
Compression for Petabytes of JPEG Images

Amir Said, Debargha Mukherjee
Media Technologies Lab
HP Laboratories Palo Alto
HPL-2007-158

entropy coding,
lossless
compression,
compression
standards, consumer
photography

We propose a new method for parsing image files compressed with the
baseline JPEG/JFIF standard, and re-encoding, without any image quality
loss, its different components using more efficient compression
algorithms. The new method is capable of achieving nearly 20%
additional compression, with speeds of about 15 Mpixels/s for color
images on a 3 GHz Intel Xeon processor. The advantage of using lossless
compression is that it can be easily integrated to current systems and
workflows, and in fact can be deployed in ways that are transparent to the
user or the applications, while effectively saving storage and transmission
bandwidth. These savings are particularly attractive for large scale
imaging business, where the storage or bandwidth costs are a significant
part of the business model.

© Copyright 2007 Hewlett-Packard Development Company, L.P.

External Posting Date: November 21, 2014 [Fulltext] Approved for External Publication
Internal Posting Date: October 21, 2007 [Fulltext]

Compression for Petabytes of JPEG Images

Amir Said, Debargha Mukherjee
Media Technologies Lab

OST – HP Labs, Palo Alto
Amir.Said@hp.com, Debargha.Mukherjee@hp.com

Abstract

We propose a new method for parsing image files compressed with the baseline
JPEG/JFIF standard, and re-encoding, without any image quality loss, its dif-
ferent components using more efficient compression algorithms. The new method
is capable of achieving nearly 20% additional compression, with speeds of about
15 Mpixels/s for color images on a 3 GHz Intel Xeon processor. The advantage of
using lossless compression is that it can be easily integrated to current systems and
workflows, and in fact can be deployed in ways that are transparent to the user
or the applications, while effectively saving storage and transmission bandwidth.
These savings are particularly attractive for large scale imaging business, where
the storage or bandwidth costs are a significant part of the business model.

1 Introduction

Due to the increasing availability of digital cameras, including those in cell phones and
PDAs, large numbers of high-definition images are constantly being created. Figure 1
shows that—even if we exclude photos from camera phones—the number of worldwide
digital photos that are being stored already reached hundreds of billions, and it is esti-
mated that we will have one trillion digital photos by 2011 [12].

From a technical perspective, this number of photos represents an amount of infor-
mation in the order of exabytes (1018 bytes), and all this data needs to be properly
stored and managed [12]. The only reason we can deal with such large volume of data is
because it is stored in a highly distributed fashion, i.e., we have millions of users, each
typically keeping only a few thousand images.

We can still say that image compression is essential for keeping the data storage
costs down, since almost all personal photos are stored in the JPEG compressed image

1

HP Restricted 2

format. However, personal storage prices already fell so much that for the majority
of users there is little incentive to push compression to its limits, and image quality is
now clearly preferred over memory reduction. (This fact was empirically confirmed by
analyzing the image compression ratios chosen by millions of users that upload their
photos to Snapfish.)

On the other hand, there are many companies that provide imaging services, like
photo storage and printing, and personal wireless communications, that need to store,
transmit and manage very large volumes of images, in a much more centralized manner.
For those companies (HP obviously included), compression can be much more valuable.

The amount of image data created by millions of users, with each uploading, trans-
mitting, or storing thousands of photos, is quickly approaching the order of petabytes
(1015 bytes). Consequently, the costs incurred with the transmission, storage, and man-
agement of such quantity of data, become quite substantial for a single company, and
an important part of their cost structure and business model. In those cases it is eco-
nomically very interesting to increase the efficiency of the compression used for images,
even by relatively small amounts, like 10% (which would not be attractive enough for
individual users).

2 Problem Statement

Currently the vast majority of personal digital photos is compressed using the baseline
JPEG compression format [3]. However, it has been nearly 20 years after the devel-
opment of JPEG’s basic technology, and today there are image coding techniques that
are significantly more efficient. In fact, the new JPEG2000 standard [6, 7] was created
for its replacement, but since the widespread adoption of new standards depends on
many factors, including the success of its predecessors (and JPEG had been extraordi-
narily successful), relatively very few applications use JPEG2000, and there is still much
uncertainty about its widespread adoption on consumer products.

