x160">ScreenSize</lessthan>
 <lessthan value="20x20">ScreenSizeChar</lessthan>
 </or>
 </class>
 <class name="largeScreen">
 <or>
 <greaterthan value="320x240">ScreenSize</greaterthan>
 <greaterthan value="80x40">ScreenSizeChar</greaterthan>
 </or>
 </class>
 <class name="jpegcapable">
 <contains value="image/jpeg">CcppAccept</contains>
 </class>
 <class name="color">
 <true>ColorCapable</true>
 </class>
 <class name="blackandwhite">
 <not>
 <true>ColorCapable</true>
 </not>
 </class>
 <class name=”colorphone”>
 <and>
 <lessthan value=”90x120”>ScreenSize</lessthan>
 <contains value=”wml”>CcppAccept</contains>
 <true>IsColorCapable</true>
 </and>
 </class>
</classes>

This file defines four capability classes: smallScreen , largeScreen, jpegcapable and
color. In the case of smallScreen , the constraints are that the device has a screen
smaller than 160 wide and 160 pixels high or if it has a screen that is smaller than 20
characters wide and smaller than 20 characters high. Alternatively a device meets the
jpegcapable capability class criteria if it can display the MIME type image/jpeg.

Capability class files can contain three Boolean expressions for aggregating
constraints: and, or and not. It provides a number of conditionals: lessthan,
lessthanequals , greaterthan, greaterthanequals, equals, contains and true. Each

 7

conditional is only applicable to specific attribute types as shown in the following
table. For Dimensions, lessthan means the attribute will fit inside the value it is being
compared to i.e. both axes are smaller whereas morethan means the attribute will
encompass the value it is being compared to i.e. both axes are bigger.

Conditional Compatible UAProf data types
lessthan number, dimension
lessthanequals number, dimension
greaterthan number, dimension
greaterthenequals number, dimension
equals number, dimension, single literal
contains set of literals, sequence of literals
true boolean

The CC/P P (or UAProf) processor uses the capability class description file as follows:
it parses the file and constructs a postfix description14 of each set of constraints. It
stores this postfix description in a vector for evaluation later. For example the
colorphone class in the previous capability class definition file is represented as:

expression
type

expression profile attribute value children

operator lessthan ScreenSize 90x120
operator contains CcppAccept wml
operator true IsColorCapable
operand and 3

The processor evalutes the postfix description of a set of constraints by retrieving
each operator or operand in turn from the vector, evaluating it and then writing the
result back to a results stack. In the case of the colorphone class it examines
ScreenSize and determines if it is less than 90x120. If both values are less than
90x120, then it pushes True on to the results stack otherwise it pushes False. The
processor then determines if CcppAccept contains the value WML and writes the
result to the results stack. Then it determines if IsColorCapable is True and again
writing the result to the results stack. Then it pops the previous three values from the
results stack, applies the AND operand and writes the result back to the result stack.
This indicates if the device is a member of the colorphone capability class. The
processor repeats this process for the postfix description of each capability class and
returns a vector containing the names of any capability classes where the device meets
the associated constraints.

We may wish to make decisions within stylesheets based on a device’s capability
classes. In XSLT stylesheets this is done using a mechanism called modes. Modes are
rules that are only executed when called directly. For example consider the stylesheet
below.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:param name="capabilities"/>
 <xsl:template match="/">
 <xsl:if test="contains($capabilities,'wmlDevice')">

 8

 <xsl:call-template name="wmldevice"/>
 </xsl:if>
 <xsl:if test="contains($capabilities,'pdaDevce')">
 <xsl:call-template name="pdadevice"/>
 </xsl:if>
 <xsl:if test="contains($capabilities,'voice')">
 <xsl:call-template name="voice"/>
 </xsl:if>
 </xsl:template>
 <xsl:template name="wmldevice">
 <!-- styling for wmldevice here -->
 </xsl:template>
 <xsl:template name="pdadevice">
 <!-- styling for pdadevice here -->
 </xsl:template>
 <xsl:template name="voice">
 <!-- styling for voice here -->
 </xsl:template>
</xsl:stylesheet>

Here the capability class list for the device is made available via the xsl:param
statement. The stylesheet consists of four rules indicated by xsl:template . One rule,
the default rule, indicated by match="/", is executed for all documents. The other
three rules, wmldevice, pdadevice and voice, are modes so have to be called within the
default rule. Which rules are called depends on the capability classes possessed by the
device. In the example stylesheet these rules just contain comments without any
actual code. If we assume that the wmlDevice and pdaDevice capability classes are
mutually exclusive i.e. a device can belong to one or the other but not both, then this
means the stylesheet supports four different device classes i.e. combinations of
capability classes e.g. wmlDevice with voice, wmlDevice without voice, pdaDevice
with voice and pdaDevice without voice. In this way stylesheets can support multiple
capability classes and capability classes can be combined.

