
 

                                                       

       
ReCEPtor: Sensing Complex Events in Data Streams for Service-Oriented 
Architectures 
 
Mingzhu Wei, Ismail Ari, Jun Li, Mohamed Dekhil  
Digital Printing and Imaging Laboratory  
HP Laboratories Palo Alto 
HPL-2007-176 
November 2, 2007*  
  
 
data stream, complex 
event processing, 
SOA, query plan, 
EPL 

All mission-critical applications read or generate raw data streams and require 
real-time processing of these streams to collect statistics, control flow and detect 
abnormal patterns. A trend which has gained strong momentum in different 
industry sectors is the use of Complex Event Processing (CEP) over streams for 
all critical business processes, thus pushing its span beyond military and financial 
applications. A parallel trend has been the re-architecting of existing business 
processes with Service Oriented Architecture (SOA) principals to provide 
integration and interoperability. This requires use of middleware that incorporates 
web services, Business Process Management (BPM) systems or an Enterprise 
Service Bus (ESB), and in some cases Business Rule Engines (BRE). There is a 
gap between the new generation of business processes which desperately need 
CEP and the proposed CEP engines that were not built with SOA in mind. These 
engines either don’t support the flexible, dynamic and distributed business 
applications deployed in SOA or they try to merge the middleware with the CEP 
engine as one big proprietary package.  
 
This paper describes the design and implementation of our CEP engine called 
ReCEPtor, which can sense complex events in data streams in real-time. Our 
modular architecture describes how to integrate ReCEPtor with different business 
applications in different platforms either directly or by using an off-the-shelf 
BPM system and a platform adapter. We address issues related to CEP system 
flexibility, interoperability, scalability and performance in this paper. We also 
discuss novel concepts such as sequence operators, query plan adaptation, and 
scheduling for progressive flow. We can already process ~15 requests/second 
through the 3-Tiers (web services, orchestration, and database) of our prototype 
end-to-end and without tuning and we are currently working on achieving higher 
speeds. 
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Abstract 

All mission-critical applications read or generate raw data streams and require real-time processing of these 
streams to collect statistics, control flow and detect abnormal patterns. A trend which has gained strong 
momentum in different industry sectors is the use of Complex Event Processing (CEP) over streams for all 
critical business processes, thus pushing its span beyond military and financial applications. A parallel trend 
has been the re-architecting of existing business processes with Service Oriented Architecture (SOA) 
principals to provide integration and interoperability. This requires use of middleware that incorporates web 
services, Business Process Management (BPM) systems or an Enterprise Service Bus (ESB), and in some 
cases Business Rule Engines (BRE). There is a gap between the new generation of business processes which 
desperately need CEP and the proposed CEP engines that were not built with SOA in mind. These engines 
either don’t support the flexible, dynamic and distributed business applications deployed in SOA or they try 
to merge the middleware with the CEP engine as one big proprietary package. 

This paper describes the design and implementation of our CEP engine called ReCEPtor, which can sense 
complex events in data streams in real-time. Our modular architecture describes how to integrate ReCEPtor 
with different business applications in different platforms either directly or by using an off-the-shelf BPM 
system and a platform adapter. We address issues related to CEP system flexibility, interoperability, 
scalability and performance in this paper. We also discuss novel concepts such as sequence operators, query 
plan adaptation, and scheduling for progressive flow. We can already process ~15 requests/second through 
the 3-Tiers (web services, orchestration, and database) of our prototype end-to-end and without tuning and 
we are currently working on achieving higher speeds. 

1 Introduction 

A data stream is a real-time, continuous, unbounded, possibly bursty and time-varying sequence of 
data elements. These data elements could be either relational tuples [41] as seen in traditional 
databases or structured Extensible Markup Language (XML) elements [57]. Many applications 
generate data streams including sensor networks [45,23,12], financial tickers [23], news feeds 
[39,61], online auctions [53,46], web click-stream [20,14], network-system-traffic monitors [7,3], 
and supply chain systems with Radio Frequency Identification (RFID) tracking [26]. Organizations 
running these systems and applications need continuous monitoring and real-time processing of 
data streams to complete mission-critical tasks and to survive their competition.  

It is quite challenging to continuously analyze and merge raw data streams so that the results make 
actionable and operational sense. This is the goal of CEP or Event Stream Processing (ESP), which 
has recently gained strong momentum both in the academia and in the industry. Specifically, retail 
and financial industries present many business-critical use case scenarios, which can be categorized 
as complex events. We present two running examples in this paper related to these two industries: 
real-time personalized retail campaign management and detection of high-value financial customers 
over multi-channels of a bank. To detect such events, retailers need to monitor inventory levels and 
banks need to know immediately when a valuable customer contacts them for an offer. Lots of 
information is buried inside raw data streams, but the real actionable results can be generated via 
CEP. One can try to use raw streams directly to make business sense, but this is both impractical 
due to the need for manual parsing of huge data volumes and insufficient as higher payoffs are 
usually gained from complex scenarios. 
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SOA and Web Services (WS-*) are being prevalently used today to address integration and 
interoperability problems of distributed Information Technology (IT) services and applications. 
New services are being developed and deployed and existing components are being wrapped as 
web services for reuse. A BPM system or an ESB lies at the core of SOA to provide message 
routing and choreography among these open services, so that the dynamic, distributed applications 
can be implemented and can make progress consistently. A CEP engine can be an invaluable 
component inside a SOA by sitting on top of raw data streams and providing simple and complex 
event sensing features to these applications and services. Proposed CEP engines focus on new 
language semantics, performance, and robustness aspects of design putting less effort on flexibility, 
interoperability and reusability of these engines. We find these aspects to be especially critical for 
wide adoption of CEP in service-based or event-driven architectures (EDA) [44].  

To sense complex events in data streams address mentioned challenges and implement novel use 
cases, we built a CEP engine called ReCEPtor on top of a Data Stream Management System 
(DSMS) called CAPE. Our goals include detecting complex events in real-time, making CEP 
engine flexible and reusable for different applications that react to complex events, supporting 
online query registrations, exploiting sharing among multiple queries, and finally investigating 
performance and scalability issues that arise with high-speed streams. We used an algebraic 
approach instead of automaton for generating the stream operators and the query plan. We find our 
approach to be inline with the novel dataflow paradigm adopted by other recent projects.  