In addition, as indicated in Figure 1, there is already an extraordinarily large amount
of images in the baseline JPEG format, and many have very high economic value. Unfor-
tunately, trying to reduce costs by converting those images to new formats (transcoding),
like JPEG2000 or the new proposed Microsoft’s HD Photo, can be quite problematic. It
is necessary to consider many unexpected costs and risks, including

• potential degradation of image quality at each conversion,

• unintended loss of image information (proprietary camera metadata, EXIF data,
etc.),

HP Restricted 3

2004 2006
2008

2010

ROW
EMEA

North America
Worldwide

0
100
200
300
400
500
600
700
800
900

Digital Photos
(billions)

Figure 1: Estimated worldwide cumulative number of stored digital photos, not including
photos from camera phones (source InfoTrends [12]).

• extra cost in the maintenance of multiple formats, changes in established work-
flows,

• unexpected costs with royalties, and other intellectual property issues,

• consumers get confused with formats, options, and conversions.

It is also possible to reduce file sizes by re-encoding the images using the JPEG format,
but with settings for higher compression. While this is certainly an effective way to
reduce bandwidth and storage, it causes irreversible loss in image quality. Thus, before
using this approach it is necessary to consider how much degradation is acceptable, and
to carefully evaluate possible unexpected consequences, including lawsuits for damaging
content.

Under these circumstances, there are not many choices available, but it is still possible
to reduce the costs of JPEG image storage and transmission. One particularly interesting
solution is to re-compress the JPEG data in a lossless, but more efficient representation.
With lossless compression every byte of the original JPEG file is preserved exactly,
allowing reduction in costs, but with very little disruption to current workflows (more
details in the next section). General-purpose methods for lossless data compression,
commonly employing a variation of the Lempel-Ziv algorithms [1, 2, 8], are not suited
for this application, since they yield only 1-3% additional compression when applied to
JPEG files. A very different approach is needed.

HP Restricted 4

ImageZip
compression

ImageZip
decompression Sender Receiver

JPEG file JPEG file ImageZip
file

Wireless,
modem, etc.

ImageZip
compression
ImageZip

decompression

JPEG
files

ImageZip
files User

Image

database

(a)

(b)

Figure 2: Application of ImageZip lossless extra-compression of JPEG files for (a) image
transmission, and (b) image storage. The compression can be transparent to the user
or application because every byte of the original JPEG file is preserved.

3 Our Solution: ImageZip

In order to obtain better compression it is necessary to parse the JPEG file, and re-
encode its different components using more sophisticated compression methods. In this
document we describe a method developed at HP Labs for such purpose, called ImageZip,
with the name chosen to make clear that no data is lost, only better “packed,” just like
in a Zip file. Figure 2 shows two examples where ImageZip compression can reduce
bandwidth and storage use. We can see that an advantage of ImageZip, compared to
transcoding, is that it can be completely transparent to the final user or application,
without producing any loss of information, and unintended change in the data.

It is important to avoid confusing the new compression method with others that have
similar names. Figure 3 presents a diagram that helps understand the differences. On
the top we have general purpose compression methods (i.e., that can be applied to any
data file) like WinZip, commonly based on the Lempel-Ziv algorithms [8]. ImageZip
compression does not belong to this class, the name “zip” was chosen only to help
understanding how the method is used.

ImageZip is also quite different from the lossless profile of the first JPEG standard
(lossless JPEG) [3], or the new JPEG standard for lossless compression, called JPEG-
LS [5, 8]. These compression methods are applied directly to the bitmap (RGB) images.