In the future it is our intention to add support for capability class to other parts of
Cocoon. Capability classes could be used in conditionals in the sitemap, a
configuration file that defines how particular resources are generated, so that
resources are generated in a specific way for a particular capability class e.g.

<map:match pattern="deli.wml">
 <map:capabilityclass type="colorphone"/>
 <map:generate src="docs/samples/hello-page.xml"/>
 <map:transform src="stylesheets/deli_test.xsl" type="xslt"/>
</map:match>

In the example sitemap fragment above a mechanism is defined for creating a
resource called deli.wml if it is requested via a device that belongs to the colorphone
capability class. This resource is generated from hello -page.xml by applying the
deli_test.xsl XSLT stylesheet. Using capability classes rather than user agent strings
reduces the number of mappings required due to the way capability classes can be
used to generalise across devices. Alternatively capability classes can be used to
transcode resources e.g. an image could be transcoded to change the target format and
resolution. The transcoder could be configured as follows:

<generateImage>
 <urlmatch>managers/keegan</urlmatch>
 <content>managers/picture/KevinKeegan.jpg</content>
 <transcodings>
 <transcode>
 <capabilityClass>wmlDevice</capabilityClass>

 9

 <targetFormat>wbmp<targetFormat>
 <targetSizeX>60</targetSizeX>
 <targetSizeY>60</targetSizeY>
 <targetBitDepth>1</targetBitDepth>
 <colorType>monochrome</colorType>
 </transcode>
 <transcode>
 <capabilityClass>pdaDevice</capabilityClass>
 <targetFormat>gif<targetFormat>
 <targetSizeX>100</targetSizeX>
 <targetSizeY>100</targetSizeY>
 <targetBitDepth>4</targetBitDepth>
 <colorType>greyscale</colorType>
 </transcode>
 </transcodings>
</generateImage>

This says when the server receives a request for the resource managers/keegan, it is to
be created by transcoding the resource managers/pictures/KevinKeegan.jpg. If the
target device belongs to the wmlDevice capability class, then the image is transcoded
to produce an image in the wbmp format which is 60 pixels wide by 60 pixels high
and contains one bit per pixel i.e. is a monochrome image. Alternatively if the target
device belongs to the pdaDevice capability class then the image is transcoded to
produce an image in the GIF image format which is 100 pixels wide by 100 pixels
high and contains 4 bits per pixel i.e. is a greyscale image.

5 Using capability classes with different vocabularies
The capability class examples above use the data types available in UAProf. There are
a couple of problems with this. Firstly, as already noted, UAProf has a Dimension
data type so it is necessary to overload existing conditionals so they a slightly
different meaning when applied to this data type. Ideally this data type should be
avoided when creating new vocabularies so that overloading is not necessary. For
example instead of using ScreenSize use ScreenSizeHeight and ScreenSizeWidth .
Secondly UAProf uses the literal data type to store version numbers. If capability
classes are to be used with UAProf ideally UAProf should create a new data type for
version numbers and then a new conditional could be created for this data type e.g.
isBackwardsCompatible. Thirdly there is a potential problem with applying capability
classes to different vocabularies as each vocabulary may define its own set of data
types. One way to resolve this would be for CC/PP to define a fixed set of data types
that are available to vocabularies. Restricting CC/PP in this way is necessary for other
reasons e.g. ensuring CC/PP vocabularies are compatible with all CC/PP processors.
Capability classes could then offer a set of conditionals that operate on these data
types that could be guaranteed to work across all vocabularies.

6 Relationship between capability classes and media
queries

Within the work on cascading stylesheets15, media queries16 have been proposed as a
mechanism to enable presentations to be tailored to a specific range of output devices
without changing the content itself. A media query consists of a media type and one
or more expressions involving media features e.g.

