)

invent

Using capability classesto classify and match CC/PP
And UAProf profiles

Mark H. Butler

Client and Media Systems L aboratory
HP Laboratories Bristol
HPL-2002-89

April 16" | 2002+

E-mail: mark-h_butler@hp.com

device In order for a web server to provide optimised content to different
independence, client devices it requires a description of the capabilities of the
composite client known as the delivery context. In previous work we
capabilities/ demonstrated DEL I, an open-source library that allows Java servlets
preferences to resolve HTTP requests containing delivery context information
profile in CC/PP or UAProf formats. Subsequently DELI has been
(CCIPP), incorporated into the Apache Cocoon XML publishing framework
resource in order to demonstrate how delivery context information can be
description used in conjunction with content transformation via XSLT. During
framework this work, it was found that it is cumbersome to match this
(RDF), information using constraints written in XPath. Furthermore there is
wireless no easy method of abstraction so that common sets of constraints
access may be reused in multiple stylesheets. This report describes an
protocol aternative mechanism for delivery context matching caled
(WAP), capability classes (patent pending). This report outlines how to
user agent implement capability classes and how they may be applied to
profile various content specidization techniques such as content
(UAProf), transformation, negotiation or generation It also compares and
capability contrasts capability classes with device classes and media queries.
classes

* |nternal Accession Date Only Approved for External Publication

a Copyright Hewlett-Packard Company 2002

Using capability classes to classify and match CC/PP
and UAProf profiles

Mark H. Butler
mark-h_butler@hp.com
18/02/2002

Abstract

In order for a web server to provide optimised content to different client devices it
requires a description of the capabilities of the dient known as the ddivery context. In
previous work we demondgrated DELI, an open-source library that dlows Java
sevles to resolve HTTP requests containing delivery context information in CC/PP
or UAProf formats. Subsequently DELI has been incorporated into the Apache
Cocoon XML publishing framework in order to demondrate how deivery context
information can be used in conjunction with content transformation via XSLT. During
this work, it was found that it is cumbersome to meatch this informaion usng
condraints written in XPath. Furthermore there is no essy method of absraction so
that common sets of condraints may be reused in multiple stylesheets. This report
decribes an dternative mechanism for deivery context matching caled capability
classes (patent pending). This report outlines how to implement cgpability classes and
how they may be gpplied to various content specidisation techniques such as content
transformation, negotiation or generation. It aso compares and contrasts capebility
classes with device classesand media queries.

Keywords
Device Independence, Composdte Capabilities / Preferences Profile (CC/PP),
Resource Description Framework (RDF), Wirdess Access Protocol (WAP), User

Agent Profile (UAPraf), Capability Classes

1 Introduction

Different web-endbled devices have different input, output, hardware, <oftware,
network and browser capabilities In order for a web server to provide optimised
content to different clients it requires a destription of the dient cgpabilities. Recently
two new compatible sandards have been created for describing deivery context
based on the Resource Description Framework (RDF): Composite Capabilities /
Preferences Profile (CC/PP) ? created by the W3C and User Agent Profile (UAPYof)
created by the WAP Forum®.

Previous work® described DELI, an open-source library developed a HP Labs that
dlows Java saviles to resolve HTTP requests containing CC/PP or UAProf
information. DELI has subsequently been incorporated® in the Apache Cocoon XML
publishing framework® in order to demonstrate how CC/PP or UAProf information
can used in conjunction with content gpecidisgion methods such as content
transformation via XSLT’Z. Typicdly this requires creating conditionds in XSLT
that query the profile using a related standard called XPat’. During this work, it was
found that specifying condraints for matching device profiles in XPath is complicated
and cumbersome. Furthermore there is no easy method of abdtraction so that common
sts of condraints may be reused in multiple stylesheets. This report describes an
dternative mechanism for profile matching caled capability classes. This works as

follows. a number of cgpability classes are defined where each class is associated with
a st of condrants. When a sarver receives a profile, it evduates esch sat of
condraints to determine if the target device beongs to one or more of the capability
cdasses. Once it has determined which cgpability dasses are supported by the device,
this information is passed to the dyleshest to guide transformation. The same
mechanisnm may adso be used for other types of content specidisdion such as
sdecting sylesheets, performing content negotiation or content generation.