ImageZip is meant to be applied to files that were created with the baseline com-
pression method, as shown in the bottom Figure 3. It is called lossless, because there is
no further loss of data at this compression stage, but it is important to know that there

HP Restricted 5

Any
file

General Purpose
Lossless Compression

Compressed
data

GZip, Winzip,
LZW, etc

RGB
image

Lossless Image
Compression

Compressed
data

JPEG lossless
mode, JPEG-LS

JPEG
file

Lossless Compression
of JPEG files

Compressed
data

ImageZip,
Stuffit JPEG

JPEG Information
loss

10 – 50 : 1

2 – 2.5 : 1

1.1 – 1.3 : 1

1.00 – 1.05 : 1

Compression ratios

Figure 3: Comparison of different compression methods that are named lossless.

was loss when the JPEG compression was used.

We can also see in Figure 3 the common compression ratios for each method. When
applied to images, or already compressed data, general purpose compression methods
yield almost no further compression. Lossless image compression methods commonly
yield only about 2:1 compression. JPEG compression, on the other hand, allows much
higher compression because it discards information.

3.1 Technical Requirements

During the development of ImageZip we considered the following technical requirements.

1. While information theory predicts that increasingly better compression can be
achieved with higher computational complexity, our method was meant for appli-
cation to millions of images, and thus high computational costs are not acceptable.
In addition, we did not consider asymmetric coding scenarios, i.e., those where en-
coding can be much slower than decoding, or vice-versa.

2. The compression improvement over baseline JPEG has to be large enough to com-
pensate development and maintenance costs. Some estimates indicate that for very
large image databases gains of about 10% or more are sufficiently attractive. How-
ever, note that this objective is in conflict with the first requirement, and achieving
better compression in this case is not as easy as developing new image coding that

HP Restricted 6

is superior to baseline JPEG, since those methods (like JPEG2000) can use different
transforms. Because we need lossless compression of the JPEG-compressed data,
our coding algorithms can only be applied to already-quantized coefficients of the
DCT.

3. In collections with a large number of images, from different sources, we commonly
find many images that do not satisfy the JPEG standard exactly. In addition,
it is also necessary to deal with corrupted files (typically from digital cameras
that are defective, with incorrect implementation, failing batteries, etc.). The
implementation has to simultaneously include compressed flags to accommodate
and code the deviations, but avoid program crashes due to the data corruption.

A very reliable implementation can be based on idea that, in case of doubt, it is better
to keep the image in the original format (which is already compressed anyway), instead
of risking a crash in the encoder/decoder. At the same time, any errors or violations to
the standard that would not affect a displayed image (e.g., marker with incorrect bits),
are compressed together with the image, so that after decompression exactly the same
bits are restored.

3.2 Coding Method

Figure 4 shows how ImageZip compression is related to baseline JPEG. All the image
components are processed and organized in the same manner, and the differences are in
the final compression stages, when 8×8 blocks of DCT coefficients are entropy coded (i.e.,
efficiently represented with a small number of bits). Note that this simplifies considerably
the conversion between JPEG and ImageZip files. Furthermore, it allows re-using many
techniques that had been developed for JPEG, like optimized requantization, compressed
domain scaling, lossless rotation, etc.

While in Figure 4 the coding stages (i.e., where JPEG and ImageZip are different) are
not described in detail, it is important to keep in mind that the coding process requires
quite sophisticated technology. In fact, this can be easily confirmed by counting the
number of patents in the area (not to the mention patent infringement lawsuits).

Designing practical, efficient coding methods, is both art and science. On one hand,
the fundamental theory, which is valid for any data source, has been established by
Claude Shannon and other long ago [8, § 1]. On the other hand, practical methods
have to take several conflicting objectives into account, and the innovation consists in
choosing the right combination of techniques. For instance, below we describe some
main factors to be taken into account in the design of an image coding method.