<link rel=”styleshet” media=”screen and (color)”
 href=”http://style.com/color” />

 10

<link rel=”stylesheet” media=”aural and (min-device-width: 800px)”
 href=”http://style.com/aural” />

There are many similarities between media queries and capability classes. Firstly a
media query, like a capability class, is a logical expression that is evaluated to be
either true or false. However they are only evaluated at the client whereas capability
classes are evaluated at the server or proxy so are reliant on mechanisms such as
CC/PP to send the capability information from the client to the server. Media queries
also use the operands AND, OR and NOT just like capability classes but unlike
capability classes they combine conditionals and attributes together to form an
expression that can be directly evaluated e.g. min-height, max-height, min-device-
width, max-device-width etc. In media queries the conditional is known as a pretext ;
this approach has been taken to avoid the use of the “<” and “>” characters which
conflict with HTML and XML. One potential problem is that media queries only offer
three conditionals: min, max and the implicit equals. As we have already noted we
may need a richer set of conditionals if we need to use a variety of data types in
device profiles. Another difference is that we propose capability classes may be
defined separately from style or content information. This has been done to provide a
level of abstraction so that capability class definitions are reusable and so that
capability classes may be easily integrated with existing device independence
techniques. It is not clear if media queries can be used in the same way.

Ideally, in the author’s opinion, work on media queries and capability classes should
be combined to create a transparent mechanism of querying device capabilities that
can be used at both the client and the server. There are two issues that need to be
resolved in order to achieve this goal: firstly CSS media queries are based on a non-
XML syntax; for example you need to parse expressions to isolate the pretext from
the attribute name using a text parser. This is in contrast to capability classes which
have deliberately adopted an XML syntax so they are processable with an XML
parser. It is not clear which approach is better. Secondly capability classes do not
define a common vocabulary whereas media queries do define a common vocabulary.
In the authors opinion although it is desirable to have a common vocabulary, it is not
desirable for it to be created within the cascading stylesheets activity. Furthermore the
author would like to suggest rather than creating a single monolithic vocabulary,
namespacing should be use to create a modular vocabulary. This common vocabulary
should have a number of properties: firstly it would be possible to use it in
conjunction with CC/PP profiles. Secondly if a modular approach was adopted, each
module could correspond to a particular input or output modality used by devices. As
new modalities become available on devices, these modalities can be encompassed by
extending the modules available. Furthermore neither capability classes nor media
queries currently consider namespacing. However namespacing is an essential
concept in CC/PP and UAProf so it is desirable that the technique is namespace
aware.

7 Conclusions
Capability classes make it easy to classify the capabilities of different devices and use
these classifications with XSLT or with other content specialisation mechanisms such
as configuration files that describe how resources are selected or generated via
transformation and transcoding. They have a number of advantages over the previous
device class methods of classifying devices. A sample implementation of capability

 11

classes for evaluating this technique is currently available in the DELI library and will
shortly be made available within the Cocoon framework via DELI.

1 Resource Description Framework, World Wide Web Consortium, http://www.w3.org/RDF/
2 Composite Capabilities / Preferences Profile, World Wide Web Consortium
http://www.w3.org/Mobile/CCPP/
3 Wireless Application Forum, http://www.wapforum.org/
4 HPL-2001-260 DELI: A Delivery Context Library for CC/PP and UAProf, Mark H. Butler,
http://www-uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm
5 Documentation describing Cocoon / DELI integration, Mark H. Butler,
http://xml.apache.org/cocoon/developing/deli.html
6 Apache Cocoon, Apache Software Foundation http://xml.apache.org/cocoon/
7 What is XSL, World Wide Web Consortium http://www.w3.org/Style/XSL/WhatIsXSL.html
8 XSLT, World Wide Web Consortium http://www.w3.org/Style/XSL/
9 XPath, World Wide Web Consortium http://www.w3.org/TR/xpath
10 Current Technologies For Device Independence, Mark H. Butler,
http://www.hpl.hp.com/techreports/2001/HPL-2001-83.html
11 XML, World Wide Web Consortium, http://www.w3.org/XML/
12 RFC 2616: HTTP 1.1 Content Negotiation, page 70-73, The Internet Society, ftp://ftp.isi.edu/in-
notes/rfc2616.txt
13 Improve your XSLT coding in five ways, Benoit Marchal, (See Tip 5),
http://www-106.ibm.com/developerworks/library/x-xslt5.html
14 Postfix notation, Bob Brown, Southern Polytechnic State University
http://www.spsu.edu/cs/faculty/bbrown/web_lectures/postfix/
15 Cascading stylesheets, http://www.w3.org/Style/CSS/
16 Media Queries, http://www.w3.org/TR/css3-mediaqueries/