This report is dructured as follows: firg it outlines an exising method of meatching
devices to transformations cdled device classes This method is compared and
contrasted with the new capability class solution. Next it explans how to specify
conditionadls based on device profiles usng XPath within XSLT gylesheets. Then it
describes a method of implementing capability dasses that does not reguire complex
condraints in XPeth. The advantages of this approach are outlined and there is an
explanation of how it may be used with various methods of content specidisation.
Findly capability classes are compared and contrested with media queries, a new
mechanism for adapting web content for specific target devices within cascading
dyleshests The report suggests that idedly media queries and capability dasses
should be combined to provide a sngle goproach to adapting and dyling content
based on device cgpabilities & both the client or the sarver. It is dso proposad this
work should leverage proposds for a modular st of capability vocabularies within the
W3C Device Independence activity.

2 Device Classes

Many current approaches to device independence™® that provide content for different
devices eg. PCs, phones, PDASs eic use an abdraction called device classes. Device
classes are often used b map a specific device onto a transform that adapts content for
the target device. This works as follows each device or browser is associated with an
identifier cdled a user-agent string that is unique to that make, modd or version.
When the device makes a HTTP request to the server, it includes the user-agent string
inthe HTTP request headerseg.:

User-agent: Mzillal/4.04 (X11; |; SunCS 5.4 sun4m

Unfortunately the user-agent dring may not be unique as severd devices use
cloaking. This is when a device or browser, eg. Microsoft Internet Explorer, dams to
be another browser, eg. Mozlla, in order to ensure web servers will send it the
correct content. Therefore when we use the user-agent string in this context we need
to disambiguate any doaking that may be occurring. When the server has received the
request, it looks up the user-agent gtring in a database. Typicdly disambiguation is
done by searching for devices in a specific order 0 that impersonating devices are
identified prior to the devices they ae trying to impersonate. This endbles the
database t0 map user-agent drings onto device cdasses In an XML publishing
framework content, represented as XML, is then transformed usng an XSLT
dylesheat that has been identified usng the device dass of the requesting device and
the item of content requested.

There are a number of problems with this gpproach. Flrstllgl it does not scae wdl for a
large number of cgpabilities In content negotiation™, a specific type of content
oedidisdion, if a cgpability is critical to content specidisation and cannot be inferred

from another cgpability then it is commonly referred to as an axis of negotiation. With
device classes, the number of classes increases factoridly with the number of axes of
negotiation. Therefore if we use a one to one mapping between device classes and
XSLT trandforms, a smal number of axes of negotiaion will require a large number
of device classes and hence a large number of XSLT dylesheets. For example
condder a gdtuation where we need to consder two axes of negotiation: screen Sze
and keyboard type. For smplicity we assume that screen Sze can take three values
(small, medium and large) whereas keyboard can teke two vaues (QWERTY or
keypad). To represent dl the possibiliies we need Sx device dases ie small
QWERTY, medium QWERTY, large QWERTY, small keypad, medium keypad, large
keypad'. This means we need to define six stylesheets, one for each dass. If we use
different schemes for making up different pages of content, we may need Sx
stylesheets for each page of XML content.

By contradt, the capability class gpproach scaes much better for large numbers of
cgpabilities Here ingead of usng monolithic descriptions of web pages, we bresk
those web pages down into component parts. Typicdly we try to bregk the page into
resources where each resource uses a sngle modality. This means we only need to
condder a smdl subset of the avalable capability classes for any specific component
resource as it only uses a sngle moddity. For example in the above scenario in order
for the server to decide what Sze of graphic to include in a web page we would need
to specify dternates or trandforms for smdl, medium and large devices in advance.
Alternatively for the sener to decide what kind of input method to use we would need
to specify dternates or trandforms for QWERTY input and keypad input. In the firg
gtuation we need to specify three dternates rather than sSx wheress in the second
Stuation we need to specify two dternates rather than six.

