

Getting Agents to Negotiate Good Deals:
A Progress Report

Alan H. Karp
Software Technologies Laboratory
HP Laboratories Palo Alto
HPL-2002-161
June 3rd , 2002*

negotiation,
bargaining,
negotiation
strategies

One aspect of web services is automating processes formerly done
by people. One such process is negotiation. Automating
negotiations requires that we be able to specify what we want, and
the software needs a strategy for achieving a good result. This work
focuses on developing a negotiating strategy, but problems in
description, defining utility, and estimating the other party's goals
are also addressed. Although much work remains to be done, this
report describes the progress made to date.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 1

Getting Agents to Negotiate Good Deals:
A Progress Report

Alan H. Karp
HP Labs

Abstract

One aspect of web services is automating processes formerly done by people. One such
process is negotiation. Automating negotiations requires that we be able to specify what
we want, and the software needs a strategy for achieving a good result. This work
focuses on developing a negotiating strategy, but problems in description, defining utility,
and estimating the other party’s goals are also addressed. Although much work remains
to be done, this report describes the progress made to date.

1 Introduction
As more business moves to the Internet, they are coming to rely more and more on
software to do business on their behalf. Although the word agent has been widely
abused, I’ll take the risk of using it for this software. Among the things this software
must do are:

1. Find the service.
2. Negotiate terms and conditions, and form a contract.
3. Find the service’s interface and protocol if not already known.
4. Invoke the service.

You’ll notice that negotiation and contract formation appear as a single step. That’s
because negotiation without contract formation is just playing games. Combining
negotiation and contract formation may make extending the protocol to many parties
easier.

The word negotiation often causes confusion because it is used to denote very different
activities, auctioning and bargaining. Auctioning, either direct (buyers bid) or reverse
(sellers bid), is the simpler form of negotiation, but it naturally includes multiple parties.
Bargaining, involving multiple rounds of offers and counteroffers, is more complex, and
the extension to multiple parties is less obvious. This work uses the word negotiation in
the sense of bargaining only.

This report focuses on item 2 in the above list, negotiation and contract formation.
Before starting the discussion, though, it’s important to know how we describe what
we’re negotiating for. Section 2 describes the method used in this work. As used in e-
commerce, the term contract has the special meaning described in Section 3. In order to
make progress, I’m doing this work in the framework of the negotiation protocol
described in Section 4. An important part of negotiating good deals is knowing how
good a deal is. Section 5 describes how we decide the best deal that we might obtain
from a given point in the negotiation. I’ll use that evaluation in Section 6 to develop a
strategy that takes the negotiation in a direction that gives us the best deal. An example is

 2

worked through by hand in Section 7. In Section 8, I’ll describe an experimental system
used to measure the quality of the algorithm.

This document is a progress report, not a formal publication. Hence, it doesn’t have the
expected section on related work. Some references are given as a guide to the literature.

2 Vocabularies and their Attributes
Key to the negotiation protocol and mechanisms described in this report is the concept of
an ontology that provides the semantic content of the terms in the negotiation.
Basically, an ontology provides a context for describing something. For example, the
keyword “size” may be used to advertise an item, but is it my shirt size or my shoe size?
If the term appears in an ontology related to shoes, we know. Of course, true semantic
content depends on human understanding. After all, the word “size” has meaning only to
someone who speaks English.

There are many ways to represent ontologies; here I’ll use vocabularies. A vocabulary
provides the semantic information in the form of attribute-value pairs. The values may
be single values, numeric ranges, or lists of acceptable values. A vocabulary doesn’t
describe anything; it is just a particular way of describing things. A description assigns
values to the attributes of the vocabulary. The analogy is to objects. The class
corresponds to the vocabulary; the instance, to the description.

A vocabulary consists of a set of keywords called attributes. Each attribute has a number
of properties. More detail on each is given in the sub-sections that follow.

1. Name: A string different from that of any other attribute in this vocabulary.
2. Type: The value type of any description using this attribute, e.g. integer, string.
3. Multiplicity: One of single, multiple, range.
4. Required: Set to true if at least one value must be supplied for this attribute.
5. Must-match: Set to true if a look-up will succeed only if this attribute matches.
6. Matching rule: Defines what constitutes a match.
7. Designation: Ordered or Unordered.

The vocabulary developer decides on these properties. Anyone using the vocabulary,
either to advertise a service or to discover one, must follow the rules of the vocabulary
being used.1

2.1 Value Type
Although there is no theoretical reason for it, all values specified for a particular attribute
must be of the same type. 2 All the basic types – string, int, float, etc., are supported. In
addition, new value types can be introduced as long as their matching rules are expressed

1 This decision is arbitrary, at least for some of the properties. For example, it might make sense for the
advertiser to decide what constitutes a match. Such a change would have no impact on the work being
reported here.
2 Allowing mixed value types would not affect the negotiation strategy.

 3

in terms of the base types.3 For example, a value type of Bigint can be defined as
consisting of two ints.

