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Abstract 

Voting is a commonly used technique in combining results from peer experts.  In distributed decision 

making systems, voting mechanisms are used to obtain a decision by incorporating the opinion of 

multiple units.  Voting systems has many applications in fault tolerant systems, mutual exclusion in 

distributed systems, and replicated databases. We are specifically interested in voting systems as used 

in decision-making applications.  The voting system studied in this paper consists of N units, each has 

three states: correct (success), wrong (failed), and abstain (did not produce an output). The final output 

of the decision-making (voting) system is correct if a consensus is reached on a correct unit output, 

abstain if all units abstain from voting, and wrong otherwise. 

In this paper, we describe a synthetic experimental procedure to study the behavior of voting systems 

using a simulator that we developed to: analyze the state of each expert, apply a voting mechanism, 

and analyze the voting results.  For this analysis, we study the following behaviors of a voting system: 

1) the reliability of the voting system, “R”; 2) the probability of reaching a consensus, “Pc”; 3) 

certainly index, “T”; and 4) the confidence index, ”C”.   The configuration parameters controlling the 

analysis are: 1) the number of participating experts, “N”, 2) the possible output states of an expert, and 

3) the probability distribution of each expert states.  Results of this study unleash several behaviors of 

a decision-making system with tri-state experts as function of various configuration parameters. 

Keywords: voting, expert combination, reliability analysis, decision-making, and fault-tolerance. 

1 INTRODUCTION 

Voting is a general technique that finds application and acceptance in many domains including 

software systems.  Voting systems are also used in fault tolerant applications to achieve reliability 

[Nordmann et.al. 1999].  It is a widely used technique combining classifiers in the pattern recognition 

field [Ho et.al. 1994, Xu et.al. 1992, Yacoub et.al. 2002]. 

In distributed systems, majority voting has several applications. Voting systems are often used in 

distributed systems to control mutual exclusion among groups of nodes [e.g. Paris 1986] where each 
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node is assigned a vote and weight and only a group of nodes with a majority vote can perform a 

restricted operation. They are used to control the update procedure when clusters of workstations are 

isolated due to network problems and to vote on data replication [Ahammad et.al. 1987].  They are 

used in replicated databases to prevent simultaneous read and write actions, or simultaneous write and 

write in disjoint subsets of data copies [Thomas 1979]. 

In a distributed decision making system, several experts are used to reach a decision. Each expert work 

independently on the problem and, reach a decision, and communicate the decision to the coordinator 

or the voting unit.  An earlier study of voting in distributed applications with that nature is discussed in 

[Kumar et.al. 1991].  However,  Kumar did not address the abstention state. The voting system studied 

in this paper consists of N s-independent experts (units) as illustrated in figure 1.  For a given input 

proposition say “P”, we want the system to take a decision. Each expert produces an output; the status 

of the unit could be correct “c”, wrong “w”, or abstain from producing an output “a”. We call this 

model the “cwa” model.  In practical applications, the abstention could be implemented by timing out 

each unit.  Hence, the decision function for the jth expert dj(P) is given by: 

 

1,  iff the jth expert output is correct 

dj(P) =   0,  iff the jth expert output is wrong 

x,  iff the jth expert abstain from producing an output. 

 

As an application of such model consider the file replication in distributed systems.  The client obtains 

a permission to write data to all replicated systems by sending a request to all units, each unit responds 

with one of three states: permission to write (correct), unable to accept request (wrong), or no reply 

(abstention). 

Another example of the application of such system is in target detection where a target is to be 

identified and the identification task requires comparison of the input data to known features of the 

target. The decision is either target detected, cannot detect target, or cannot tell.  A similar application 

in safety monitoring where a decision has to be made whether the situation is critical or not.  

Similarity in any organization, after a candidate is interviewed and the final decision is based on the 

number of favorable votes.  In general, a system with tri-state units is very popular in decision-making 

applications. 

 

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 1
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The reliability of a unit “j” is characterized by three probabilities: Pj(c), Pj(w), and Pj(a), where Pj(c) + 

Pj(w) + Pj(a) = 1.  To make a decision about the proposition acceptance, in a generalized weighted k-

out-of-n system the decision D is governed by the following rule: 
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where wj is a positive weight of an individual unit j and is used to express the importance of the results 

given by unit j; and λ is the threshold that should be exceeded to consider the output correct (0 ≤ λ 

≤1). 