One solution previoudy proposed to reduce the complexity of device classes is to use
device dass hierarchies in order to reduce the complexity of specifying content
specidistion methods for multiple devices For example we might use a class
hierarchy as shown in Figure 1. This can be used with dylesheets as follows. we use
one gdylesheet to convert content to HTML and one sylesheet that converts it into
WML. Once content is in HTML, it can receive additiond content Specidistion
depending on whether the target browser is Netscape or Microsoft |E. This gpproach
reduces replicated code in the stylesheets. However we ill require a large number of
stylesheets to support a few devices - in this case we need Sx to support four devices.
In addition determining what styling is common to dl HTML devices whereas what
dyling is common to a specific HTML device can sometimes be trid and error.
Capability dasses, by contragt, can be thought of as providing a multiple inheritance
mechanism as shown in Figure 2.

A soond problem with device cdasses is that the device capability information is
implicit in the mapping from devices to device dasses to transforms. For an example
of implict informetion, congder a web author cregting some content. Typicaly when
authors do this they are cresting the content for a specific device, i.e. the device they
ae usng, which uses a specific browser, has a specific screensize, color capability

' Often device dlass solutions choose to ignore some possible combinations to reduce the number of
device classes. However those assumptions may not be justified - for example an Internet TV might
wdl qualify as alarge keypad device, whereas amobile phone like the Ericsson R380s might qualify as
amedium keypad device.

Figurel - Device class hierarchies

etc. However generdly this information is not noted anywhere so can be regarded as
implicit. In the same way in mogt device class aware webstes, the fact that a device

has a screen of a catan capability is never recorded explicitly; just the design
descisions that are made as aresult of that capahility.

Keypad Small Screen L arge Screen

=

Figure 2 - Capability class hierarchies

A third problem with device dasses is that devices have to be incduded in the device

identifier database in advance. If the server encounters a device with a user-agent
gring it has never encountered before then it cannot classfy the device. By contrest in
the capability class approach, the device cgpabilities are made explicit via the device
profile and the capability dass condraints are made explicit via the capability dass
condraints definition. Therefore capability classes can cope with new devices they
have never encountered as long as the device has a suitable device profile.

3 Using CC/PP profiles in XSLT

As previoudy noted DELI has been incorporated into Apache Cocoon, an open-
source XML publishing framework, to demongrae how CC/PP and UAProf
information may be used in conjunction with XML and XSLT. One problem with
manipulating CC/PP or UAProf profiles in XSLT is that these profiles are represented
usng RDF. Although RDF modds can be represented in an XML seridisdion, it is
difficult to manipulate this seridisation in XSLT as it can represent the same modd in
many different ways. Modds may vary depending on whether they use dements or

atributes to indicate properties. Furthermore typicaly the XPeth expresson necessary
to query a cetan property vaue may not be representative of the underlying RDF
sructure of the profile. In order to avoid these problems DELI creates a “flattened”
verson of the UAProf or CC/PP profile available to XSLT stylesheets via a parameter
cdled deli-capabilities. The profile is “flattened” because it is just a lis of profile
properties as XML dements without any component definitions or resource typing.
The only obvious remnant of RDF is the way individud attribute vaues for complex
atributes are separated usng <ii> dements This heavily smplified profile form hes
the additiond advantage of making the XPah expresson correspond to the profile
sructure. For example the following profile demongtrates the flattened form:

<br owser >
<ScreenSi ze>90x120</ Scr eenSi ze>
<l sCol or Capabl e>Yes</ | sCol or Capabl e>
<CcppAccept >
text/htm</Ili>
text/plain
i mage/j peg
</ CcppAccept >
<br owser >

Hatening profiles in this way is not ided because it means dyleshed authors
encounter profiles in nongandard form. However it does solve the problems
asociated with processing profiles in XSLT. The following syleshest demondrates

how we can use XPath conditiond to query profiles within XSLT. For example the
following sylesheet only generates a WML page if the device is WML cgpable,
colour cgpable and has a screen size 90x120 pixels.