2.2 Multiplicity
Some attributes may only take on a single value. For example, when listing availability,
it makes sense to advertise an item as in stock or not, but not both. Other times, it is
reasonable to specify a set of values. A shoe seller may want to list all colors available
for a particular style.

2.3 Required
Some attributes must be specified or there’s no point in advertising or looking up the
service. For example, the vocabulary developer may decide that there is no point in
negotiating unless payment method is included in the advertisement.

2.4 Must-match
It is often the case that there is no point in reporting a match if a particular attribute was
not included in the constraint expression, e.g., payment method. After all, if we can’t
agree on means of payment, there’s no point in trying to negotiate. Such an attribute can
also be used as a simple form of password protection. If you don’t know the password,
you can’t find the service.

2.5 Matching Rule
Many systems provide flexibility in the matching rules, but these rules are invariably
based on the type of the attribute.4 Often this approach is too limiting. For example, a
shoe’s width and size may both be represented by integers, as done in Europe, but the
vocabulary developer may know that width requires an exact match while sizes that differ
by one unit may still fit. Hence, attribute based matching rules allow more flexibility.

2.6 Designation
Every attribute is designated either ordered or unordered. If the type is ordered, we
assume that the attribute values are specified in preference order, from most preferred to
least preferred, but there is no indication of the strength of the preference. The order in
which unordered attribute values appear does not indicate a preference.

The distinction between ordered and unordered attributes corresponds loosely to
cooperative attributes and competitive ones. We say that some attributes are cooperative
because the both parties may gain for certain values. For example, I may want to buy
wingtips, but the shoe store benefits if I buy either wingtips or loafers. In this case, we
both benefit by finding an acceptable value for the attribute. We assume that ordered

3 This feature has not yet been implemented.
4 LDAP does have per-attribute matching rules, but all attributes values are strings.

 4

attributes are cooperative, in the sense that the preference order of the parties is not
conflicting. Unordered attributes are those for which we assume there is conflict.

There are also cases that are not as clear-cut. For example, the store may not have the
color shoes I want, yet they may provide them, say by buying them from a competitor. In
this case, color becomes a competitive attribute because the store may lose money on this
deal. Clearly, knowledge that such a case exists can affect the negotiation strategy. It
might also be the case that the vocabulary designer doesn’t know if a particular attribute
is cooperative or competitive. Delivery time may be cooperative, if both parties benefit
from a shorter delivery time, or competitive if one benefits and the other is penalized. I
could, therefore, introduce an unknown designation, but there doesn’t appear to be a
practical way to make use of this idea in developing a negotiation strategy.

3 Contracts
Reaching a deal is the point of any negotiation; a contract is the specification of that deal.
For this work, I’ll assume that the parties are negotiating in some marketplace. A
marketplace is defined by a set of rules, including such things as who can participate.
One of the things I’ll assume a marketplace provides is a set of contract templates. Each
contract template is made up of one or more sections. Each section is expressed in terms
of a specific vocabulary. The contract is a template because the values of the attributes in
the vocabulary of each of the sections are not determined; that is the goal of the
negotiation. This framework is not unique to this work. [9]

A typical marketplace will provide templates made up of different sections, each section
representing an aspect of a deal. For example, there will almost certainly be a section on
payment method and another on delivery terms, as well as one or more specific to the
product. Thus, a shoe-buying marketplace would specify a section with a vocabulary
including attributes for size, width, style, material, etc. There may be other sections, as
well, including, perhaps, sections for return policy and warranty terms.

Clearly, in the most general case, we need a negotiation to determine which sections are
included in the contract template. Since this negotiation is most likely identical to the
negotiation for the product itself, we’ll assume the marketplace specifies the sections.
This assumption may not be warranted, making this topic a possible area for further
work.

The terms specified by a section are represented by a vocabulary. Any of the attributes in
the vocabulary may be included in the negotiation. Terms that are not included are
considered irrelevant, although the marketplace may define default values. For example,
shipping cost need not be included in the negotiation if I’m taking the shoes home with
me. Also, delivery time may be set to a default of zero, indicating that the customer will
take the merchandise at the time of purchase. Negotiation on this term is only needed if
its value is to be changed.

 5

4 Negotiation Protocol
The negotiation protocol used here consists of a number of steps. First, the product is
advertised by specifying attributes in a vocabulary or set of vocabularies specified in a
particular contract template. Next, a potential customer finds the advertisement by
performing a look-up based on a constraint expression built up using attributes from the
vocabulary or vocabularies. Finally, the parties negotiate the terms of a contract by
agreeing to specific values of attributes in the contract template. The last step involves
committing to these terms in a contract.

The protocol presented in Section 4.2 has a number of goals. First of all, it is designed to
reduce the likelihood of a negotiation failing. Secondly, it is guaranteed to terminate in a
finite number of steps with each party requiring only a modest amount of information.
There is no need to use heuristics, such as the number of rounds or amount of time, and
no need to worry about cycles, returning to an offer that was made before.