Flexibility: there is great variability in natural images, so a good compression method

HP Restricted 7

 Color
transform

Full image (up to
4 colors)

Image

MCU
Organization

Discrete Cosine
Transform (DCT)

DCT Coefficient
Quantization

 Zig-zag
Scan

 Multi-path
Scan

 Arithmetic
Coding

ImageZip file JPEG file

Image blocks (up to
16×16 & 4 colors)

8×8 block
(1 color)

64-element array
(fixed/floating point)

64-element array
(integer)

DCT coefficient
value

Bits

 Huffman
Coding

Figure 4: ImageZip uses nearly the same image coding components as JPEG. It differs
only at a very low level, when DCT coefficients in 8×8 blocks are entropy coded, enabling
efficient lossless format conversion.

HP Restricted 8

should be equally efficient in images that look as different as landscapes, face
portraits, group shots, etc.

Intelligence: the method quickly learn about an image’s particular characteristics, and
automatically create models that can improve compression.

Low complexity: information theory shows how to improve compression using increas-
ingly more complex models. However, increasing a model’s order can produce ex-
ponential growth in computational complexity, so a series of techniques have to be
employed to keep the use of computational resources under control.

Structure: it is not possible to satisfy the conflicting objectives mentioned above with-
out using some well defined structures, which have to be carefully chosen to rep-
resent properties that are particular to the data (in our case, the result of a two-
dimensional discrete-cosine-transform applied to 8× 8 image blocks).

In this section we present the methods used for coding in ImageZip, and explain
why they were chosen. They leverage several years of image and data coding research
at HP Labs, and more information is available in the references, especially the HP Labs
technical reports [9, 10, 11, 13].

Due to space constraints, some details are not included, but it is interesting to note
that in the coding method designed for ImageZip we have about 1,500 “intelligent agents”
(adaptive models), that effectively learn only the necessary statistical properties in each
image, in order to obtain good compression with very low complexity.

3.2.1 Scan of DCT Coefficients

An important part of the new compression method is a change in the order in which the
63 AC DCT coefficients are entropy-coded. JPEG follows the well-known zigzag order,
starting from the low-frequency coefficients, and finishing with the end-of-block (EOB)
symbol. The problem with this scan sequence is that it is only partially based on a
statistical property that can be exploited for compression: it saves bits by compactly
coding the zeros at the end, using the EOB) symbol. However, it is not very effective,
especially to code blocks with more pronounced vertical or horizontal edge or gradient
orientations, when the important coefficients are concentrated on block borders. This,
in turn, requires using special schemes to deal with the runs of zero symbols that are
interleaved with the larger coefficient values [4].

ImageZip uses a scan order that avoids these problems in two ways [13]. First, instead
of using a single scan sequence for the whole block, it uses three fixed and independent 21-
element scan sequences, as shown in Figure 5, which were chosen based on the statistical
properties of the DCT coefficients. If we start from the high frequencies, then along each

HP Restricted 9

JPEG

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
�
�	

?�
��
�
��
-
�
�	
�
�	
�
�	

?�
��
�
��
�
��
�
��
-
�
�	

�
�	
�
�	
�
�	
�
�	

?�
��
�
��
�
��
�
��
�
��
�
��
-
�
�	

�
�	

�
�	

�
�	
�
�	
�
�	
�
�	-�

��
�
��
�
��
�
��
�
��
�
��
?

�
�	

�
�	

�
�	

�
�	
�
�	-�

��
�
��
�
��
�
��
?

�
�	

�
�	

�
�	-�

��
�
��
?

�
�	-

ImageZip

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

@
@I

��
��
�
6�

�	�
�
�
���

�	
�
�	
6
�
��

6

)�
��

6�
�	
6

6�
�	
6

6
@
@I
-
6

��
��
��
��

6�
�	
�
�	�
�
�
���

�	
6�

�	
6�

�	
6

��

��
6�

�	��
��������

��������
��
�
��������

��
��
��
��
��
�
6

6

Figure 5: In the JPEG standard the DCT coefficients are coded following a single zigzag
scan, from low frequencies, while in ImageZip they are divided in three sequences, which
are coded following scans beginning from high frequencies.

scan the variance of the DCT coefficients is expected to always increase. This property
can be very effectively employed for additional compression, and in fact, ImageZip uses a
new entropy coding method (described in Section 3.2.3, which was specifically designed
to exploit this statistical feature.