<?xm version="1.0"?>

<xsl:styl esheet xm ns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
version="1.0">
<xsl : param nane="del i - capabi lities"/>
<xsl:tenpl ate nmatch="/">
<xsl:if test="contains($deli-capabilities/browser/CcppAccept,’ wn’') and
cont ai ns($del i -capabi | i t es/ browser/ ScreenSi ze, ' 90x120') and
cont ai ns($del i -capabi lities/browser/|sCol or Capabl e,” Yes')" >
<wni >
<card id="init" newontext="true">
<p>Col or device with 90x120 screen</p>
</ car d>
</ wm >
</xsl:if>
</ xsl:tenpl at e>
</ xsl : styl esheet >

In addition to the containg)) function we can dso use the >, >=, <, <= = and !=
expressons in conditionals. However UAProf, one important variant of CC/PP, uses
vaious daa types that ae difficult to process usng these conditionds — Firdly
UAProf has a data type cdled dimenson that condsts of two numbers separated by an
X eg. 90x120. It is not posshble to goply numerica expressons to this data type, S0
only the containg)) function may be used. Secondly numbers in UAProf are integers,
0 ingead of representing verson numbers as numbers they are represented as gtring
literdls. Again it is desrable to have some conditionds specificaly for this data type
such as isBackwardsCompatible.

In addition, typicaly these conditionas mugt be duplicated many times in XSLT files
as there is no easy way of abdracting the conditionds apart from usng generaing

Syleshests using Stylesheets™. As twesking these conditionds may considerably
impact how wdl the ste works with certain target devices, it is highly desirable to be

able to manipulate them using aleve of abgtraction.

4 Implementing Capability Classes

Capability classes overcome a number of problems described above. They avoid the
need to “flaten” profiles to amplify ther use in XSLT. They can incorporae new
conditionds not supported in XPath that can manipulate new daa types used in
profiles. They adso provide a means of abdraction so that congraints only need to be
defined once as opposed to every XSLT file Findly they may be used with other
methods of content specidisation apart from content transformeation.

Capability dases work as follows a capability dass definition file specifies eech
cass name dong with a set of condraints for that class. For example consder the file
shown below:

<?xm version="1.0" encodi ng="UTF-8"?>
<cl asses>
<cl ass name="smal | Screen" >
<or >
<l esst han val ue="160x160">Scr eenSi ze</ | esst han>
<l esst han val ue="20x20">Scr eenSi zeChar </ | esst han>
</ or>
</ cl ass>
<cl ass nanme="| ar geScr een" >
<or >
<greaterthan val ue="320x240" >Scr eenSi ze</ gr eat er t han>
<great ert han val ue="80x40">Scr eenSi zeChar </ gr eat ert han>
</ or>
</ cl ass>
<cl ass name="| pegcapabl e" >
<cont ai ns val ue="i nage/j peg" >CcppAccept </ cont ai ns>
</ cl ass>
<cl ass name="col or">
<t rue>Col or Capabl e</true>
</ cl ass>
<cl ass nane="bl ackandwhi t e" >
<not >
<t r ue>Col or Capabl e</true>
</ not >
</ cl ass>
<cl ass nane="col or phone” >
<and>
<l esst han val ue="90x120" >Scr eenSi ze</ | esst han>
<cont ai ns val ue="wn " >CcppAccept </ cont ai ns>
<t rue>| sCol or Capabl e</ true>
</ and>
</ cl ass>
</ cl asses>

This file defines four cgpability classes smallScreen, largeScreen, jpegcapable ad
color. In the case of smallScreen, the condraints are that the device has a screen
gndler than 160 wide and 160 pixes high or if it has a screen thet is smdler than 20
characters wide and smdler than 20 characters high. Alternatively a device mesets the

jpegcapable capability dass ariteriaif it can display the MIME type image/jpeg.

Copability dass files can contan three Booleen expressons for aggregating
condrants and, or and not. It provides a number of conditionds lessthan,
lessthanequals, greaterthan, greaterthanequals, equals, contains and true Each

conditiond is only gpplicable to spedfic atribute types as shown in the following
table. For Dimensions, lesshan means the atribute will fit indde the vaue it is being
compared to i.e. both axes are smdler whereas morethan means the attribute will
encompass the vaueit isbeing compared toi.e. both axes are bigger.