4.1 Finding Possible Deals
We assume that a particular item is advertised in a particular set of vocabularies, and that
the item is found by specifying a constraint expression in those vocabularies. For
example, a contract template for buying shoes may have a shoe vocabulary with attributes
for style, color, and manufacturer; another vocabulary specifying payment method and
price; and a third for delivery options. A search may ask for black or brown wingtips in
size 10 to be paid for by Visa or MasterCard from a merchant who has the shoes in stock.

This simple example shows some of the key elements of the negotiation. First, there are
a finite number of attributes in the contract template, only some of which are used for the
advertisement or the look-up. Those terms not included in either may not be added to the
negotiation, and the corresponding attributes are effectively removed from the contract
template. If an attribute is not in either the advertisement or the lookup, we assume
neither party cares about it. For example, a shoe store in a shopping mall expects
customers to walk out with what they buy; customers of the store expect the same. Thus,
even if the contract template specifies clauses for shipping, neither party cares to
negotiate their values. The marketplace determines suitable default values.

4.2 Two-Party Protocol
The protocol deals with two parties that we’ll call the listener and the initiator.
Normally, the seller advertises wares and waits to be approached by a potential buyer. In
this case, the seller is the listener and the buyer is the initiator. However, it may be that
the buyer has advertised a need, say in a Request for Proposal. In this case, the roles are
reversed.

The protocol involves the following steps.
1. The listener advertises in the vocabularies of the contract template.
2. The initiator does a lookup by specifying a constraint expression in these

vocabularies.

 6

3. The initiator send to the listener an offer consisting of values, often numeric
ranges or sets of values, for a (proper) subset of the attributes used in the lookup.

4. The listener sends to the initiator a counteroffer consisting of values, often
numeric ranges or sets of values, for a (proper) subset of the attributes used in the
advertisement.

5. Either party may send a negotiation failed message at any time.
An attribute is settled if it appears with a single value in an offer and the same value in
the counter to that offer. A settled attribute becomes a clause in the contract and is
binding should all the terms in the contract template be settled.

A counteroffer is valid if it satisfies a few conditions.
1. Any attribute that was included in the advertisement (lookup) may be introduced

by the listener (initiator) at any time subject to rule 5.
2. The numeric range or set of values of at least one attribute must be narrowed, or a

new attribute introduced.
3. An attribute is removed from the negotiation once its value has been settled.
4. No attribute that has been settled may be reintroduced into the negotiation.
5. If all the attributes from a section that were introduced into the negotiation are

settled, no more attributes from that section may be introduced.
A section is said to be closed once all its attributes that have been included in the
negotiation are settled.5 An invalid offer results in a failed negotiation.

4.3 Dealing with Attribute Types
Ordered and unordered attributes are handled somewhat differently. Revealing
preferences of competitive attributes can put you in a bad bargaining position, but that is
not the case for cooperative attributes.6 We use this fact to accelerate the negotiation by
assuming that cooperative attributes are rank ordered and competitive ones are not. For
example, a specification “style = wingtips, loafers sandals” is assumed to be ordered
while “quality = low, medium, high” is not. The strength of the preference is not
indicated, and misrepresentations are difficult, but not impossible, to detect.

There are special rules for attributes with numeric types that depend on whether the
attributes are ordered or unordered. Ordered numeric attributes are represented by a
numeric range. For example, if I want to buy in bulk, I might want no more than 500
pairs of shoes, and I don’t want to bother with buying unless I can get at least 100 pairs.
In addition, I can list my preference since there’s no reason the smaller value must come
first. Similarly, the seller might have different terms and conditions for different size
orders. For example, the minimum order size might be 250 pairs and a maximum size
1,000 pairs. On each round, either party may choose to narrow the range until agreement
is reached on a specific value.

5 This simplification is not strictly needed to meet the goals of the protocol. However, closing sections
reduces the number of attributes that may be introduced into the negotiation, thereby simplifying the
analysis needed by the strategy.
6 A man walks into a shoe store and tells the clerk he’d like to buy a pair of shoes. “Loafers or wintips?”,
asks the clerk. “I’m not telling you.”, says the customer. “It will put me at a competitive disadvantage”.

 7

Unordered attributes of numeric types are handled differently. There is no point is
specifying a range on such an attribute.7 For example, we know the buyer wants the
lowest possible price, and the seller, the highest. In fact, giving a range would be
revealing the least acceptable value, giving too much information to the other party.
Hence, for unordered attributes of numeric type, one party introduces a single value, and
the other does the same, either higher or lower. These first two values specify a range
that must be narrowed on subsequent rounds. So, the buyer might offer $50 per pair, and
the seller could counter with $100. On subsequent rounds, either party can specify a new
value, as long as it narrows the existing range. For example, the initial offer might be
 1. Style=wingtip,loafer; Color=black;brown; Quantity=100-500; Price=50
And the counter offer might be
 2. Style=wingtip; Color=black; Quantity=500-250; Price=50:100
Note that the seller’s range is 250-1,000, but the quantity in the counter offer can’t widen
the specified range. Subsequent rounds might be
 3. Style=wingtip; Color=black; Quantity=500-250; Price=50:100

4. Style=wingtip; Color=black; Quantity=400-400; Price=70:100
5. Style=wingtip; Color=black; Quantity=400-400; Price=70:70

There is nothing in the rules that prevents one party from changing the other’s offer. For
example, if the price range is 50:100, the seller could offer 60:100. In effect, the seller is
asking if the buyer will raise the bid. This strategy may not be a good one, since the
buyer may declare a failed negotiation rather than let the seller control the offer in this
way.