 

 

 

 

 

 

Figure 1 The scope of the analysis  

Levitin et. al. [ Levitin 2001 and Levitin et.al. 2001] studied techniques for selecting weights for 

individual experts (wj) and a consensus threshold (λ) that will maximize the reliability of the system 

given predefined number of experts and predefined probability distribution for the experts’ output.  In 

our study, we are more interested in the effect of the number of experts and the probability distribution 

functions of each expert’s state on the voting system reliability. However, we run our analysis for a 

predefined set of weights and a threshold.  All the analysis conducted in this paper is for equally 

weighted experts and for majority voting between non-abstained experts. 

Expert 1 Expert 2 Expert 3 Expert N 

Input Data 

Voting Component 

Voted Results 

Domain 
Specific 

Scope of our 
Experimental 

Analysis  

. . . . . . .. . . . Eq. 2
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We take a synthetic experimental approach to study the behavior the voting system under such setup.  

We study the effect of the number of experts and probability distribution of the experts’ states on:  the 

probability of reaching a consensus; the reliability of the voting system; and confidence in the correct 

results. We illustrate a general synthetic approach that can be used to analyze any weighted k-out-of-n 

voting systems, however, we will focus in this paper on the “cwa” model discussed above. 

Section 2 defines the terms that we use throughout the paper. Section 3 describes a mathematical 

model for the problem we are analyzing. Section 4 describes the synthetic analysis setup and 

procedure.  Section 5 describes the results of the experiments. We organize the results under 

subsection where each subsection is dedicated to study the effect of one parameter on the voting 

reliability and behavior. Finally we conclude the paper and summarize findings in section 6. 

2 DEFINITIONS AND ASSUMPTIONS 

Definition 1:  An Expert or A Unit 

Voting is used to combine data that is produced from multiple experts. The words “experts”, 

“engines”, “classifiers”, and “units” are used interchangeably. The word “classifier” is often used in 

the pattern recognition domain, “expert” and “unit” are used in the reliability analysis domain, and 

“engine” and “algorithm” is used in the algorithm combination domain. Usually several experts are 

used and their results are combined to produce data that is more accurate (or with higher confidence) 

than data produced from one individual expert. 

Definition 2: Number of Units,  N 

We define “N” as the number of experts (or units) used in the voting system.  We will study the 

behavior of the voting component as a function of N. 

Definition 3: An Expert’s Output 

The following table illustrates a simple explanation and probability of the output of each expert. We 

refer to the decision of an expert j as dj(P) where P is the input proposition. 

dj(P) 1 0 x 

Expert State Correct Wrong Abstained 

Probability Pj(c) Pj(w) Pj(x) 

Table 1 Output from an expert 
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Hence, Pj(c) reflects an absolute measure for the reliability of unit j assuming that an abstained 

condition is considered an unreliable condition. 

Definition 4: Majority Voting 

Majority voting is a voting schema that has the following consensus rule: 

Consensus   iff  Y/2 +1 experts agree 

No Consensus   otherwise. 

where Y is the number of experts that did not abstain from producing an output. We use “N” for the 

total number of experts, “A” for the number of abstained experts, and hence Y=N-A. 

Definition 5: Reliability of the Voting System “R” 

We define “R” as the probability that the output from the voting system is correct.  According to 

equation 2, R=P( D(P) = 1).  R is calculated using the probability of reaching consensus and the 

consensus is the correct output; i.e. equals 1.  

Definition 6: Probability that a Consensus is reached “Pc” 

We define “PC“ as the probability of reaching a consensus.  We note here that the probability of 

reaching a consensus is not the same as the probability that the output is correct.  For example, assume 

that we are using a majority voting of three experts A, B, C.  Results from experts A and B are 

considered “w” (for wrong) and result from expert C is considered “c” (for correct).  The output from 

the majority voting in this case is the “w”. Hence, the voting system reached a consensus though this 

consensus is not correct.  Hence, Pc and R are different random variables.  Therefore, we study the 

behavior of the voting system in terms of both “Pc” and “R” 

Definition 7: Certainty Index,  T 

We define “T” as the certainty index, which is certainty in the consensus result of the experts.  T is a 

function of the following factors: 

- Probability that a specific consensus case is reached. A consensus case is defined as a case 

where we have the set of votes sufficient to make a consensus. For instance, with three experts 

A, B, C and a majority voting, the case where A and B agree and differ from C is a consensus 

case.  