3.2.2 Symbol Grouping

Symbol grouping is a technique that allows great reductions in the complexity of the
entropy coding. In fact, one form of this technique is already used by the JPEG standard.
The basic idea is that we do not want to spend any computational power trying to
code data components that we know (from information theory principles) that cannot
be compressed. A theoretical analysis of the symbol-grouping technique, including the
reasons why it is so effective, is presented in report [11].

In the top of Figure 7 we show the form of symbol grouping used by JPEG. Each DCT
coefficient value (a signed integer) is decomposed into three elements: group number,
coefficient sign, and index. Complexity is reduced because only the group number is
entropy coded, while the sign and indexes are saved in simple binary format (“raw”
bits).

There is always a price to pay for this reduction in complexity, and the JPEG stan-
dard uses a form of symbol grouping that produces a small, but not insignificant loss.
However, we have shown [11] that the loss in compression required by symbol grouping
can be made negligible, even with small changes in complexity, and this property is
used by the ImageZip compression. As shown in Figure 7, the ImageZip implementation

HP Restricted 10

Advanced
entropy
encoding

C S S Advanced
entropy
decoding

(a) Standard

Advanced
entropy
encoding

Data
merging

Simple
binary

encoding

S

X Simple
binary

decoding

Advanced
entropy
decoding

Cg G G Data
separation

S

X Cx

(b) Using symbol grouping

Figure 6: Symbol group allows great reduction in computational complexity with negli-
gible loss in compression by applying advanced entropy coding only to the information
that can be effectively compressed.

reduces the redundancy (loss) to negligible values by partitioning the source alphabet
into a larger number of groups. While JPEG uses at most 12 groups, we have at most
22 groups—nearly twice, but still much smaller than the thousands of symbols in the
original alphabet.

3.2.3 Entropy Coding

In the design of entropy coding methods it is necessary to find compromise between
compression efficiency and computational complexity. As we use more sophisticated
coding methods, even with the symbol grouping technique defined in Section 3.2.2, we
still can have large increases in complexity yielding only small gains in compression.

While designing ImageZip we had to consider that we needed compression that is
significantly better than JPEG’s, which is fairly efficient. For that reason, we decided to
use some efficient implementations of adaptive arithmetic coding.

The theory and practice of arithmetic coding, and the development of efficient imple-
mentations, exploiting the fact that currently even low-cost embedded processors sup-
port fast 32-bit arithmetic, is presented in report [9] (which is also a chapter in [8, § 5]).
Another report [10], presents the experimental results showing that its computational
complexity now comparable to Huffman coding.

While adaptive arithmetic coding yields more compression than the Huffman codes
used by JPEG, it is not sufficient. The compression had to be made significantly more
efficient by exploiting the statistical properties of the DCT coefficient scan order pre-

HP Restricted 11

(a) JPEG

Data type:

DCT coeff. value

Group number

Sign, index

0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14 ±15

0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4

± ±, 0 ±, 1 ±, 0 ±, 1 ±, 2 ±, 3 ±, 0 ±, 1 ±, 2 ±, 3 ±, 4 ±, 5 ±, 6 ±, 7

(b) ImageZip

DCT coeff. value

Group number

Sign, index

0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14 ±15

0 1 2 3 4 4 5 5 6 6 6 6 7 7 7 7

± ± ± ±, 0 ±, 1 ±, 0 ±, 1 ±, 0 ±, 1 ±, 2 ±, 3 ±, 0 ±, 1 ±, 2 ±, 3

Figure 7: The symbol grouping for complexity reduction: group numbers are entropy
coded, and sign and indexes are saved in simple binary form. JPEG has DCT coefficient
values grouped according to blog2(|n|+ 1)c (where n is an integer), while ImageZip
groups symbols according to b2 log2(|n|)c, for |n| > 1, reducing the compression loss
(i.e., redundancy).

sented in Section 3.2.1. The main idea behind the new coding method is to exploit the
approximate order, simultaneously coding and dividing the data sequence in segments
of elements with similar statistical properties. This way all these elements are coded
with reduced-size alphabets, optimizing the coding process.