4.4 Disjunctions
While what has been described can be used, it is not expressive enough. Look at the style
and color from the example. The seller might have only black wingtips and brown
loafers, but the protocol does not provide a way to say that. We might go quite far in a
negotiation before finding out that the buyer wants black loafers.

The solution is to allow disjunctions. In the above example, the first counteroffer could
be
 2. Style=wingtip; Color=black; Quantity=250-300; Price=50:90
 Style=loafer; Color=brown; Quantity=400-500; Price=50:70
Each disjunction must separately follow the rules spelled out in Section 4.2, including
being declared failed. A deal is reached when all the terms in one disjunction have been
agreed upon, and only one disjunction is left.

Why not just try black wingtips first and then brown loafers if the first one fails? That
would be inefficient, particularly if there’s a substantial cost for a negotiation.

7 There is an implicit assumption here that the dependence is monotonic. While true for price, there is no
reason this assumption must be valid. However, this assumption is not unreasonable, and making it
simplifies picking a counteroffer.

 8

Disjunctions allow multiple negotiations to be carried out at the same time, amortizing
the costs.

4.5 Summary of Protocol
We can now see why the negotiation terminates in a finite number of steps. There are a
finite number of sections in a contract template, and a finite number of attributes in the
vocabulary for each section. Each step removes at least one attribute value or narrows a
numeric range. Each party need only remember the previous offer to compare with the
current counteroffer to determine if the rules are being followed.

Numeric ranges appear to be a problem. After all, I can increase the price I’m willing to
pay by $0.01 on each round. While the negotiation will end in a finite number of steps,
the number may be so large as to be effectively infinite as far as the parties are
concerned. While we could impose heuristics on the amount by which numeric ranges
must be narrowed, we rely instead on the behavior of the parties. We assume
negotiations carry a cost that depends on the length of the negotiation. Should either
party not negotiate in good faith, the other can always declare a failed negotiation.

This protocol has some shortcomings. For example, you can’t change your mind. You
may have agreed to buy a pair of Florscheim’s, but the seller wants more money than
you’re willing to pay. With a more general protocol, you could change the manufacturer
to a less expensive brand, such as Dexter. This protocol doesn’t give you that option.
You must declare a failed negotiation and start over.

This rule means that you must save more than just the previous offer and current
counteroffer to avoid cycles; you must also remember what negotiations failed. I am
supposing that all you need remember is the list of offers that led to the failure. This
hypothesis needs to be verified. If you must remember the entire history of failed
negotiations, the arguments about the amount of state needed are wrong.

One unfortunate effect of the strict rules of this protocol is that there may be deals that
are possible that you don’t find. We know that there are strategies almost certain to miss
deals. For example, take it or leave it, in which the offer consists of a single value for all
attributes, is likely to miss many possible deals. One motivation for the strategy
described in Section 6 is to find a way to guarantee to find a deal should one exist.

The advertisement specifies a space of available products; the search, a space of desired
products. Due to limitations in the expression of advertisement and look-up, however,
we’re not sure if a deal exists.8 Thus, all we know is that there is the possibility of a deal.
It’s analogous to forming the convex hull of the points defining a non-convex polygon.
Every point in the polygon is inside the convex hull, but all points inside the convex hull

8 We could always list every possible deal, but the combinatoric explosion makes this strategy impractical
except for examples of modest size.

 9

are not inside the polygon. Because of this analogy, we’ll use the term convex hull offers
to denote offers with multiple values for attributes.9

5 Evaluating an Offer
Implicit in the concept of negotiation is an evaluation function that assigns values to
different deals. For example, I am likely to value a pair of Florscheim shoes more highly
than Dexter. The most common representation for this fact is a utility function [6]. Each
of the parties to the negotiation prefers deals with larger values of its utility function.
Thus, competitive attributes decrease the utility of one party and increase the utility of the
other. Cooperative attributes affect the utilities of the participants in the same direction,
either positive or negative. This fact doesn’t mean that the parties will automatically
agree to values for cooperative attributes; one’s utility function may be maximized for
one set of attribute values, and the other’s maximized by a different set of values.