- Number of experts participating in making a specific consensus.  An expert is said to participate 

in making a consensus if the output of the expert is the same as the consensus results.  

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 3



 
6

For example, assume that we have three experts, A, B, and C. Two experts produce the same result 

and the third produced a different result. The result of the majority voting for this case will be the 

result agreed upon by the two experts.  Then the number of experts participating in reaching the 

consensus is 2 out of 3.  Probability of that case can be calculated by expanding the decision tree as 

shown in the following section using the probability distributions of all experts,  assume 6/9.   Now 

assume that the three experts produce the same result then we have three out of three experts 

producing the consensus.  The probability that the case where the three experts agree can be calculated 

from the decision tree, assume 1/9.  The certainty index T3 for these considering two cases is : (6/9 * 

2/3  + 1/9 * 3/3)/( 1/9+6/9).  The general formula for T is: 

∑∑
∈∈

==
Cases} {Consensuss

s

Cases} {Consensuss

s

N

 NE
 x 

Pc

c)P(s,
 

N

 NE
 x P(s/c)    T  

where P(s/c) is the probability of the case “s”  given that consensus is reached, “NEs” is the number of 

experts making a consensus in the case “s”, and Pc is the consensus probability. 

Note that the certainty index that we calculate means how certain we are about the consensus reached 

but it does not say whether we are certain it is “correct” or “wrong”. If T is calculated for those cases 

only where a consensus is reached on the correct state (and Pc is replaced with R in the previous 

formula), then T measures the certainty in the correct result as opposed to certainty in the consensus. 

We will use the two variables T(Pc) and T(R) to distinguish the two cases. As illustrated in equation 4, 

T is considered a measure for weighted consensus. 

Definition 8: Confidence index,  C 

The confidence index “C” represents how confidence we are in the results produced by the voting 

system. It takes into consideration an important factor, which is how many experts are participating in 

reaching a consensus.  In this case it is similar to the certainty index but it is NOT normalized to the 

total number of experts.  The formula for calculating C is:  

TNC ×== ∑
∈ Cases} {Consensuss

sNE x P(s/c)  

Since this factor is not normalized to the number of experts, then it will be bigger than unity. The 

number is significant in comparing confidence produced using several N-experts systems. Note that C 

is calculated for all consensus case, which does not distinguish between the correct, wrong, or 

abstention consensus.  To calculate the confidence in the correct results we will consider the consensus 

cases in which the consensus results are correct. We will use the two variables C(Pc) and C(R) to 

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq.4

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 5
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distinguish confidence in the voting system  consensus and confidence in the voting system reliability 

respectively. 

3 MATHEMATICAL MODEL 

To mathematically model the analysis process, we will use the universal moment generating function 

technique (a universal Z-transform) that is defined in [Ushakov 1986] and used in [Levitin 2001] to 

model system reliability. The universal generating function is defined as : 

kx
K

k
k zSzU ∑

=

=
1

)(  

for a random variable X that can take K-possible values. Sk is used to model the probability that X is 

equal to some value xk. To calculate the probability that some condition on X is met, such that X ∈ θ 

all coefficients of the polynomial U(z) is summed for every term that satisfies the condition xk ∈ θ.  

Hence, 

∑
∈

==∈
θ

θδθ
kx

kSzUX )),((}Pr{  

We will use the polynomial Uj(z) to describe the output state of the jth expert.  Each possible output 

state from the expert unit is characterized by two values: Sjk which define the probability of the output 

state whose index is k and the total score for the result of that expert Gjk. Recall that each unit has 

three possible output states: “c”, “w”, or “a”.  Hence Sjk and Gjk are given as follows: 

Index 1 2 3 

dj(P) 1 0 x  

State Correct Wrong Abstain 

Probability (Sjk) Sj1 = Pj(c) Sj2 = Pj(w) Sj3 = Pj(x) 

Score (Gjk) Gj1 = 1 Gj1 = 0 Gj1 = ½ 

Table 2 Parameters for the Uj(z) 

To understand why the abstained value is considered by ½, let us assume that we have N experts.  If a 

number of A experts abstain from voting, then we have a number of (N-A) experts that are considered 

for voting. Assume we have H experts producing the correct result, then the condition of producing a 

correct result is  H > ½(N-A), which can be refined to H + ½ A > N/2. As a result if an expert is 

correct it contributes to H by a single share or weight (equals 1 for our studies) while if the expert 

abstains then it contributes with ½ of its weight. As a result we can calculate the quantity H + ½ A and 

compare it to N/2. 