We integrated our CEP engine with web-based and desktop proof-of-concept applications that we 
designed for demonstration purposes. We show that ReCEPtor can serve different applications for 
different industries. Specifically, we investigated the retail and retail banking environments. Using 
CEP creates new service opportunities for these industries including multi-channel customer 
tracking and prospect detection, real-time micro-campaigns, demand shaping, arbitrage and fraud 
detection, business process activity monitoring [25], and finally exception handling [40]. Finally, 
we also demonstrate platform independence by combining .NET and Java implementations using 
Common Object Request Broker Architecture (CORBA). As minor contributions in this paper, we 
discuss a list of complex event scenarios with real motivations in the industry and provide a 
comprehensive discussion for open and interesting research problems. 

The next section summarizes basic concepts in data stream systems and compares them to Database 
Management Systems (DBMS). We describe the overall CEP architecture in Section 3 and CEP 
engine design details in Section 4. Section 5 gives preliminary performance results, implementation 
details of the current prototype and shows proof-of-concept applications. Section 6 compares and 
contrasts our work with other related work. Section 7 concludes the paper and summarizes 
interesting future work.  

2 Background 
In this section, we introduce basic concepts in data stream processing research. First, we compare 
traditional DBMS with Data Stream Management Systems (DSMS) and list complex event 
characteristics to emphasize their differences. Next, we overview stream query languages and 
introduce basic stream operators, which are used to write continuous queries submitted to DSMS. 
Finally, we describe the sliding-window stream join operator, which can be used to detect complex 
patterns. 
2.1 DSMS vs. DBMS 

Data stream management systems [43,19,1,46] operate in a different mode than any other known 
databases and database extensions including Active databases [42], or Operational Data Store [31]. 
Figure 1 illustrates some of these differences. First, in DSMS the data from streams are processed 
or queried on-the-fly before they are (optionally) persisted into the database. Second, a data stream 
is unbounded (it keeps coming) and therefore queries are registered with the DSMS once and stay 
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there (forever or for a while) instead of being one-time request-responses. Finally, queries can be 
window-based which makes them suitable for quick detection of violations and abnormal sequences.  

 
Figure 1: DBMS are characterized by requests followed by synchronous responses. In DSMS a 
continuous query is registered once and the responses are received as a stream asynchronously. 

To emphasize the unique use cases for DSMS and CEP, we list three main categories of complex 
events that we frequently observe. First class is threshold-violations or filtered queries [61]. It is 
often the case that stream readings are continuously checked and compared against a pre-defined 
value to see whether a Boolean predicate (=,<, ≥) is satisfied. The second class constitutes of 
temporal or spatial [60] event patterns such as sequences of correlated events [48,26]. For example, 
when a credit card is used in the East and West coasts (spatial) within a few minutes (temporal), 
then we would suspect of a fraud. Finally, we observe a third class of complex events which 
contains non-occurrence of events. A “shoplifting” activity in a retail store of an RFID-tagged item 
contains the “non-occurrence of a Point of Sale (POS) reading” [26] after the shelf and before the 
gate readings. Note that many complex events will also entail a sliding window and a session 
(begin-end) constraint. Different complex events can be cast into these three categories. 
2.2 Stream Query Languages 

Stream query languages [23,7,26,58,52] such as Continuous Query Language (CQL) in STREAM 
system [7,20] use similar syntax to Structured Query Language (SQL) of DBMS, but extend it with 
operators required for continuous stream processing. These languages are used to write the query 
statements that will be registered with a DSMS. A continuous query statement commonly carries 
the following components: 

 
SELECT clause specifies the format of the output data, it can use a projection operator to project a 
few or all (*) columns from an input stream as in A.EventType to the output. Similar to SQL 
aggregations such as Count, Sum, Min, Max, Avg can also be used with SELECT. FROM clause 
specifies the source data stream(s) that will be used to make the selections. Since a data stream is 
unbounded, we cannot wait forever to compute the query results. Therefore, a “window” constraint 

Answer 
Stream 

Continuous 
Query 

Data 

Answer 

Data 

Query 

Query 

SELECT   …Output data  
FROM     …Stream 
[WHERE]   …Predicate 
[WITHIN] …Window size 
[EVERY] …Window slide 
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is proposed to approximate and process a finite subset of the streams, which is specified by the 
WITHIN clause. There are different options for windows management: time-based (last 10 
minutes), tuple-based (last 1000 tuples), or value-based (values 2t, 2t+5 in an increasing sequence) 
[23,14]. Since queries execute continuously, we need to keep advancing the window to process 
newly arriving data. EVERY clause defines how far to move a sliding window or with which 
interval to refresh the results. The time-based window will usually be periodic and the others non-
periodic [37]. In addition, periodic windows can slide in an overlapping, tumbling or hopping 
fashion [37,16]. WITHIN and EVERY clauses are respectively called RANGE and SLIDE in CQL 
[7]. Other temporal clauses (AFTER, AT, UNTIL, SINCE [3], DISTINCT [28]) and set clauses 
(EXCEPT [16]) were also suggested in the literature. Optionally, an operator can PUBLISH [61] or 
INSERT [7] its output stream to be reused by other queries registered in the system to increase 
efficiency. We discuss these details in Section 4. 

Consider the following example where retail shoppers with loyalty cards visit a store kiosk to 
obtain personalized coupons based on their shopping history. To monitor the success of its real-time 
promotional campaigns and tune algorithms, the retailer wants to track how many personalized 
coupons were viewed within the last 10 minutes and refresh the results every minute. We can 
register this query using a CQL statement as below: 

SELECT Count(*) 
FROM   Coupons 
WHERE  Coupons.State = “Viewed” 
WITHIN 10 minutes 
EVERY  1 minute 

 
When stream query languages are extended further with operators to support complex event 
processing, they are sometimes called Event Processing Language (EPL) [5,26,33,61].  
2.3 Time-based Sliding Window Join 

We use join operators (indicated by ) to implement event sequence queries with sliding windows 
[58,34]. Consider the query below, which finds the pair of tuples with the same identifiers in 
streams A and B within one hour. A binary-join operator could be used in the query plan to 
implement this query shown in Figure 2. This operator maintains both A and B states for the two 
sides to hold the arriving tuples. Each new stream A tuple should join with those tuples in B’s state 
whose time difference is less than 1 hour. Therefore, we need to run three basic operations build, 
purge and probe for each new arrival. 