From the techniques described in the previous functions, the coding algorithm is
applied to sequences of 21 non-negative integers, in the form {v0, v1, . . . , v20}, each equal
to a group number of the corresponding DCT AC coefficient value, in one of the new
scan sequences shown in Figure 5, Note that vi ∈ {0, 1, . . . , 21} (cf. Section 3.2.2).

Following these definitions, the coding algorithm is basically defined as

1. For each 8 × 8 block, use a binary alphabet to code whether all symbols in all
the three sequences are zero. This information can be coded using as context (for
conditional entropy coding), for example, how many times the same event occurred
on previous adjacent blocks. If they are all equal to zero then move to the next
block. Otherwise go to step 2.

2. For each of the 3 scans in a block initialize state variables t = 0 and n = 21.

(a) Code the position p < n of the last coefficient in the sequence with value
greater than t (called segment separator), using p = −1 to indicate if no such

HP Restricted 12

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

8 9 6 5 4 6 3 3 2 1 0 0 1 1 0 0 0 0 0 0 0

State Separator position Segment separator Data segment
n t Value Alphabet Value Alphabet Values Alphabet

21 0 p = 13 {−1, 0, 1, . . . , 20} v13 = 1 {1, 2, . . . , 21} {v14, v15, . . . , v20} {0}
13 1 p = 8 {−1, 0, 1, . . . , 12} v8 = 2 {2, . . . , 21} {v9, v10, v11, v12} {0, 1}
8 2 p = 7 {−1, 0, 1, . . . , 7} v7 = 3 {3, . . . , 21} ∅ {0, 1, 2}
7 3 p = 5 {−1, 0, 1, . . . , 6} v5 = 6 {4, . . . , 21} {v6} {0, 1, 2, 3}
5 6 p = 1 {−1, 0, 1, . . . , 4} v1 = 9 {7, . . . , 21} {v2, v3, v4} {0, 1, . . . , 6}
1 9 p = −1 {−1, 0} {10, . . . , 21} {v0} {0, 1, . . . , 9}

Figure 8: Example of data sequence with a typical set of 21 group numbers to be coded,
and table with the corresponding results of the process of simultaneously subdividing
and coding the sequence in segments with similar values. Different codes, with possibly
different alphabets sizes are used for each type of information.

value is found. The separator position p is coded using an alphabet with
symbols {−1, 0, 1, . . . , n− 1}.

(b) If p ≥ 0 then code the value of the segment separator vp using alphabet
{t + 1, t + 2, . . . , M}, where M is the maximum possible group number of a
DCT coefficient.

(c) If t > 0 then code the values of all coefficients in the segment {vp+1, vp+2, . . . , vn−1}
using alphabet {0, 1, . . . , t}.

(d) Set t = vp and n = p.

(e) If p > 0 then return to step 2(a)

(f) If last scan in the block then go to step 1, otherwise go to step 2.

Figure 8 shows an example of a 21-element sequence, a table with the data that is
coded, and the corresponding code alphabets.

Note that the algorithm described above only provides an outline of how the data
is coded. To obtain best results, it is combined with several other commonly-used
techniques. For example, each type of data is coded using a combination of contexts,
that depend on previously coded data and other factors, like the position of the element
in the scan. Furthermore, the arithmetic codes are all based on adaptive models, i.e.,
they use a number of bits per symbol defined by probability estimates that are constantly
being updated.

HP Restricted 13

Table 1: Comparison of compression ratios and speed.

Method Speed
(seconds/Mpixel)

Compression
 ImageZip 0.05 18%
 IJPG decoder 0.16 NA
 Stuffit 0.72 25%
 JPEG + AC 0.13 12%

4 Evidence that the Solution Works

We currently have a fully functional implementation of this new compression method,
and thanks to Snapfish, which allowed us to access JPEG files in their consumer photo
database, our program has been already tested in more than 1.5 million photos!
This was extremely important, because it enabled us to confirm that the technical re-
quirements stated in Section 3.1 are being satisfied for the large variety of photos that
we find in consumer applications. (See Section 6 for more comments on reliability.)