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq.6

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq.7
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Now assume we have two experts. Each expert will have its universal function U1(z) and U2(z).  To 

obtain the universal function of the system we use the composition operator: 

∑∑
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The general rule for composing a number of experts {j} to an exiting universal function Uλ(z) is given 

by the rule : 

))({),(()( }}{ zUzUzU jj λλ Ω=∪  

Hence for a system composed of N experts, the universal function would be: 

∑∑ ∑∑∏
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This polynomial represents all possible combination of the outcome from each expert. Now if we want 

to obtain the reliability of the system R, we use the equation: 

∑
>

=>=
2/

)2/),((
NG

kN

k

SNGzUR δ  

which is the commonly used simple majority vote rule. 

Although the mathematical model given in this section could be very effective for numerical 

calculations, we find that it does not provide enough flexibility to study variations in the number of 

experts used (since this requires change in the polynomial representation). Therefore, we use the 

mathematical model for modeling the problem and the consensus rule and we use a simulator that we 

discuss in the next section to facilitate the calculation procedures for voting reliability, consensus, and 

confidence.  

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq.8

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq.9

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq.10
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4 SYNTHETIC EXPERIMENT SETUP 

We have built a simulation system for the purpose of conducting various experiments to study the 

behavior and reliability of various voting systems as a function of several parameters. In this section 

we describe the inputs, outputs, and the operation of the simulator.  

 

 

 

 

 

 

 

 

 

Figure 2 The simulation system 

The simulator accepts the following inputs: 

a) the number of experts participating in the experiment (previously defined as N),  

b) the number of possible states of an expert K, and the probability distribution for each state. 

c) the type of voting system (currently, the simulator supports only two types: majority and 
plurality). 

For the type of voting system we discuss here, K=3 since each expert can be correct, wrong, or 

abstain. The probability distribution is hence reduced to Pj(c), Pj(w), and Pj(a). To calculate the 

system reliability, we exclude those units that abstained and hence we compare the correct and wrong 

unit results, hence majority and plurality voting are reduced to the same thing for equal weight units. 

The output of a simulation is: 

a) the reliability of the voting system, R 

b) the probability of reaching a consensus, Pc 

c) the certainty index, T(Pc), T(R) 

d) the confidence index, C(Pc), C(R) 

The following is the procedure followed by the simulator to calculate Pc, R, T, and C. 

Synthetic 
voting 

Number of experts, N 

Expert states, K & its 
PMF 

Voting schema 
{majority, plurality} 

Prob. of reaching a 
consensus, Pc 

Certainty, T(Pc), T(R) 

Confidence, C(Pc), C(R) 

Reliability, R 

Controller Change parameters Obtain Results 

Simulation Log Reliability and 
Behavior Analysis 
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a) Build a Decision Tree 

First, the simulator uses the number of experts N, the number of each expert states K, the set of PMFi 

for each expert states, to build a decision tree. The tree explores all possible combination of the 

experts’ output.   

The number of experts defines the depth of the tree.  Each node at one level will be expanded to K 

nodes in the lower level.  Going from one level to another is the same as exploring all possible output 

states from an expert. At the lowest level of the tree, we have all possible combinations that can be 

produced by N experts for K possible states. The nodes at the lowest level are called terminal nodes. 

The arcs in the decision tree are labeled with the probability that the expert is in specific state.  This is 

usually specified in the PMF distribution for each expert. 

As an example, consider the case where we have three experts (N=3) and two possible output states 

(K=2).  We can use two symbols to model this case; assume they are “q” and “y”.  The PMF 

distribution is uniform for the first and third experts and one state “q” is favorable for the second 

expert than “y”, PMF2(q)=2/3, and PMF2(y)=1/3.  We have three experts; hence the depth of the tree 

is three. The following figure illustrates the expansion of the tree. 