5.1 Conventional Utility Function
Let }1{ Jj K∈ be the attributes being negotiated, and jxr be the jK element vector of
values for the j’th attribute.10 A deal consists of a single value for each of the J attributes.
Each of the negotiating agents i, },,{ initiatorlisteneri ∈ has a value

),,(,,1 1 JkJki xxV K representing its utility. This general formulation is normally
replaced with a linear combination of terms, namely

Equation 1 ,)(
1 1
∑ ∑

= =

=
J

j
jk

i
K

k
jk

i
ji xVbwV

j

where)(jk
i xV is the value negotiator i assigns to the k’th value of attribute j, and i

jw is a
weight function representing the relative importance of the j’th attribute to agent i.

The term jkb , the k ’th element of the vector jb
r

, is 1 if the corresponding attribute value

is included in the offer and is zero otherwise. Only one of the elements of jb
r

 will be 1 if

we are dealing with a complete offer.11 The k ’th element of the vector)(j
i xV r has the

value of the corresponding attribute. Hence, the summation over k is an inner product of

9 The term cross product offers is another possibility, but it applies more to attributes with discrete values.
Convex hull seems to be more general in that the handling of continuous variables is more natural.
10 This list is replaced by a range for numeric attributes. However, we can treat the range as a finite vector
of discrete values or an infinitely long vector representing a continuum of values.
11 This factor is usually omitted in the definition of the utility function, because most people consider only
a single value for each attribute.

 10

these two vectors.12 The result is the value assigned to the element of the j’th attribute
that appears in the offer.

5.2 Evaluating Convex Hull Offers
If we are dealing with a convex hull offer, more than one value of each attribute may be
included in the offer. In order to properly represent the utility, we modify the definition
of the utility. First of all, we note that we’d like the utility to be ∞− for attribute values
that violate our constraints, and those attributes that are not included in the offer should
not affect its utility. Constraints are easily represented in this form using a penalty
function; the value)(jk

i xV is set to ∞− if the attribute value violates a constraint. We

also change the two values that appear in the binary vector jb
r

 to be 0 if the attribute
value is in the offer and ∞− if it is not.

The result of adding these two terms is the valuation, with a result of ∞− if the value
violates the constraints when the attribute is included in the offer, and ∞− if the attribute
value is not in the offer. The modified form of the utility function becomes13

Equation 2 []∑
= =

+=
J

j
jk

i
jk

K

k

i
ji xVbwV

j

1 1
)(max

As we noted in Section 4.2, it is not necessary for an attribute to be introduced into the
negotiation at all. However, unless the attribute is required as described in Section 2.3
we can’t simply take −∞=jkb for all values of this attribute, or the utility would be ∞− ,
indicating that no deal is possible. We deal with this fact by assuming there is a value for
each attribute representing its absence in the offer. The value is always zero. Element

1+jK of jb
r

 is normally zero if the attribute is not included in the offer and ∞− if it is.
The only exception is that this element will be ∞− if the attribute is required by the
vocabulary designer, as described in Section 2.3. We only need to choose no deal over
one with a zero utility to make this formulation work in all cases.14

12 Although jkb and)(jk

i xV both have two indices, we don’t treat them as matrices for two reasons.
First of all, each attribute has a different number of values, which would result in a ragged matrix unless we
padded it. More importantly, we are only interested in the diagonal of the product matrix.
13 We can simplify the notation by using a generalized inner product, one that does a pairwise addition of

the elements and uses max as the reduction operator. Doing so gives ∑
=

⊕=
J

j
j

ii
ji xVbwV

1

)(r
r

.

14 We can’t simply take this term to be zero, because the max function would select it instead of a negative
value for one of the included attribute values. If there are other terms that make the utility positive,
selecting zero instead of a negative value for the contribution of an attribute will lead to an overestimate of
the utility.

 11

5.3 Composite Utility Functions
While more tractable mathematically than the more general form, this simplification
misses the connection between attributes. For example, I can express a preference for
black wingtips over brown loafers, but no assignment of values and weights can capture
the fact that I also prefer brown loafers to brown wingtips and black loafers.15,16

The solution adopted here is to use a utility function of the form of Equation 2 for each
enumerated set of attribute values. In other words,

Equation 3 [] []∑∑
= == ∈

+++=
J

j
jk

i
jk

K

kjjk
i

jk

J

j Ckji xVbwxVbwV
j

1 11

)(max)(max ,

where the first term is over the various combinations and the second term is over the
remaining attribute values. The vector cxr represents the set of attribute values jkx
appearing in the combinations. For example, a component of this vector might stand for
color=black and style=wingtips. Note that we must use combinations to represent
something as simple as a different price for wingtips and loafers.

We need to be careful. If one of the relevant attribute values or combinations doesn’t
appear in the convex hull offer, the corresponding element in iV will be ∞− . If none of
the terms in the summations satisfies the constraints, then the term will contribute ∞− ,
and it will appear that no deal is possible. For example, if the only element in the second
summation is red shoes, which I do not want, it will appear that no deal is possible, even
though black and brown may be in the offer. The same applies for the combinations. I
may be willing to buy red shoes if I can’t get black wingtips or brown loafers. If I’m not
careful, though, the first term will contribute ∞− . The solution is to make sure that each
of the terms in Equation 3 includes an entry with zero value if none of the options is
included in the offer as described in Section 5.2. If we will only accept one of these
combinations, then we don’t include this extra component.