Figure 9 shows a typical distribution of compression ratios on sets of consumer photos.
This particular histogram was obtained from 50,000 images randomly selected from
the Snapfish database. Note that in nearly all the cases we get at least 13% extra
compression, and while the average compression ratio is about 18%, many photos are
compressed with larger ratios. Interestingly, the compression ratio averaged using the
image size as weight is nearly the same as for individual images, showing that the same
type of compression is obtained for small and large images.

Speed tests have shown that ImageZip has nearly symmetrical computational com-
plexity, i.e., the conversion from JPEG to ImageZip and from ImageZip to JPEG take
nearly the same time. The average conversion speed in the images tested for obtaining
the graph in Figure 9 is about 15 Mpixels/second, for color images, on a 3 GHz Intel
Xeon processor.

Table 1 shows a summary of the compression and speed comparisons, on a set of
50,000 photos of the Snapfish database.

5 Competitive Approaches

As explained before, the ImageZip solution is the result of many years of development
of compression technologies at HP Labs, and each of its component techniques has been
extensively tested and compared to competitive approaches. In this section we provide

HP Restricted 14

Typical distribution (50,000 images)

0

5

10

15

20

25

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Compression ratio (%)

Pe
rce

nt
ag

e o
f im

ag
es

Figure 9: Histogram with typical distribution of extra compression ratios (i.e., over
JPEG compression) obtained with ImageZip. Results obtained on 50,000 images ran-
domly selected from a Snapfish database.

HP Restricted 15

some more information on competitive approaches, for this specific application.

Since our objective and also the constraint was to create a solution for lossless com-
pression of JPEG images, it only makes sense to compare against other solutions that
also achieve the same objective. On the other hand, it does not make sense to compare
against other image compression algorithms such as JPEG2000. In that sense, the only
two other solutions that compete with ImageZip are:

1. JPEG with arithmetic coding, and

2. Stuffit (a commercial product).

JPEG with arithmetic coding achieves roughly 10–15% extra compression on an
average, while Stuffit achieves about 22–28% compression. While ImageZip achieves
20% compression on average, it does so at a significantly lower complexity than Stuffit.
In particular, ImageZip is 20 times as fast as Stuffit, and twice as fast as JPEG with
arithmetic coding. This makes ImageZip a solution very suited for back-end compression
for image storage databases.

6 Current Status

Due to the special need of also supporting JPEG photo files that violate the standard,
a completely new parser of JPEG files was written for ImageZip. It supports all the
standard baseline modes, including less common modes, like 4-color images. It does not
support any files that are not in the baseline profile. The header information (EXIF,
etc.) is also compressed in a lossless manner.

ImageZip’s program was designed to be extremely reliable, and it continues to un-
dergo reliability tests. At this stage, its implementation was tested in more than 1.5
million photos, of the Snapfish database. The compression program did not crashed in
any of those images. On average, about 1.5% of the images were saved without further
compression because they were too damaged, or in a format that is not supported.

The ImageZip solution has been delivered to HP Snapfish for potential use in back-
end compression for their petabytes of customer JPEG images, which potentially can
save Snapfish significant amount of storage costs. It has also been considered for licensing
to cell phone carriers, which can save bandwidth in the transmission of photos from
mobile phones.

HP Restricted 16

7 Next Steps

There are many situations where it is very interesting to process photo images in the
compressed domain, or use “shortcuts” for obtaining a more efficient form of image
processing. As we can see in Figure 4, because it shares most of the “image compression
pipeline” with JPEG, ImageZip can easily leverage nearly all the techniques developed for
JPEG. We are currently working on adding new functionality to the ImageZip program,
including image resizing and lossless rotation. In addition, while we found that the
current implementation is quite fast, we are considering that to effectively work on
millions of images, it is best to continue optimizing the code, and use high performance
libraries, like Intel’s IPP.