Note: Expert Order is Irrelevant 

The order of the experts in the tree is not relevant. This is because: a) there is no explicit dependency 

between experts, b) the decision made by one expert does not affect the decision made by the other 

(experts are not collaborative), and c) the order of states (a unit output) at the terminal nodes is not the 

one affecting the decision, instead it is the count of the states that matters. 

  

 

 

 

 

 

 

 

Figure 3 Decision tree for three experts with two possible decisions (q or y) 

(Start) 

(q) (y) 

(x,x) (q,y) (y,q) (y,y) (q,q) 

(q,q,y) (q,q,q) (q,y,y) (q,y,q) (y,q,y) (y,q,q) (y,y,y) (y,y,q) 

Level 1:  
Decision made by expert #1 

Level 2:  
Decision made by experts 1,2 

Level 3:  
Decision made by experts 1,2,3 

Terminal nodes 

1/2 1/2 

2/3 1/3 2/3 1/3 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 
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Note: Number of Terminal Nodes 

The number of terminal nodes obtained from the decision tree is function of the number of experts N 

and the number of possible states of an expert, K.  The total number of terminal nodes will be given 

by: 

NKM ==srminalNodeNumberOfTe  

b) Assigning probability to various combinations. 

For each terminal node, we calculate the probability of reaching that node by back propagating the tree 

and accumulating the probability of each branch. Since independence between experts is assumed, the 

probability of reaching a terminal node is the product of the probability of all branches traversed to 

reach that node. Hence: 

∏
=

=
N

n

mn nSPMFmPT
1

))(()(  

where Sm(n) is the nth state in the mth terminal node result. For instance if result for the first terminal 

node is (q,q,y), then S1(1)=S1 (2)=”q” and S1 (3)=”y”. 

For the above decision tree, the probability of the terminal node (q,q,y) is: ½* 2/3 * ½ 

Special case: Uniform Distribution  

In a simple situation, all states might be equally probable for all experts. Hence, the probability that 

the ith expert is at state kj is given by: 

K
tributionUniformDisKPMF ji

1
)/( =  

This means that all the terminal nodes are equally probable and hence each decision has a probability 

of 1/8 for the case shown in figure 3. Note that the number of terminal nodes according to equation 11 

is : KN , hence the probability of the mth terminal node PT(m) will be 1/ KN: 

NK

1
  )( =mPT  

c) Evaluating Probability of reaching a consensus (Pc). 

Each one of the terminal nodes is checked against the consensus rule for the required voting schema.  

Consensus rules for majority voting are given in equation 3. The probability of reaching a consensus is 

then calculated as follows: 

. . . . . .  . . . . . . . .. . . . Eq. 14

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 13

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 11

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 12
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(m)PT(m) 
1
∑

=

×=
M

m

Pc δ  

where PT(m) is calculated using equation  6 and λ(m) is given by: 

  (m) =δ  

Special case: Uniform Distribution  

In a simple situation when all states might be equally probable, we evaluate the number of nodes 

reaching a consensus and the probability of reaching a consensus is simplified to: 

N

C

K

N
Pc ==

nodes  terminalofnumber  Total

consensus a reaching nodes  terminalofNumber 
   

d) Evaluating the certainty index, T 

To calculate the certainty index, we only consider the terminal nodes labeled in procedure (c) above as 

reached a consensus.  For each terminal node we calculate the percentage of experts participating in 

the consensus relative to the total number of experts. As an example, consider the terminal node 

(q,q,y).  The consensus result in this case is “q”.  Hence the certainty in this particular consensus 

decision is 2/3.  Certainty index is then calculated by summing all consensus cases and weighing it 

with the probability that the consensus case is reached. 

)(
)(

1

m
Pc

mPT

N

NEm
T

M

m

δ××=∑
=

 

where: NEm is the number of experts making a consensus for the mth terminal node, PT(m) is 

calculated from equation 12 and  δ(m) is given from equation 15. 

Special case: Uniform Distribution 

In a simple situation when all states might be equally probable, we evaluate the number of nodes 

reaching a consensus and the certainty index is simplified to: 

)(
1

          
1

)(
1

11

mNE
NcNPc

m
KN

NE
T

M

m

m

M

m
N

m δδ ××
×

=×××= ∑∑
==

 

Note equations 17 and 18 are calculated for the all consensus cases, hence the values obtained there 

are T(Pc).  To calculate T(R) we consider a subset of the consensus cases in which the consensus is 

reached on a correct state in this case “1”.  