At first glance, it appears that there is no need for the summation over j in the first term
of Equation 3 because we’re enumerating the combinations. However, we need this
factor to allow us to separate different combinations. For example, I prefer black
wingtips to brown loafers, but I also prefer to pay cash for immediate delivery and by

15 Note the absence of a comparison between brown wingtips and black loafers. These two deals can’t be
compared, resulting in a partial order of the deals.
16 The proof is simple. Say that 1w represents the weight factor for style and ,2w the weight for color.

The two styles will be denoted by 1x and ,2x while the two colors by 1y and 2y . Our conditions are

12212221

22112221

22211211

.
ywxwywxw
ywxwywxw
ywxwywxw

+>+
+>+
+>+

The second equation implies that 0)(121 >− xxw , and the third, 0)(122 >− yyw . Thus,

0)()(122121 >−+− yywxxw , which contradicts the first equation.

 12

credit card if the merchandise is shipped. The weight factor in the first term allows me to
express the relative importance of these combinations and reduces the number of terms in
the summation compared to enumerating all possible combinations of the four attributes.

The cost of this approach, of course, is that the number of combinations is the product of
the number of values. In the worst case, we can include every attribute value in one
combination. However, we expect that most of the time, the number of attribute values in
any combination will be modest. For example, we might have one combination for style
and color and another for shipping and payment methods. Our representation will be far
more compact than trying to represent all possible combinations of all four of these
attributes, yet it is rich enough to represent our intent. Other attributes can be included
in the second term.

Note that the combinations are over attribute values, not attributes, greatly reducing the
number of elements in the first term. For example, shoes might come in 5 colors and 7
styles, but we are only interested in the colors black and brown and the styles wingtips
and loafers. This example has only 4 elements in the first term, instead of 35 if we
considered every possible combination of attribute values. The second summation has
the remaining 3 terms for color and 5 terms for style.

5.4 Price Equivalence
One problem with the linearized form of the utility function is that if price appears as an
attribute, the utility function reduces every option to a monetary value. More generality is
needed. Not every attribute value can be associated with a price17, even if we allow
negative prices. For example, I may be willing to pay with cash if I take the shoes with
me, but I insist on using a credit card if the shoes are to be delivered. However, we’ve
written an equation with one term for price and another for delivery and payment options.
If we’re not careful, the equations will predict that there is a price at which I’ll pay cash
for later delivery. Indeed, there is a price at which I will pay cash for later delivery, just
not a reasonable one.

This work is based on the presumption that no price offer will be unreasonable, even
allowing for negative prices. The object is to avoid either party taking an unneeded
object. We assume there is a smallest positive price that an item will carry, the price the
seller thinks someone else will pay. This price may be only the scrap value, but it won’t
be zero. We can even allow negative prices as long as it doesn’t exceed the disposal
costs. 18 Economists would say that we do not have free disposal. In other words, there
is a cost associated with getting rid of junk. Another effect of this assumption is that we
assume there is no reasonable price at which I’ll take my second choice as long as an
offer for my first choice is on the table that doesn’t violate my constraints.

17 “I wouldn’t take that if they paid me.”
18 Here, we are making the reasonable assumption that a negative price will not exceed the disposal cost of
the item. If I offer you $1,000,000 to take my left shoe, you’ll certainly agree. If I offer you $1 to take
5,000 used left shoes, you’ll certainly decline. The difference is that the disposal cost exceeds the amount
you’re being paid in the second case but not the first.

 13

5.5 Utility as a Partial Order
In a negotiation, I only need to know that I prefer one possible deal to another; I don’t
need to know by how much. Hence, utility is more properly specified as a partial order
of the possible contracts [8]. I prefer black wingtips to brown loafers, but there is no
need to quantify how much. If I can get black wingtips at a price I can afford, I won’t
consider brown loafers at any (reasonable) price. Of course, such an approach precludes
the use of the tools of mathematical optimization.

While Equation 3 avoids combinatoric explosion, it has a problem for convex hull deals.
Namely, Equation 3 does not address the issue of rank ordering the deals. However, a
simple modification allows us to solve this problem. We write

Equation 4 [] [] [],)(max)(max)(
1 11 1 ∑∑

= == =
+++++=

J

j
jk

i
jk

K

kjjk
i

jk

J

j

K

kjr
i

ri xVbwxVbwxVbV
jjrrrr

where the set Rr ∈ represents those attribute values and combinations relevant to the
rank ordering. The utility is now a vector with one component for each rank ordered
deal. The first element is the most preferred deal, and so on. The summations contribute
a constant value to the vector and don’t affect the rank ordering.

In our example, the attribute values that affect the rank ordering are the colors black and
brown and the styles wingtips and loafers. Other attributes affect the evaluation of the
deal and its constraints, but are not relevant to the rank ordering. For example, I want to
pay less, but I still want black wingtips more than brown loafers.