For instance, when resizing a JPEG image, it is not necessary to recover the full RGB
image, and it is more efficient to do it in the YCrCb color space. Figure 10 shows a
comparison of the processing stages required with and without integration of resizing
and compression.1 Note that the integrated version is much simpler, and thus can be
significantly faster. Furthermore, by avoiding repeated resizing operations and rounding
of the image pixel values, the integrated version can also produce images with better
quality. The resizing program can also use new interpolation kernels [14], developed to
simplify the determination of resizing filters that yield the best image quality, and that
avoid some common artifacts created by low-complexity image downsizing.

References

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. Inform. Theory, vol. 23, pp. 337–343, 1977.

[2] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate cod-
ing,” IEEE Trans. Inform. Theory, vol. 24, pp. 530–536, 1978.

[3] International Telecommunication Union (ITU), Digital Compression and Coding of
Continuous-Tone Still Image: Requirements and Guidelines, ITU-T Recommenda-
tion T.81, Geneva, Switzerland, 1992 (JPEG/JFIF standard).

[4] N. Memon, Adaptive Coding of DCT Coefficients by Golomb-Rice Codes, Hewlett-
Packard Laboratories Report, HPL–1998–146, Palo Alto, CA, 1998.

[5] M.J. Weinberger and G. Seroussi, From LOCO-I to the JPEG-LS Standard,
Hewlett-Packard Laboratories Report, HPL–1999–3, Palo Alto, CA, Jan. 1999.

[6] D.S. Taubman and M.W. Marcellin, JPEG 2000 Image Compression Fundamentals,
Standards and Practice, Kluwer Academic Publishers, Boston, 2002.

[7] D.S. Taubman and M.W. Marcellin, “JPEG2000: standard for interactive imaging,”
Proc. IEEE, Vol. 90, pp. 1336–1357, Aug. 2002.

1In this figure ‘JLC’ is the file format used by ImageZip.

HP Restricted 17

JPG

Y Cr Cb

R G B

R G B

Y Cr

Cb

Y Cr

Cb

JPG JLC

1. Decompression

2. Chrominance resizing
Y

Cr

Cb

6. Chrominance resizing

7. Compression

4. RGB image resizing and
rounding

3. Color conversion and
rounding

5. Color conversion

(a) Independent image resizing and JPEG or ImageZip compression.

JPG

Y

Cr

Cb

Y

Cr

Cb

JPG

JLC

1. Decompression

2. YCrCb image resizing

3. Compression

(b) Image resizing fully integrated with JPEG or ImageZip compression.

Figure 10: The integration of image resizing and compression can significantly reduce
the overall computational complexity, and also improve the quality of the final images.

HP Restricted 18

[8] K. Sayood (ed.), Lossless Compression Handbook, Academic Press, San Diego, CA,
2003.

[9] A. Said, Introduction to Arithmetic Coding Theory and Practice, Hewlett-Packard
Laboratories Report, HPL–2004–76, Palo Alto, CA, April 2004.

[10] A. Said, Comparative Analysis of Arithmetic Coding Computational Complexity,
Hewlett-Packard Laboratories Report, HPL–2004–75, Palo Alto, CA, April 2004.

[11] A. Said, On the Reduction of Entropy Coding Complexity via Symbol Grouping: I -
Redundancy Analysis and Optimal Alphabet Partition, Hewlett-Packard Laborato-
ries Report, HPL–2004–145, Palo Alto, CA, August 2004.

[12] Ed Lee, The Image Storage and Management Dilemma, InfoTrends Strategic As-
sessment, Weymouth, MA, Jan. 2007.

[13] A. Said, Transform Coefficient Compression Using Multiple Scans, US Patent
7,190,840 B2, March 2007 (filed Jan. 2002).

[14] A. Said, “A new class of filters for image interpolation and resizing,” IEEE Int.
Conference on Image Processing, San Antonio, TX, Sept. 2007.