. . .. . . . Eq. 16

. . .. . . . . . . . . . . . . . . . .. . . . Eq. 17

. . . . . . . . . . .. . . . Eq.15

1  iff m is a consensus terminal node 

0  otherwise 

 . . . . . . . . . .. . . . Eq.18
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e) Evaluating the confidence index C. 

To calculate the confidence index, we only consider the terminal nodes labeled in procedure (c) above 

as reached a consensus.  For each consensus case, we count the number of experts participating in the 

consensus. As an example, consider the terminal node (q,q,y).  The consensus result in this case is “q”.  

Hence the confidence in this particular consensus decision is the absolute number 2.  The confidence 

index is then calculated by summing all consensus cases and weighing it with the probability that the 

consensus case is reached. 

)(
)(

1

m
Pc

mPT
NEmC

M

m

δ××=∑
=

 

Special case: Uniform Distribution  

In a simple situation when all states are equally probable, we evaluate the number of nodes reaching a 

consensus and the confidence index is simplified to: 

)(
1

          )(
1

11

mNE
Nc

m
Nc

K

K
NEC

M

m

m

M

m

N

N
m δδ ××=×××= ∑∑

==

 

From equations 12 and 14, then 

TNC ×=  

Hence C and T are tightly related. The certainty index T measures the confidence we have in the 

consensus given that we know the best result will be produced by all experts agreeing on the output. 

The confidence index C is an absolute measure for confidence used to compare confidence in the 

results produced by multiple N-expert systems. 

Note equations 19 and 21 are calculated for the all consensus cases, hence the values obtained there 

are C(Pc).  To calculate C(R) we consider a subset of the consensus cases in which the consensus is 

reached on a correct state in this case “1”. 

f) Evaluating Reliability, R 

Each one of the terminal nodes is checked against the consensus rule for the required voting schema.  

Consensus rule for majority voting is given in equation 3. For those nodes that reached a consensus, 

we determine the consensus state and compare with the correct state. R is then calculated using 

equation 15 for those cases where the consensus state is the correct one.  

 . . . . . . . . . . .. . . . Eq. 20

. . .. . . . . . . . . . . . . . . . .. . . . Eq. 21

 . . . . . . . . . .. . . . Eq.19
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R and Pc, for P(c)=0.8 & P(a)=0.2 
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5 ANALYSIS RESULTS 

5.1 Probability of reaching a Consensus (Pc) and Reliability (R) as function of N 

5.1.1 Purpose 

The purpose of this analysis is to study the effect of changing the number of experts “N” on the 

probability of reaching a consensus “Pc” and the reliability of the voting system “R”. For a given 

number of experts and their PMF ( P(c), P(w), and P(a) ), the simulator expands the decision tree and 

assesses the consensus rule at the terminal nodes.  The probability of reaching consensus and 

reliability is then calculated as discussed earlier. Results are shown in the following figure. 

5.1.2 Results 

 

 

 

 

 

Figure 4 Reliability and Pc, for P(c)=0.8 and P(a)=0.2,0.05 as function of number of experts 

 

 

 

 

 

Figure 5 Reliability and Pc, for P(c)=0.7 and P(a)=0.2,0.05 as function of number of experts 

From figures 4 and 5, we find that: 

- As the number of experts increases, the reliability of the system improves for a given 

probability of an expert being correct, e.g. for the first graph in figure 4 where P(c)=0.8.  It is 

also notable that the reliability approaches unity for a large number of experts. However, by 

using few experts (for instance N = 5) the reliability is considerably high and there is no need 

to develop or acquire more experts since the improvements in the reliability is not notable. 
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- For a given P(c), as the probability of abstention decrease, the probability of an experts being 

wrong increases (a direct result from the probability rule: P(c)+P(w)+P(a)=1).  This produces 

the gap between the Pc and R in the previous figures.  The gap between the two curves 

represents the situation where a consensus is reached but the consensus is wrong. For instance, 

in the first graph of figure 4, P(c)=0.8 and P(a)=0.2 and hence P(w)=0, there is no gap; i.e. 

when a consensus is reached it is correct.  For the first graph in figure 5, P(c)=0.7 and 

P(a)=0.2 and hence P(w)=0.1, we should expect a gap between Pc and R.  Note that the gap is 

not the unreliability of a specific unit; it is the unreliability of the voting system. 