Unfortunately, we can’t use the form of Equation 4 in our strategy described in Section 6.
As we’ll see, that strategy assigns a probability of reaching any potential deal. In order to
select a good counteroffer, I have to weigh the benefit against the likelihood of reaching a
particular deal. For example, if the best deal I could get is unlikely to be acceptable to
the other party, I’d be better off driving the negotiation in the direction of my second best
deal rather than risking a failed negotiation. Knowing when to make this tradeoff
requires quantifying the amount by which one deal is favored over another.

5.6 Finding the Worst Feasible Result19
There are times when it is convenient to bound the range of values of an offer. For
example, if the best possible outcome from one disjunction is worse than the worst
possible outcome of another, there is no need to consider the worse offer. This fact
doesn’t mean we should declare the worse disjunction failed. The other party may
declare the better one failed at some time in the future. Instead, it means that we should
focus our efforts on the better disjunction, keeping the worse one as a fallback position.
A simple change to the definitions used for Equation 2 allows a simple computation of
the worst possible result. If we say that an attribute value that violates our constraints has
a value of ∞+ , and the value of the component of the vector jb

r
 corresponding to an

19 I haven’t found a need for the result of this section yet.

 14

attribute value that is not included in the offer also has a value of ∞+ , then Equation 2
and its generalizations provide a convenient way to compute the minimum possible value
if we take the minimum instead of the maximum of the various terms.20

5.7 Attributes with Continuous Values
We said in Section 5.1 that attributes with continuous values, such as price, can be treated
as an infinite list of individual values. That’s fine for the formal representation, but not
when it comes time to evaluate the function.

Functions of continuous variables and those attributes with a large number of discrete,
ordered values, such as price, need to be represented in functional form. We will
represent the constraints by giving the function limited support and define the value
outside that support to be ∞− . We’ll use the notation)),(,(bxfaH , where a and b
represent the lower and upper bounds of the support.21 For example, the seller in our
shoe shopping example would use),,100(∞PH to represent the way utility changes with
price. The buyer uses),,200(),200,0(∞−−=∞− PHPH to represent the contribution of
price to utility.22

There is no reason the function must be linear. For example, I might value the amount of
gasoline as)200,,5(xPeH − , which states that it’s not worth my while to buy less than 5
gallons, that I can’t store more than 200 gallons, and that the last gallon is worth less to
me than the first. In addition, the function H can be replaced with a representation with
continuous derivatives. For example,)tanh(xα is +1 for large, positive values of x, and

1− for negative values of large magnitude. Picking a sufficiently large value for α
makes this function as steep as desired.

5.8 Why Separate Deals
It’s easy to see how we could be misled by defining a utility function that combines the
preferred deals, e.g., 21

buyerbuyerbuyer VVV += or any other simple function. Say that the
utility function includes an element representing delivery schedule. I may not care if
black wingtips are delivered in 1 day or 3 days23, but I do care for brown loafers. Any
combination of 1

buyerV and 2
buyerV that properly computes the utility will necessarily have a

larger value for delivery in 1 day as opposed to 2. This change should have no effect on
my utility for black wingtips, but it does if we combine deals in a simple formula. This
affect is handled by combining delivery with style and color into a composite term.

20 Of course, operationally, all we need do is turn every ∞− into a ∞+ , but having a formal expression
guides an understanding of the behavior.
21 There is no theoretical reason that requires the limits to be constants. They can be arbitrary functions of
time. We do not allow them to be functions of the values of other attributes, though. That effect is handled
using combinations.
22 The sign of P must be negative to reflect greater utility from lower price. A cut-off of ∞ implies that
the buyer is willing to be paid to take the merchandise, i.e., accept a negative price.
23 My black suit is at the cleaners.

 15

Thus, there is one term for black wingtips, another for brown loafers delivered in 1 day
and another for brown loafers delivered in 3 days.

We’ve said nothing about brown wingtips and black loafers, so we might assume they
don’t satisfy our constraints. Alternatively, we can continue this process to include
brown wingtips as a separate element in the vector, making sure their utility is less than
the above cases. However, a simpler approach is to include them in the list of
combinations, or even as terms in the sum over individual attribute values. In this case,
they contribute, say

[]
[]21

21

23),(

2),(

wwblackloafersV

wwbrownwingtipsV

buyer

buyer

+=

+=
 ,

where 1w and 2w are the relative weights for style and color, and their coefficients
represent the value assigned to each value. Providing such terms in the utility function is
equivalent to stating that we would purchase one of these configurations given the right
circumstances.

5.9 Accounting for Time
We also need to include the “monetary value of time”. Actually, time is not just money.
It has several effects on the evaluation of an offer. Sometimes time appears as a cost of
negotiating, such as the resources consumed in each round or the cost to remain
connected. In this case, we can simply subtract a linear term in the utility function.
Other times, time enters non-linearly, as when there is a deadline.24 In this case, we
subtract a nonlinear term, which may be different for each deal. We may also change the
relative values of various attribute values or their combinations, so we make)(ski xV
functions of time, where s denotes either a combination of attribute values or a specific
attribute.