 

SELECT A.Name, B.Amount 
FROM   A, B 
WHERE  A.Id = B.Id 
WITHIN 1 hour 

Figure 2: Sliding window-based join  

Build means inserting a new tuple say from stream A to the state of A. Purge means comparing the 
timestamp of this new A tuple with the timestamps of all the tuples in B’s state to purse out-of-date 
(i.e. out-of time-window) tuples. After the out-of-date B tuples are purged A tuple will probe B’s 
remaining state to get the matching results for the Id equivalence. Similarly, new arrivals from 
stream B will follow the same build, purge and prove operations on A’s state. Note that purge has 
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to be executed before probing to avoid reprocessing of B’s state for out-of-date tuples on new 
arrivals and reduce computational overheads. While efficient, this method can lead to incomplete 
event retrieval in the existence of out-of-order arrivals in data streams [34]. 

3 CEP Architecture 
Figure 3 shows our CEP architecture and integration with business-level applications. We identify 
four layers of interest (from bottom to top): 1- Raw data streams, 2- CEP engine, 3- Middleware, 
and 4- Applications such as visualization and monitoring tools. It is also possible to view this 
architecture in 3-Tiers where the web services constitute Tier-1, the orchestration or the application 
server constitutes Tier-2, and the event repository in the database constitutes Tier-3. CEP engine 
could belong to either Tier-1 (“CEP As A Service”) to be directly used by applications or Tier-2 
(CEP through BPM) in a SOA to be coordinated with other services before being used by 
applications. We show the second option here. 

 
Figure 3: Complex Event Processing (CEP) for Service-Oriented Architectures. 
3.1 Raw Data Streams 

Continuous data streams are the inputs that activate our CEP engine. Retail and financial industries 
deliver a big variety of raw data streams including monetary transactions, stock quotes, Customer 
Relationship Management (CRM) system records, online click-streams, and kiosk interactions. Our 
system can either read streams from real-applications through different I/O communication 
mechanisms like sockets or generate streams internally for testing and emulation purposes. The 
stream/load generator illustrated in Figure 3 schedules tuples either by using a historical trace file or 
relying on a schema and a distribution function like Poisson.  
3.2 CEP Engine Overview 

Our CEP engine has a control plane and a data plane as shown in Figure 3. Similar architectures can 
be found traditional and data snooping routers [8]. The control plane accepts multiple continuous 
queries and places them in a running query plan by exploiting sharing among the queries. The data-
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plane is where all the processing takes place on raw data streams that are passing through. The 
output of the data plane is either statistics (Count, Avg, etc.) or complex events. Continuous queries 
written using a special EPL can be registered with the CEP engine through a management console. 
Optionally, a plan can be instantiated from a previously designed “query plan template” file for an 
application by only updating required parameters. There could also be an already running plan and 
the new query could be added to it as described in Section 4.3. The scheduler inside the engine will 
schedule tuples from streams to relevant operators’ I/O queues. It decides the operator execution 
sequence. Stream operators such as Select, Join, and Aggregators are operationally similar to their 
SQL counterparts, but have completely different internals due to their time-based capabilities. For 
example, operators maintain states as described in Section 2.3, retain them in a Hashtable or a 
Queue structure, and sort the tuples based on the arrival timestamps. We design new operators 
(described in Section 4.3) to detect complex event patterns while also promoting sharing among 
similar concurrent queries. 

Given the registered queries, the CEP engine has to generate a query plan, which is a list of 
required stream operators, their attributes and connections among them. To enable reuse of 
operators for sub-streams and increase plan flexibility, we need other intermediate operators. We 
define COPY (Y) and SPLIT (П) operators in Section 4.3.2 and describe how to utilize them to 
improve the efficiency and flexibility of query plans with multiple queries. The query results can be 
sent to applications directly via TCP/IP sockets or through the middleware. Design and 
implementation details of CEP engine are given in Section 4. 
3.3 Middleware and Business Processes 

Middleware glues the CEP engine to the business application layer through web services and other 
bridges including CORBA. This level includes a business process also called a workflow that 
implements the distributed application logic. This process stores events into an event repository 
until they are retrieved by applications such as Business Activity Monitoring (BAM) tools. BAM is 
an application that can probe into business processes to monitor certain statistics [25]. With the help 
of CEP, BAM can also be used to observe occurrences of interesting events. 

  
Figure 4: (a) Orchestration and (b) its published web services that integrate CEP to applications. 

Our current workflow represents drastically simplified application logic and provides just two 
functionalities. One is to listen to query output from the CEP engine and the other is to listen to the 
requests from the application level. We implement it as an orchestration inside a BPM system by 
Microsoft called Biztalk. Figure 4 shows both the workflow and the methods published as web 
services. SetNewEvent method places new events it receives from the CEP engine into the complex 
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event repository. GetNewEvent listens to the application side and checks whether there are any new 
events in the repository that have not been fetched before to return these to the querying 
applications. The workflow sets a flag for new events and resets them after they’re fetched. 
Complex event messages are sent from CEP to the workflow via Simple Object Access Protocol 
(SOAP). We will extend this demo workflow to support industrial strength use cases. 

These simple functions could be implemented as web services directly on top of the database. 
However, this would limit the extensibility and flexibility of our system. For example, if we want to 
add a rule where “new events that have not been consumed by the manager’s web portal within two 
minutes, should be sent to the manager via email or a short message”, then we would need to (1) 
use a business rule engine (BRE), (2) be able to integrate with the email and SMS systems, and (3) 
understand business-level semantics to alert the manager about a “fraud” or “sales opportunity”. 
These capabilities are beyond what a CEP engine core could and should provide. 

It is crucial to note that we did not insert a BRE inside the CEP engine in our architecture, which 
differentiates our architecture from related work [3,5] and other pub/sub based CEP systems. We 
choose this approach because complex events usually trigger business-level responses determined 
by complex policies and require Enterprise Application Integration (EAI). In our architecture, we 
can easily build and deploy rules inside the BRE and access these rule-sets from the workflow 
system shown in Figure 4. The second reason for keeping BRE out of CEP engine is to assure 
separation of roles for scalability as rule engines can potentially serve thousands of rules for 
different applications inside the enterprise SOA. 

Figure 5 illustrates different options for CEP-Middleware interaction. In addition to BPM system 
where the workflows are implemented, CEP can forward complex events directly to a Notification 
Service (NS) or the BRE. NS (e.g. by Microsoft) is publish-subscribe system [44] where incoming 
events (i.e. publications) are matched to previous subscriptions [4] and the results are sent to 
subscribers as notifications. NS can accept simple or complex events. In the context of BRE events 
can represent certain conditions (facts) that have occurred and the rule describes what actions to 
take based on the given condition. This is also called Event-Condition-Action (ECA) [33,42,3]. 
Different systems can be weaved together via enhanced messaging middleware sometimes called 
the Enterprise Service Bus (ESB) [21]. In Figure 5 the thicknesses of arrows symbolize the 
reduction of data volume as filters, aggregations, correlations take place within each layer to reach 
higher semantics: raw data simple events aggregate and complex events business situations. 