The above results are obtained for cases where the experts are reliable; i.e. P(c) is near unity, 0.9, 0.8, 

etc. For the case where the experts are unreliable, the following figures illustrate some results. 

 

 

 

 

 

 

 

 

 

 

Figure 6 Reliability and Pc, for P(c)=0.3,0.4 and P(a)=0.2,0.05 as function of number of experts (N) 

From figure 6, we find that: 

- The gap between Pc and R is larger than it was for reliable units.  This is obvious since Pc 

converges to 100% consensus but in this case it is consensus on the wrong result. 

- For the cases where the individual experts are not reliable there is no benefit of adding new 

experts since the increase in the number of expert decreases the reliability of the system. For 

example, in the last graph of figure 6, the maximum reliability is achieved with a system of 

three experts only. 
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Reliability of the Voting System, for P(a) = 0.05
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5.2  Reliability of a Voting System as function of P(c) and N 

5.2.1 Purpose 

The purpose of this analysis is to study the reliability of the voting system as function of the reliability 

of each unit and the number of experts used. Results are shown in the following figures. 

5.2.2 Results 

 

 

 

 

 

Figure 7 Reliability for P(a)=0.05,0.20 for various P(c) and number of experts N 

Figure 7 illustrates the reliability of the voting system as a function of the reliability of its individual 

experts (P(c)).  As the reliability of individual experts increases, additional experts would increase the 

reliability of the overall system. However, as the reliability of individual experts decreases, additional 

experts would degrade the reliability of the system. The condition [ P(c) + P(a) > 0.5 ] can be used to 

determine whether increments in number of experts would be useful. 

Another view of the reliability of the system as function of reliability of individual experts and for 

various numbers of experts is illustrated in the following figure. 

 

 

 

 

 

Figure 8 Reliability for P(a)=0.05,0.20 for various P(c) and number of experts N 

The same results regarding the condition P(c) + P(a) > 0.5 can be deduced from figure 8.  For instance, 

in the first graph of figure 8, P(a) = 0.2, then for P(c)>0.3 the increase in the number of experts 

improves the reliability of the system and for P(c)<0.3 the more experts we use, the more the system 

becomes unreliable. 
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5.3  Confidence Index, C(R) as function of Reliability of Individual Experts 

5.3.1 Purpose 

The purpose of this analysis is to study the confidence index C of the voting system as a function of 

the number of experts as well as the reliability of individual experts. We study the confidence index of 

the correct output C(R). 

5.3.2 Results 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Confidence of the Voting system as function of P(c) and number of experts N 

From figure 9, we note that: 

- for a given expert reliability P(c), the confidence index increases as we increase the number of 

experts used in the system.  

- the confidence in the correct output decreases as the reliability of individual experts decreases. 
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5.4 Comparing Confidence (and Certainty) for Reliability and Consensus results. 

5.4.1 Purpose 

The purpose of this analysis is to study the confidence index C and the certainty index T of the voting 

system as a function of the number of experts as well as the reliability of individual experts. We study 

the confidence/certainty index of the correct output C(R)/T(R) and confidence/certainty index of the 

consensus results C(Pc)/T(Pc). 

5.4.2 Results 

 

 

 

 

 

Figure 10 Confidence index C(R) and C(Pc) as function of the number of experts N 

Figure 10 illustrates results from calculating the confidence in the reliability results C(R) as well as the 

consensus results C(Pc) for P(c)=0.9 and P(c)=0.4.  We find that: 

- The confidence increases by increasing the number of experts.  

- When the experts used are reliable enough the C(R) and C(Pc) would coincide as illustrated in 

the first graph of figure 10.  However, for the case where the experts are unreliable there is a 

gap between confidence in the consensus and confidence in correct output. This has been 

explained earlier in section 5.1. 

 

 

 

 

 

Figure 11 Certainty index T(R) and T(Pc) as function of the number of experts N 
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Figure 11 illustrates results from calculating the certainty in the reliability results T(R) as well as the 

certainty in the consensus results T(Pc) for P(c)=0.9 and P(c)=0.4.  We find that: 

- As the number of experts increases, the certainty index stabilizes to a constant value.  