Conditional Compatible UAProfdatatypes
lesst han number, dimension

[esst hanequal s number, dimenson

greaterthan number, dimenson

great ert henequal s number, dimension

equal s number, dimension, Sngle literd
cont ai ns st of literals, sequence of literals
true boolean

The CC/PP (or UAProf) processor uses the capability class description file as follows:
it parses the file and constructs a postfix description™® of each set of congtraints. It
dores this podfix description in a vector for evduation later. For example the
colorphone classin the previous capability dass definition file is represented as.

expression expression profile attribute | value children
type

operator lessthan ScreenSize 0x120

operator contans CcppAccept wml

operator true IColorCapable

operand and 3

The processor evautes the podtfix description of a set of condraints by retrieving
eech opeaaor or operand in turn from the vector, evauating it and then writing the
result back to a results sack. In the case of the colorphone dass it examines
ScreenSize and determines if it is less than 90x120. If both vaues ae less than
90x120, then it pushes True on to the results stack otherwise it pushes Fdse The
processor then determines if CcppAccept contains the vdue WML and writes the
result to the results stack. Then it determines if 1sColorCapable is True and again
writing the result to the results stack. Then it pops the previous three vaues from the
results stack, gpplies the AND operand and writes the result back to the result stack.
This indicates if the device is a member of the colorphone capability class The
processor repeets this process for the podfix description of each cgpability cdlass and
returns a vector containing the names of any cagpability classes where the device meets
the associated condraints.

We may wish to make decisons within stylesheets based on a devices cagpability
classes In XSLT gdyleshedts this is done usng a mechanism caled modes. Modes are

rules that are only executed when cdled directly. For example condder the stylesheet
below.

<?xm version="1.0"?>
<xsl:styl esheet xm ns:xsl="http://www. w3. org/ 1999/ XSL/ Tr ansf or ni
version="1.0">
<xsl : param nane="capabi l i ti es"/ >
<xsl:tenplate match="/">
<xsl:if test="contains($capabilities," wr Device')">

<xsl :call-tenpl ate name="wn devi ce"/>
</xsl:if>
<xsl:if test="contains($capabilities,' pdabDevce')">
<xsl :cal | -tenpl ate name="pdadevi ce"/>
</xsl:if>
<xsl:if test="contains($capabilities,'voice)">
<xsl :cal I -tenpl ate nane="voice"/>
</xsl:if>
</ xsl : tenpl at e>
<xsl : tenpl at e nanme="wni devi ce">
<l-- styling for wn device here -->
</ xsl:tenpl at e>
<xsl : tenpl at e nane="pdadevi ce">
<l-- styling for pdadevice here -->
</ xsl : tenpl at e>
<xsl:tenpl ate nane="voi ce">
<l-- styling for voice here -->
</ xsl : tenpl at e>
</ xsl : styl esheet >

Here the capability cdass lig for the device is made avaladle via the xsl:param
datement. The stylesheet conssts of four rules indicated by xd:template. One rule,
the default rule, indicated by match="/", is executed for al documents. The other
three rules, wmldevice, pdadevice and voice, are modes S0 have to be cdled within the
default rule. Which rules are cdled depends on the capability classes possessed by the
device. In the example Sylesheat these rules just contain comments without any
actua code. If we assume that the wmiDevice and pdaDevice capability dasses ae
mutualy exclusve i.e a device can bedong to one or the other but not both, then this
means the dylesheet supports four different device cdasses i.e. combindions of
cgpability dasses eg. wmiDevice with voice, wmiDevice without voice, pdaDevice
with voice and pdaDevice without voice In this way stylesheets can support multiple
capability dasses and capability classes can be combined.

In the future it is our intention to add support for capability dass to other parts of
Cocoon. Capability dasses could be used in conditionds in the dtemep, a
configuration file that defines how particular resources are generated, so that
resources are generated in a specific way for aparticular capability classeg.