 
Figure 5: Integration of CEP engine with different event-driven systems. 
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3.4 Business Applications 

Our goal in this paper is to design a flexible CEP engine that can easily be integrated with different 
applications such as BAM tools, web-based consoles, or pass-through administration consoles. We 
show some proof-of-concept applications in Section 5. In our vision, business applications register 
fraud-, statistics-, or prospect-related queries and CEP detects simple and complex events, also 
called situations [48]. Situations such as “shoplifting” in a retail store or a “high-value customer 
arrival” at a bank branch require instant-detection and timely-aggregation of multiple simple events. 
In response, the managers can either take manual actions or automate their responses by setting 
rules or policies such as setting a door alarm or alerting security via mobile all orchestrated through 
the BPM system. 

4 ReCEPtor Design Details 
This section describes the design and implementation of CEP engine. We first list the key design 
features and components in Section 4.1. We summarize capabilities of CAPE DSMS system on top 
of which ReCEPtor was built in Section 4.2. We describe the implementation of the sequence 
operator, query plan and scheduler in Section 4.3.  
4.1 Feature Summary 

ReCEPtor has the following features: 

Detect complex patterns: We designed a new algebraic SEQUENCE operator to detect sequences 
of events. Non-occurrence of events can also be cast as a sequence detection problem where the 
missing event is represented by the occurrence of either a timeout or another out-of-sequence event 
which violates the expected order. We focus on detecting sequences in this paper. 

Automated query plan generation: In CAPE system, which is currently used for research purposes, 
query plans are written manually and loaded into the system. In the practical scenarios, people who 
issue the queries may have little or no knowledge about a query plan and how it is organized. To 
address this issue, we worked on automated query plan generation for multiple continuous queries. 
The administrative consoles described in Section 5 are used to write these queries with basic EPL 
statements and to register these queries with the CEP engine. Currently, multiple queries are 
registered before the engine is started and more work needs to be done in the control plane to 
support online query registration. 

Plan optimization: We support multiple queries in our CEP engine. Therefore, it is possible to have 
queries with common operators among the queries. We describe a plan generation method that 
reduces CPU and memory resource usage by improving sharing. 

Interaction with application level: We need to provide a user-friendly interface to allow application 
development on top of CEP and to facilitate seamless business integration. As proofs-of-concept for 
interoperability we developed web-based and console-based applications. 
4.2 Continuous Adaptive Processing Engine (CAPE) 

Complex event processing can be considered a special type of stream processing, where the output 
has higher-level semantics than the output of basic stream operators. Building a CEP engine from 
scratch would require a lot of work, therefore we decided to build our CEP engine on top of CAPE, 
which is a DSMS developed by Worcester Polytechnic Institute (WPI) [46,38]. CAPE accepts 
streams with fixed relational schema and there is ongoing work to leverage its features to support 
XML streams in a related system called Raindrop [51].  

CAPE system emphasizes the following novel features: (1) Intra-operator adaptivity: “As queries 
are registered into or removed from the query engine, the computing resources available for 
processing an individual operator may vary greatly” [46]. CAPE can exploit metadata knowledge in 
the data streams to reduce resource usage and improve execution efficiency of operators. (2) Plan-
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level adaptivity: A query plan might also become sub-optimal at run-time. CAPE supports online 
query re-optimizations. (3) System-level adaptivity: CAPE supports adaptive scheduling query plan 
distribution among multiple machines for load balancing. Our current CEP engine does not utilize 
these features yet; therefore we skip the details [46,38] for brevity. We plan to extend our work to 
support distributed operation in the future to address large-scale, high-speed processing issues 
[14,60].  
4.3 Sequence Operator, Plan Optimization and Progressive Scheduling 

First, we describe the design of SEQUENCE operator, which uses a Semi-Join for detection of 
strictly-ordered event sequences. Next, we discuss the plan generation for multiple queries. We 
added two new operators: Split operator avoids useless tuple processing along a query path and the 
Copy operator feeds shared sub-streams to different operators. Finally, we describe a new bottom-
up scheduling algorithm. 
4.3.1 Sequence Operator 
Sequence is about detecting the temporally or spatially correlated events. There are two ways to 
implement the SEQUENCE operator; one is to use a Non-Deterministic Finite-State Automaton 
(NFA) and implement sequence scan and construction over a stack [58,34] and the other is to use 
an algebraic approach where the comparison of timestamps is regarded as the join condition among 
input streams. Stack-based implementation can generate results directly without intermediate results. 
However, the stack-based automaton is relatively tied or fixed to the sequence pattern. In the case 
of multiple sequence queries registered in the CEP engine some may have common parts and 
algebraic approach provides the ability to exploit sharing among such queries.  

Algebraic approach also enables long and flexible sequence patterns. We use the Semi-join operator 
illustrated in Figure 6 and use a retail scenario to explain its operation. Note the two state buffers 
located on both sides of the join operator. For example, a retailer can track the list of customers 
who have shown interest in certain offers or “viewed offers within 20 minutes after they were 
created” for real-time micro-campaigns and demand shaping. Each coupon “viewed” event that 
could be streamed from the kiosk will probe all the coupon “created” events in A’s state that were 
streamed from the offer server to generate a strictly ordered sequence. With this approach we will 
have various choices to generate even longer sequences as will be described next. Another 
advantage of algebraic approach is that it is easy to apply equivalence predicates (e.g. for id 
comparison) on the sequence, which is commonly required to detect correlations. SASE uses 
partition-based stack construction [26] to apply predicates, which is only limited to one comparison 
predicate. In real applications multiple comparisons might be needed. For instance, detecting a 
high-value customer who uses multiple channels involves the comparison of both the customer and 
channel ids.  In our case, it is easy to apply one or more predicates to the join operator.  