- We get the same “gap” effect in certainty similar to the gap effect in the confidence index 

discussed in figure 10. 

5.5 Comparing Certainty versus Confidence 

5.5.1 Purpose 

The purpose of this experiment is to study and compare confidence and certainty. We compare the 

confidence index of the correct output C(R) and confidence index of the consensus results C(Pc) as 

well as the certainty index in the correct output T(R) and the certainty index in the consensus T(Pc). 

5.5.2 Results 

 

 

 

 

 

Figure 12 Comparing Confidences and Certainty 

From figure 12, we find that: 

- the confidence index C is monotonically increasing as we use more experts 

- the certainty index converges to a constant as we increase the number of experts, which is also 

illustrated in figure 11. 

- the confidence index gets the same “gap” effect between confidence in consensus C(Pc) and 

confidence in reliability C(R). 

As a result of this analysis, we realize why we need to indices T and C.  Certainty index is referred to 

as a weighted consensus; it is always less than unity.  Confidence index is used to compare several n-

experts by relatively measuring confidence index of one g-experts system with another h-experts 

system. As an example, consider the case where we have 3-experts system which produce the output 

(c,c,w); T in this case is 2/3=67% and C is 2.  Now assume another 5-experts system with the result 
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(c,c,c,w,w); T in this case is 3/5=60% and C=5.  Without knowing the internal structure of the two 

systems, the second system produces a result confidence higher than the first (5 compared to 2); hence 

the confidence index is useful. On the other hand, if we are interested in taking into consideration the 

ratio between correct and wrong experts, the first system is higher than the second (67% compared to 

60%); hence the certainty index is useful. 

5.6 Reliability of a Voting System as function of Abstention Probabilities 

5.6.1 Purpose 

The purpose of this analysis is to study the reliability of the voting system as a function of the 

abstention probabilities of the experts. 

5.6.2 Results 

 

 

 

 

 

Figure 13  Reliability of the voting system as function of the number of experts for various P(a). 

From figure 13, we find that: 

- For a given P(c), as the P(a) decreases, the reliability of the system decreases.  This is 

logically acceptable since P(w) increases with P(a) decreases; i.e. the units are more 

unreliable.  This leads to the well-known conclusion that we would better have an expert 

abstaining from producing an output rather than producing the wrong output. 

- For a given P(c), as the units become more unreliable (on the expense of being absent), the 

reliability of the system becomes more sensitive to the even/odd number of experts.  For 

instance, in the second graph of figure 10, for P(a)=0.05, the oscillation in the reliability is 

more obvious.  Therefore, in cases where the units are unreliable, we better use an odd number 

of experts to obtain higher system reliability than even number of experts. 
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6 CONCLUSION 

In this paper, we analyzed the reliability and behavior of a majority voting system.  We have taken a 

synthetic experimental approach in which a simulator is used to expand all possible decisions using a 

decision tree.  The decision tree is function of the number of experts, the states of the output of each 

expert, and the probability distribution for these states. We have studied a voting system comprising 

tri-state experts where the expert state could be “correct”, “wrong”, or “abstain”. We conducted a 

series of studies to analyze the behavior of the voting system in terms of reliability, probability of 

reaching a consensus, confidence and certainty in its consensus, and confidence and certainty in its 

correctness.  The results of these studies are discussed in details together with their logical 

interpretation.  We study the effect of the number of experts and the reliability and abstention of each 

expert on the behavior and reliability of the voting system.  

The results that we obtain in this study reveal the behavior and reliability of a majority voting schemas 

and enable us to make better choices in terms of the number of experts given some domain 

requirements such as “accuracy” or “consensus”. 

There are still several problems that can be analyzed using the same approach that we used in this 

study.  For example, in the next phase we will study the behavior and reliability of the more 

generalized weighted k-out-of-n voting system. 

A long-term objective of this research is to create reliability lookup tables for voting systems. 

Ultimately by studying different probability distributions of the output of the experts and running 

synthetic experiments like the ones we developed in this paper, we can construct lookup tables that the 

analyst uses to make decisions about the number of experts to use in implementing a voting system.  

Alternatively, a tool could be developed to study what-if scenarios by submitting parameters about the 

experts and obtaining results in terms of the reliability, confidence, certainty, and probability of 

reaching a consensus. 
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