<map: mat ch pattern="deli.wr">

<map: capabi |l i tycl ass type="col or phone"/ >

<map: gener at e src="docs/ sanpl es/ hel | o- page. xm "/ >

<map: transform src="styl esheets/deli_test.xsl" type="xslt"/>
</ map: mat ch>

In the example Stemap fragment above a mechanism is defined for cregting a
resource caled deli.wml if it is requested via a device that beongs to the colorphone
capability class. This resource is generaed from helo-pagexml by applying the
deli_test.xsl XSLT dylesheet. Usng capability classes rather than user agent strings
reduces the number of mappings required due to the way cgpability classes can be
used to generdise across devices. Alternatively capability classes can be used to
transcode resources eg. an image could be transcoded to change the target format and
resolution. The transcoder could be configured as follows:

<gener at el nage>
<ur | mat ch>nmanager s/ keegan</ ur | mat ch>
<cont ent >nanager s/ pi ct ur e/ Kevi nKeegan. j pg</ cont ent >
<t ranscodi ngs>
<transcode>
<capabi | i t yd ass>wn Devi ce</ capabi |l i tyd ass>

<t ar get For mat >wbnp<t ar get For mat >
<t ar get Si zeX>60</t ar get Si zeX>
<target Si zeY>60</t ar get Si zeY>
<t ar get Bi t Dept h>1</t ar get Bi t Dept h>
<col or Type>nonochr one</ col or Type>
</transcode>
<tr anscode>
<capabi | i t yd ass>pdaDevi ce</ capabi |l i t yd ass>
<t ar get For mat >gi f <t ar get For nat >
<t arget Si zeX>100</t ar get Si zeX>
<t arget Si zeY>100</t ar get Si zeY>
<t ar get Bi t Dept h>4</t ar get Bi t Dept h>
<col or Type>gr eyscal e</ col or Type>

</transcode>
</transcodi ngs>
</ gener at el nage>

This says when the server receives a request for the resource manager s’keegan, it isto
be crested by transcoding the resource manager s/pictures/KevinKeegan.jpg. If the
target device beongs to the wmiDevice capability dass, then the image is transcoded
to produce an image in the wbmp format which is 60 pixes wide by 60 pixes high
and contains one hit per pixd i.e is a monochrome image. Alterndively if the target
device bdongs to the pdaDevice cgpability class then the image is transcoded to
produce an image in the GIF image forma which is 100 pixds wide by 100 pixds
high and contains 4 bits per pixe i.e. isagreyscaeimage.

5 Using capability classes with different vocabularies

The cgpability class examples aove use the data types available in UAProf. There are
a couple of problems with this. Firdly, as dready noted, UAProf has a Dimenson
data type 0 it is necessay to oveload exiding conditionds so they a dightly
different meaning when applied to this data type Idedly this data type should be
avoided when cregting new vocabularies so that overloading is not necessary. For
example ingead of usng ScreenSze use ScreenSizeHeight and ScreenSzeWidth.
Secondly UAProf uses the literd data type to store verson numbers. If cgpability
classes are to be used with UAProf ideally UAProf should create a new data type for
verson numbers and then a new conditiond could be crested for this data type eg.
isBackwardsCompetible. Thirdly there is a potentid problem with goplying capebility
clases to different vocabularies as each vocabulary may define its own st of data
types. One way to resolve this would be for CC/PP to define a fixed set of data types
that are available to vocabularies. Redtricting CC/PP in this way is necessary for other
reasons eg. ensuring CC/PP vocabularies are compatible with al CC/PP processors.
Capability classes could then offer a st of conditionds that operate on these data
types that could be guaranteed to work across dl vocabularies.

6 Relationship between capability classes and media
gueries

Within the work on cascading stylesheets™, media queries® have been proposed as a
mechanism to enable presentations to be tailored to a specific range of output devices
without changing the content itself. A media query conssts of a media type and one
or more expressons involving media features eg.

<link rel ="styl eshet” nedi a="screen and (color)”
href="http://style.comcolor” />

<link rel ="styl esheet” nedi a="aural and (m n-device-w dth: 800px)”
href="http://style.comaural” />

There are many smilarities between media queries and cgpability classes. Firdly a
media query, like a cgpability class, is a logicd expresson that is evduated to be
either true or fase However they are only evduated a the dient whereas cagpaility
Classes are evduated a the server or proxy 0 are rdiant on mechanisms such as
CC/PP to send the capability information from the client to the server. Media queries
aso use the operands AND, OR and NOT just like cgpability dasses but unlike
cgpability dasses they combine conditionds and attributes together to form an
expresson that can be directly evduated eg. min-height, maxheght, min-device-
width, max-device-width etc. In media queries the conditiond is known as a pretext ;
this gpproach has been taken to avoid the use of the “<” and “>" characters which
conflict with HTML and XML. One potentid problem is that media queries only offer
three conditionds min, max and the implicit equas. As we have dready noted we
may need a richer st of conditionds if we need to use a vaiety of data types in
device profiles. Ancther difference is that we propose capability classes may be
defined separatdly from dyle or content information. This has been done to provide a
levd of dbdraction s0 that capability dass definitions ae reussble and o0 that
capability dasses may be eadly integrailed with exiding device independence
techniques. It isnot clear if media queries can be used in the same way.