 
Figure 6: Algebraic approach to implement Sequence operator 

Figure 7 shows different options to detect a long event sequence such as A B C D E. We can 
use binary (2-way) joins all the way through [41], combine a 3-way join with a 2-way join, or use 
an arbitrary multi-way join that represents the complete sequence. However, there is always a trade-
off between flexibility and efficiency or performance. Pipelined execution of binary joins [28] 
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provides more opportunities for intermediate result sharing for multiple sequence queries. However, 
whether it is 2-way or n-way joins, the algebraic approach provides flexible and stackable sequence 
operator implementation for multiple continuous queries. The disadvantage of this approach is that 
it creates intermediate results and possibly increases delay to the final result compared to stacks 
fixed to certain sequences. For example, if we have two registered sequence queries, one for 
A B C D E and the other for A B C we can cache [15] and reuse the result of A B C. 
Therefore, it is important to measure the frequency of sub-sequence patterns [54] in multiple 
queries and find the optimal n-way joins to exploit sharing without generating useless intermediate 
results. This is an interesting problem we will pursue as future work. FOLLOWED-BY clause can 
also be used to express event sequences, but we find this phrase to be limited in expressing long 
sequences as it needs repetition. 

 
Figure 7: Different options to implement long event sequences (e.g. A, B, C, D, E) using binary 
and/or multi-way semi-joins. 
4.3.2 Query Plan Generation and Optimizations 
We adhere to two query plan generation principles called Precision Sharing (PS) proposed in [36], 
which set the criteria for efficient algebraic plans with multiple queries. 

PS1: “For each tuple processed, any given operation may be applied to it or any copy of it at most 
once.”  

PS2: “No operator shall produce a tuple whose presence or absence in the dataflow has no effect 
on the result of any query”[36.] 

PS1 tries to avoid duplicate processing on the same data whether it is the same tuple moving 
through the plan or a copy of it generated internally. PS2 suggest early detection and removal of 
tuples that do not contribute to the final results or output to reduce redundancy in processing. An 
efficient plan should satisfy PS1 and PS2 criteria. We explain how we achieve these goals next.  

To demonstrate we pick three sample queries, which we use in our personalized coupon offering 
(i.e. campaign management) scenarios. The first query Q1 in Figure 8 returns the number of 
coupons created within the last 20 minutes from stream A and the second query Q2 returns the 
number of coupons viewed within the last 20 minutes from stream A.  The third query Q3 returns 
coupons which have been viewed within 20 minutes after they are created. The plans for query Q1, 
Q2, Q3 separately are shown from left to right in Figure 8. The plan for Q1 will first filter the 
coupon “created” events and then send them to Count() function and the plan for Q2 will do the 
same for “viewed” events. Query Q3 plan has one stream copy and two stream select operators. 
Since selection criteria may not be known at runtime the copy operator simply makes two copies of 
the input stream and sends them for selection to the following operators. If registered at different 
times, one can let these three queries run separately or in an isolated way.  
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Figure 8: Three isolated query plans corresponding to three registered queries. 

A naïve way to generate a single, unified plan would be to make three copies of the input stream 
and just send each copy along the path of each continuous query. However, the memory and 
processing overheads of this naïve approach would be drastic, since every tuple in the input stream 
is copied three times. Our goal is to come up with a new plan which can satisfy PS1 and PS2 and 
remove redundancies. We can easily observe that while the three queries have common predicates 
in the naïve plan, SELECT on the predicate “type = created” will be performed on copies of the 
same tuple in stream A twice, once for Q1 and once for Q3. The same is true for “type = viewed” 
predicate. Thus, this plan violates PS1 since the same operator will perform on the same data twice. 

The plan shown in Figure 9(a) makes a one-step improvement over the isolated plans in Figure 8 to 
satisfy PS1. This plan removes the duplicate processing on selection operators among multiple 
queries. The input stream would be copied once and copies would be send to the selects with “type 
= created” and “type = viewed” predicates, respectively. We assume unbounded windows in this 
example. Since each tuple is processed at most once by the same operator and predicate, the plan 
satisfies PS1. However, the plan still has duplicate tuples (create, view, print) flowing through it. 
Assume that the arrival rate of stream A is λ. The copy operator will send λ tuples to its two 
downstream operators. If the selectivity of σtype= created is x1 and σtype= viewed is x2, then 
predicate “type = created” would send x1.λ tuples to its output queues. Also note that tuple 5 (print), 
which is useless for the output, is still copied from stream A and sent to both selectors. Therefore, 
this plan violates PS2 as tuples that do not contribute to the result are still being processed.  

σtype= viewed

Seq (Create, View)

S tream A

σtype= created

Copy

Count Count

Q1 Q3 Q2

λ

λ λ

x1λ x1λ x2λ x2λ
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Count Count

Q1 Q3 Q2

λ
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x1λ x1λ x2λ x2λ
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Data: 
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Q1 Q3 Q2

λ

x1λ x1λ x2λ x2λ

x2λx1λcreated vie
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Figure 9: (a) The naïve query plan which satisfies only PS1. (b) Updated plan that satisfies both 
PS1 and PS2. 

To remove the overheads from the previous plan, we improve the query plan for multiple queries as 
shown in Figure 9(b). This plan uses a SPLIT operator and selection push-down technique [36]. 
This SPLIT operator has two functions: first is to filter useless data and second is to select & route 
the filtered events to the related output queues. In this case, print event will be filtered out after the 
split operator. We can visually compare the number of tuples in the flow and see that it is less than 
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the number of tuples in the previous plan. After split operator, the left side is already x1λ < λ and 
the right side is x2λ < λ. Thus, this plan satisfies PS2 since it removes the useless data as early as 
possible. The plan will remain efficient due to the split even if pushed-down selectors are not 
offloading the downstream due to low selectivity. Based on the analysis of flow, we can see that 
although we introduce new operators, the overall computation cost is actually reduced due to 
increased efficiency and the unbound nature of the streams. In our current implementation, 
generated sub-streams are directly “pushed” to the attached operators, therefore we do not use a 
PUBLISH [61] or INSERT [7] clause in our EPL. When queries are nested in a plan, if some 
queries are expected to “pull” the intermediate results, there would be a need to uniquely name 
outputs of operators so that they can be identified and referenced in the downstream. Also note that 
in our baseline DSMS engine CAPE, plans were generated manually for a single query while we 
support multiple queries here. 

The split operator is internally implemented as shown in Figure 10 with “select and route” operators. 
New tuples are first sent to a selector to insert events that are needed downstream (created, viewed) 
and to filter the rest. Next, inserted events are routed to the correct downstream operator by the 
router. A UNION operator may also be used to complement SPLIT operator and re-merge some of 
the sub-streams [35,2]. This operator could be avoided by careful, gradual splitting of the stream 
not to violate PS1 and PS2 rules for multiple registered queries. However, use of UNION may be 
motivated by online query registration scenarios where previously split sub-streams are needed 
again by a new query in merged form and starting from the original stream is inefficient. 