Idedly, in the author's opinion, work on media queries and cgpability dasses should
be combined to creste a trangparent mechanism of querying device capabilities that
can be used a both the client and the server. There are two issues that need to be
resolved in order to achieve this god: firdly CSS media queries are based on a non-
XML syntax; for example you need to parse expressons to isolate the pretext from
the attribute name usng a text parser. This is in contrast to cgpability classes which
have ddiberady adopted an XML syntax so they are processable with an XML
parser. It is not clear which gpproach is better. Secondly capability classes do not
define a common vocabulary whereas media queries do define a common vocabulary.
In the authors opinion dthough t is dedrable to have a common vocabulary, it is not
desrable for it to be crested within the cascading stylesheets activity. Furthermore the
author would like to suggest rather then cresing a sngle monalithic vocabulary,
namespacing should be use to create a modular vocabulary. This common vocabulary
should have a number of propeties firdly it would be possble to use it in
conjunction with CC/PP profiles. Secondly if a modular approach was adopted, each
module could correspond to a particular input or output modaity used by devices As
new moddlities become available on devices, these moddities can be encompassed by
extending the modules avalable. Furthermore nether capability classes nor media
queries currently condder namespacing. However namespacing is an essentid
concept in CC/PP and UAProf so it is dedrable that the technique is namespace
aware.

7 Conclusions
Capability classes make it easy to dassfy the capabilities of different devices and use
these classfications with XSLT or with other content specidisation mechanisms such

as configuration files that describe how resources are sdected or generated via
transformation and transcoding. They have a number of advantages over the previous
device dass methods of dassifying devices A sample implementation of capability

10

classes for evauating this technique is currently avalable in the DELI library and will
shortly be made available within the Cocoon framework viaDELI.

! Resource Description Framework, World Wide Web Consortium, http://www.w3.org/RDF/
2 Composite Capailities/ Preferences Profile World Wide Web Consortium
http://www.w3.0rg/M obile/ CCPP/
* Wireless Application Forum, http://www.wapforum.org/
4 HPL-2001-260 DELI: A Ddlivery Context Library for CC/PP and UAProf, Mark H. Butler,
http://www-uk.hpl.hp.com/people/marbut/DeliUserGuideWEB.htm
5 Documentation describing Cocoon/ DELI integration, Mark H. Butler,
http://xml.apache.org/cocoon/devel oping/ddli.html
6 Apache Cocoon, Apache Software Foundation http://xml.apache.org/cocoon/
" What is XS_, World Wide Web Consortium http:/www.w3.org/Style/X SL/Whatl sX SL html
8 X9.T, World Wide Web Consortium http:/Avww.w3.org/Style/X SL/
% XPath, World Wide Web Consortium http:/www.w3.or ¢/ TR/xpath
10 Current Technologies For Device Independence, Mark H. Butler,
http://www.hpl.hp.com/techreports’2001/HPL-2001-83.html
XML, World Wide Web Consortium, http://www.w3.org/XML/
2 RFC 2616: HTTP 1.1 Content Negotiation, page 70-73, The Internet Society, ftp://ftp.isi.edufin
notes/rfc2616.txt
B Improve your XSLT coding in five ways, Benoit Marchal, (See Tip 5),
http://www-106.ibm.com/devel operworks/library/xxdts.html
14 postfix notation, Bob Brown, Southern Polytechnic State University
http://www.spsu.eduw/cs/faculty/bbrown/web _lectures| ix/

Cascading styleshests, http://mww.w3.org/Style/CSS/
16 Media Queries, http://www.w3.0rg/TR/css3-mediaqueries/

1