Viewcreate
Router

Sel

R
Create or view

Stream A

Viewcreate
Router

Sel

R
Create or view

Stream A  
Figure 10: Internal implementation of the Split operator. 

We did not describe how to slice streams into time windows and compose by exploiting sharing 
among similar queries that only differ in their window specifications (e.g. return “created” within 5 
and 20 minutes). This issue has been discussed in some of the recent related work [37,56]. We also 
do not publish an algorithm for managing online, multi-query registrations [59] in this paper as our 
focus is on business integration of CEP. However, we note that this is a complex and interesting 
problem where the algorithm requires choreography among shared predicates, overlapping 
windows, and other QoS constraints set on the systems by users. We believe, only adaptive 
methods that can re-arrange the query plan under dynamic conditions [37] are appropriate, since a 
single query joining and leaving the system can greatly affect computations. The goal is to 
minimize changes to the concurrently used plan, so that scalable online registration is achievable. 
4.3.3 A Bottom-Up, Progressive Scheduling Algorithm 
This section describes the operator scheduling (i.e. execution ordering) inside our query plan. Since 
each operator in ReCEPtor may be involved in different queries due to sharing, we needed to 
reexamine scheduling algorithms in CAPE, namely the Round-robin and the Queue-size based 
scheduling. Figure 11 compares different scheduling alternatives for the previous query plan in 
Figure 9b. Round-robin chooses operator execution order based on operator identifiers. For instance, 
the order can be op1 op2 op3 op4 op5.  However, this order can be too random in large scale 
with respect to the real data flow direction. If the input to an operator is empty such as op1 and op2, 
they could not generate any output results.  Input queue-size based scheduling chooses the operator 
with the maximum queue first. This can lead to starvation of operators with smaller input queues 
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although they may be serving queries with strict QoS requirements. We currently focus on 
guaranteeing data flow and treat queries equally, so that we can continuously output results for all 
three queries in Figure 11. 

 
Figure 11: The progressive, bottom-up operator scheduling inside a query plan (from Fig.9b). 

To guarantee data flow in the correct order, we propose bottom-up scheduling. This method triggers 
the operator executions (fetch, process and output input tuples) in a bottom-up tree traversal order. 
It pushes the input streams in the correct direction towards the outputs and guarantees progress for 
all operators. For the plan in Figure 11 the scheduling order would be op6 op4 op5  
op1 op2 op3. Queries may be treated unequally for QoS-aware scheduling [2].  

5 Proof-Of-Concept Prototype and Results 
We developed our CEP engine –ReCEPtor- using Java (with Eclipse IDE) and on top of CAPE 
stream processing engine. We specified the input stream schema and the system configuration 
parameters using XML files. To bridge the gap between CEP engine and business applications [25] 
we implemented the service-based middleware described in Section 3 and implemented proof-of-
concept web-based and console-based applications that will be detailed in this section. We start 
with preliminary performance results and then introduce applications that benefit from CEP engine. 
5.1 Performance Results 

We ran a preliminary performance analysis of different components in our CEP architecture. First, 
we scheduled asynchronous web service calls to different tiers in our 3-Tier architecture on a single 
HP workstation with a 3.20GHz Intel Xeon CPU and 3.5GB RAM. In each round, we included one 
more tier and reported results in Table 1. We used Microsoft IIS web server, SQL server 2005 
database, and Biztalk middleware for messaging and orchestration. We did not tune the worker 
thread pools and network connection settings, which could have affect on our performance results. 
We also didn’t include applications in these measurements, which would constitute the 4th tier.  

1-Tier (WS) 2-Tier (WS+DB) 3-Tier (WS+Biztalk+DB) 
# 

Requests 
Total RT 

(ms) Reqs/sec 
Total RT 

(ms) Reqs/sec 
Total 

RT(ms) Reqs/sec 
1 484 2 515 2 1000 1 

10 500 20 560 18 1800 6 
50 530 94 687 73 6000 8 

100 625 160 781 128 7200 14 
200 700 286 1578 127 12000 17 
500 1040 481 2546 196 30900 16 

1000 1640 610 3234 309 66000 15 
Table 1: Performance results for 3-tiers in CEP architecture. 
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Results in Table 1 show that while web service tier has about 500ms synchronous call latency, 
hundreds of asynchronous requests (e.g. 610) can be completed each second. When we add the 
database tier to the web service, it adds only minimal latency for light loads (<=100 req/sec) and 
web service like latency for heavy loads (>= 100 reqs/sec). Thus, the throughput for 2-Tier 
(WS+DB) is about half the 1-Tier (WS-only) around 300 reqs/sec. Yet, the biggest performance hit 
comes from the 3rd tier, which is the Biztalk middleware for workflow management and messaging. 
We can only obtain a few tens of (~15) reqs/second when we add the 3rd Tier (WS+Biztalk+DB). 
For simple workflows like ours we could have omitted the visual orchestration and used only ports 
in Biztalk. However, as we plan to extend our application logic later, we wanted to maintain this 
layer and report the potential performance overheads. 

We also tested the CEP engine with queries that would push the throughput side. The first query 
simply does value-based filtering over a stream (Select * From Stream A Where A.value > 5). 
We ran this query for 13 seconds and 173 output tuples (i.e. 13.4 reqs/sec) were generated from 655 
random inputs (Selectivity=0.26=173/655). While the outputs of this query are not complex events 
we know that CEP could possibly register events at this rate to the event repository through the 3-
Tiers mentioned before, which could support 15 reqs/sec as shown in Table 1. We ran a second 
aggregation query over the stream (Select Count(*) From Stream A Within 6 Every 2) for the 
same duration and got 1381 output tuples from the 2440 input tuples. This maps to 106.8 reqs/sec, 
which could only be supported by the 2-Tier version of the middleware at this time. We need to 
tune the application logic implemented in Biztalk server to be able to support this rate of arrival. 
We conclude that we could process ~15 requests/second through the 3-Tiers of our prototype (web 
services, orchestration, and database) at this time without tuning. 
5.2 Applications 

The web console shown in Figure 12 can be used by managers to receive alerts. This web console 
uses Asynchronous Java and XML (AJAX) to call the orchestration’s GetNewEvent method, which 
returns the newly submitted complex events by the CEP engine. We also used a CORBA bridge to 
connect CEP engine implemented in Java to the business process shown previously in Figure 4 and 
implemented in Microsoft.NET and to demonstrate our capabilities for heterogeneous platform 
integration. The web console was implemented in ASP.NET. It was only tested with one sample 
event (shown in Fig.12) and not tied to the retail and banking applications described in Figure 13. 

 
Figure 12: Web-based console to receive alerts on complex events sent by the CEP engine. 

A recent analysis [24] finds that multi-channel customers of a retailer (e.g. who use the web, store, 
phone channels) spend more than one-channel customers and that online buying does not replace 
in-store buying. Therefore, multi-channel use can be a good indicator of customer loyalty [49]. To 
demonstrate how our CEP architecture can support multi-channel use cases, we implemented two 
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similar console-based applications. One demonstrates a high-value customer tracking application 
for banks and the other demonstrates a personalized, real-time micro-campaign management 
application for retailers. Both GUIs provide good interaction with CEP engine. In the GUI we want 
to show multiple query registrations and multiple query outputs. The panels on the right side shows 
the arriving input data stream. We assume that streams from multiple channels are merged into a 
single stream, which is logical if one needs to detect event correlations [58]. There are more input 
data accumulating in the right panel after some time. There is a query entry panel on the bottom left. 
Here user can register a new query by typing a query as an EPL statement and submitting it to the 
engine for parsing and plan creation (or integration). The top left panel shows application statistics. 
Note that these applications could also be implemented as a web portal similar to Figure 12, but we 
wanted to highlight here the interaction of CEP engine with different application types. 

Figure 13(a) shows the proof-of-concept console application to demonstrate a multi-channel 
banking scenario. On the right-hand-side we see the input stream arriving to the management 
console through a TCP/IP socket. This application can serve as a front-end for a system that tracks 
streams of data for customer transactions such as deposits withdrawals as well as promotions 
offered to customers at different banking channels including the Web, ATM, teller, and call center. 
On the query panel we can register continuous queries, which get parsed before the application is 
started. Multiple queries have been registered in this application with the CEP engine to detect 
complex events and track statistics. We use the same template for the following retail application. 
The top-left panel shows the window-based statistics on the stream about offers and transactions. 
The results are refreshed every few seconds. The left screen shows the results of sequence queries, 
which are displayed as teller alerts. If the customer first views a fixed-rate Certificate of Deposit 
(CD) offer in the bank's web site (i.e. web channel) and then comes to the store to deposit certain 
amount of money, then the system alerts the teller. This represents a multi-channel, high-value 
prospect detection scenario and the teller response would be to suggest this customer to deposit the 
money to a CD fund rather than his checking account. We hope to integrate and test this use case 
scenario with HP’s Adaptive Bank platform in the future. 

 
Figure13: Two similar proof-of-concept console applications demonstrating (a) a multi-channel 
banking scenario and (b) a real-time, retail micro-campaign tracking scenario. 

Figure 13(b) shows another console application use case which represents a real-time micro-
campaign tracking scenario. On the left top we show results of two continuous queries and the 
results are refreshed every few seconds. The first query counts the number of the coupons which 
have been created within 20 seconds. When the value is greater than the set threshold (12), we show 
a threshold-violation warning in red color. This alert represents a rate control for the offers in order 
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not to exceed a certain allocated budget. The second query counts the number of the coupons 
viewed with 20 seconds. Similar to the banking application, coupon application has an alert panel, 
which tracks coupon event sequences over multiple channels. As the input stream populates the 
right panel, we start seeing more (create, view) sequences on the left side. We hope to integrate and 
test this application with HP Laboratories’ Retail Store Assistant (RSA) platform [10] in the future. 
It would also be interesting to merge the query plan trees for these different applications to address 
issues related to “query forests”. 
5.3 A Closer Look at Complex Event Categories 

We list three complex event categories and give examples for each category to demonstrate use 
cases that can be supported by ReCEPtor. 

• Threshold-contract violations: we exemplified this class with retail out-of-stock situations 
[58]. Another example would be the abnormal difference between the running-average 
service time and current service time of one instance of a certain business process. Note 
that the current instance’s execution time is compared against a non-static value, which 
requires use of a stream AVG operator with the join.  

• Sequence patterns in data streams: we exemplified this class with the credit card fraud case 
before. Any lifecycle management scenario with a state machine could constitute an 
example, since a certain sequence of events is expected to occur in the lifecycle. 

• Detecting non-occurrence of events in data streams: we exemplified this class with the 
shoplifting use case given in [26] before. Another example would be the non-occurrence of 
an exit reading in a toll bridge for a car [7], which had an entry reading 20 minutes ago. 
Either the car is in trouble on the bridge, or the system is not working properly and missing 
tolls, or there is fraudulent use. Yet another example would be the non-occurrence of a 
truck arrival at a warehouse long after it leaves the distribution center. In addition, the 
temperature of goods in those trucks may need to be maintained at a certain level during 
transport to assure fresh arrival at the destination [61], which would combine the first use 
case with this one.  

Sensors can be used together with CEP systems to facilitate monitoring and control of these 
“situations” [3] that have business-level impact. These examples merely serve to point to the 
endless use cases possibilities and do not constitute a comprehensive list as this is not possible.  

6 Related Work 
Numerous data stream management systems (DSMS) have been developed over the last decade 
[43,19,46,2,19,28]. STREAM [43] pioneers this field as it describes the semantic foundations of 
continuous query languages [7] and identifies fundamental challenges such as efficient resource 
management, operator scheduling, window sliding and approximation techniques in handling data 
streams. TelegraphCQ [19] focuses on adaptive query processing over high-volume and highly-
adaptive dataflows. Eddies route tuples among query operators and control dataflows, which 
enables TelegraphCQ to do continuous re-optimization of the query plan on a tuple-by-tuple basis. 
Eddy outputs the tuple when all processing is complete. Aurora [2,1] supports most of the features 
supported by the previous two systems including novel stream operators, static data binding and 
continuous query optimizations. However, it differentiates by accepting QoS specifications, 
prioritizing boxes in data flow graphs and “train” scheduling to meet latency and other QoS goals. 
None of this early work focused on detecting complex sequences in event streams or business 
process and SOA integration issues. 

CEP also known as event stream processing, which derives its roots from data stream processing, 
has been the focus of more recent work [17,26,61]. SASE [26] is an NFA-based CEP engine that 
uses a stack implementation to filter and correlate events. They demonstrate capabilities of their 
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engine via shoplifting and misplacement scenarios of RFID-tagged items in a retail store. They 
contribute new event language semantics for sequences and non-occurrence of events. They also 
describe optimizations for handling large windows and reducing intermediate results. However, 
they do not discuss plan-level sharing and other issues related to multiple continuous queries in one 
DSMS. In Cayuga [61], researchers demonstrate the use of their NFA-based CEP for Web feeds 
and stock prices. Similar to ReCEPtor, Cayuga can run multiple queries concurrently and events 
sequences would be implemented by NEXT-FOLD constructs. They claim an impressive 
processing rate of over 1000 events/second for up to 400K active subscriptions [61]. Both SASE+ 
and Cayuga support Kleene closure. We focused on coupling ReCEPtor with business processes for 
this paper. Therefore, we can only claim a few tens to hundreds requests/second processing rate, yet 
end-to-end through the 3 tiers (web services, business process and database) of our architecture. We 
will work on performance tuning, optimizations and a comprehensive evaluation in the future to 
achieve larger-scale and higher-speed processing rates. CEDR [17] suggests integrating pub-sub 
with CEP and DSMS as they share a common processing model and focuses on supporting weak-
to-strong consistency guarantees. While this step is a natural progression, we would not agree in 
merging more middleware components into the CEP engine to maintain separation of roles. 

The competition for CEP engines is also beginning to heat up [27] in the industry as new companies 
enter into the market including Coral8 [20], StreamBase [50], Progress-Apama [6], and many 
others. http://www.complexevents.com lists major players in this emerging industry. 

Detecting “non-occurrence” or absences in event streams is also a challenging problem. Non-
occurrence -also called negation [26]-can be cast as a sequence detection problem where the 
missing event is represented by the occurrence of either a timeout or an out-of-sequence event 
which violates the expected order. We plan to implement the negation operator and the set of use 
cases mentioned previously in the future. Out-of-order event arrivals [34] are also common in real 
deployments. We do not talk about data cleaning, preprocessing and reordering issues in this paper.  

Enterprise-scale CEP systems would be used concurrently by many users. This is especially true for 
service-based architecture and a CEP service designed for SOA. In a CEP service, it may be crucial 
to impose a beginning and an end to continuous queries registered with the shared system and 
possible do state maintenance for seamless continuum [10,30]. This concept of “query sessions” or 
query lifespan management [41] (note: we do not mean tuple lifespan) is a challenging and 
interesting research problem. Online auctions could constitute a good use case scenario for query 
session concept [53]. In shared CEP systems, “query templates” [56,35] could be saved and reused 
among over-lapping and non-overlapping query sessions by one or more applications. StreamMill 
[16] shares our notion of a query session by defining an EXPIRE clause in the event stream 
language.  

Multi-query optimization (MQO) [32] is an interesting and emerging research area for CEP 
performance and scalability as well as other traditional database systems. For DSMS, MQO could 
either be done once at compile-time [2] or incrementally while the system is running [37]. While 
users insert and delete queries to and from the query plan [59] the system we can measure the 
frequency of sub-sequence patterns from multiple queries and find the optimal multi-way joins 
[15,29,55] to exploit sharing without generating useless intermediate results. 

Integration of a company’s data sources alone does not help with the bottom-line of a company, 
since the amount of data is overwhelming and keeps growing [31]. Creating data warehouses and 
views are good practices, yet they come with similar problems [35]: First, they are after-the-fact, i.e. 
not fast enough for many real-time applications. Second, cubes, data mining models and new 
algorithms are not easy to develop and understand as they require special statistical expertise 
combined with business domain knowledge. However, it will be imperative for CEP engines to 
communicate with databases, data warehouses and cloud services in many real-life scenarios. 

 17



Our work is related to past work in active databases [42] and event-condition action (ECA) rules. 
While active database research resulted in significant contributions such as triggers and pioneered 
new research areas including data DSMS, it did not provide the time-constraints provided by many 
DSMS today. IBM researchers proposed a CEP engine called AMIT [3] and described how to do 
“situation” management based on ECA techniques.  

7 Conclusions and Future Work 
It is crucial for many organizations today to process events streams from multiple applications in 
real-time to quickly respond to critical situations. These organizations are adopting service-based 
architectures to increase their agility, yet the CEP engines developed have not been following this 
trend. We described the design and implementation of our CEP architecture that uses SOA 
principles and we integrated our CEP engine into this architecture. ReCEPtor can sense complex 
event patterns and collect statistics from raw data streams. Then, it sends complex event messages 
to other applications and services either directly or through other middleware for further processing. 
We showed how to use an off-the-shelf BPM system and other engines with ReCEPtor to develop 
an "enterprise nervous system". We focused more on interoperability, flexibility, efficiency, and 
reusability aspects in this paper rather than performance and new language semantics. 

Our algebraic approach allows us to implement queries for long event sequences while also 
conforming to precision sharing principles, which eliminate duplicate computations and tuples from 
a query plan. We used bottom-up scheduling to achieve progressive data flow inside the plan to 
reduce delay to any particular query. As proof-of-concept we presented two running examples: real-
time personalized retail campaign management and high-value financial customer detection over 
multi-channel. We developed both web-based and console-based applications and integrated them 
with ReCEPtor. We can already process tens of requests/second through the 3-Tiers of our 
prototype (web services, orchestration, and database) end-to-end and without tuning and we are 
working on achieving higher speeds. 

There are many improvements and research problems we would like to address in the future. For 
example, in our query execution we treat each query equally. However, different queries have 
different processing cost and therefore tuple consumption rates. Dynamically adapting the load on 
different operators via scheduling [13] to assure smooth dataflow over the query plan is an 
interesting research problem. Based on the different QoS goals such as latency, throughput or jitter, 
we can collect statistics about every operator at execution time and adapt scheduling to meet these 
goals. QStream [47] uses a real-time capable operating system for reservations and controller-based 
adaptation to assure steady-state output from DSMS.  

CAPE supports plan distribution among multiple machines for scalability and load balancing [38]. 
We plan to utilize this feature to support distributed operation for ReCEPtor to address high-speed 
event detection and processing in large-scale enterprises. Intermediate results may have to be 
shared among the sub-plans distributed over different nodes. We will evaluate architectures for 
flexible distributed query processing [35] and other multi-level caching techniques [9,11] to make 
good design choices. Other high-load handling techniques include load shedding [39,14], query 
admission control [47], disk buffering [38], and compression using binary formats [22]. Data 
mining (linear regression, decision trees, clustering) [14,54,23] and change detection [18] over 
event streams are also interesting research directions. 
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