There is also an effect if we choose to rank order potential deals. In this case, we make
the values)(rki xV , where r denotes one of the rank ordered deals, functions of time. If
time is discrete, then these functions can be chosen to change the rank order of various
possible deals without introducing overlap. This guarantee can also be made with
continuous time if the function is discontinuous in time. However, it may also be that we
become more accommodating of offers other than the highest ranked as time goes on. In
this case, the values of the time dependence can be adjusted so that the values of the
utility functions are made equal. In this case, we have, in effect, a single utility function
representing the combination of deals.

24 The silver pumps are worth very little to the coed the day after the prom.

 16

5.10 Representing Utility
We now have a formulation for calculating utility, but we still need a way for negotiators
to express their utility for evaluation. Such a representation must capture three key
components, combinations, individual attributes, and time. Time in particular, but other
components as well, must be represented as arbitrary functions. Fortunately, the
prototype is written in Python, which supports the ability to execute a string
representation of a function.

The representation I settled on is a 2-element tuple. The first element describes the time
dependence of the cost of the negotiation. The second is a tuple of valuations of
combinations in which individual attributes are considered to be combinations with one
term. Each entry in the second term is a 3-element tuple. The first component of the
combination tuple is the weight given the combination; the second, a tuple consisting of
the specific contributions to the combination; and the third, a function representing the
value. In more formal terms we have

Valuation:: (timedep, combinations)
Combinations:: combination | (combinations)
Combination:: (weight, attributes, values)
Weight:: Integer
Attributes:: attribute | (attributes)
Attribute:: (vocabName, attName, values)
VocabName:: string
AttName:: string
Values:: [value] | [values]
Value:: string interpreted as an executable expression | constant
TimeDep:: value
Constant:: string | integer | float

An example will illustrate the features of this representation.

(
 ‘-0.1*time',
 (3,0,(
 ((('shoe','color',['black']),('shoe','style',['wingtip'])),
 '3-0.4*time'),
 ((('shoe','color',['brown']),('shoe','style',['loafer'])),
 '2-0.1*time')))
 (1,-INFINITY,(
 ((('delivery','delay',[0,0]),('payment','method',['cash'])),1),
 ((('delivery','delay',[1,BIG]),('payment','method',['credit'])),1)))
 (2,0,(
 ((('shoe','style', ['wingtip']),),1),
 ((('shoe','style', ['loafer']),),1)))
 (1,0,(
 ((('shoe','color', ['black']),),1),

 17

 ((((shoe','color', ['brown']),),(1,0)))))
 (1,-INFINITY,(
 ((('delivery','delay',[0,0]),),(5,0)),
 ((('delivery','delay',[1,1]),),(2,0)),
 ((('delivery','delay',[2,2]),),(1,0))))
 (4,0,(
 ((('payment','price',[-INFINITY,200.0]),),"300.0-min(att.value)")))
)

The first term shown is the dependence on time. Here it is a simple linear penalty, but it
could be any executable expression. We see in this example a weight of 3 given to the
combination of color and style, while a weight of 1 is assigned to the combination of
delivery delay and payment method. You’ll see the use of the vocabulary name, attribute
name, and list of attribute values to specify the exact attribute value being evaluated.
Note the functional dependence on time of the color/style combinations. Also note that
the extra valuation , the number immediately following the weight, is zero, which means
that other combinations will be considered. The value of ∞− in the delay/method
combination ensures that no other combination will be accepted.

6 Constructing a Counteroffer
Your agent has just presented my agent with a convex hull offer. My agent must
construct a counteroffer, preferably one that leads to a good end result for me. This
section describes a procedure for selecting a counteroffer similar to that used by
computers when playing games, such as chess. The problem here is considerably more
complex in some ways, as we’ll see.

6.1 Playing a Game
Computer programs that play games don’t attempt to emulate the way a person thinks.
Instead, they use their raw computational power to try every possible move, every
countermove, every response to that, and so on, until they have followed every possible
path or run out of time. Full exploration of the game tree is often made unnecessary by
applying symmetries and pruning the tree. One pruning strategy says that I don’t need to
explore a subtree if the best possible result on that subtree is no better than the worst
possible result on some other subtree. Assigning values to the best and worst possible
results requires knowledge of the game, and the evaluation function is a key factor in
what makes one program better than another.

Consider a simple example, tic-tac-toe. Because of symmetry, there are only 3 starting
moves, center, corner, or edge. If X is placed in the center, there are only 2 responses,
corner or edge, again because of symmetry. If O is placed on an edge, there are 4
responses, one of which is a corner adjacent to the O. Our exploration of the game tree
has brought us to the position

 18

 X
 X O

There are six possible responses for O, five of which lead to an automatic loss for O.
Hence, O explores moving to the lower left corner.

 X
 X O
O

Of X’s five possible responses, one of them is the upper left corner.

X X
 X O
O

No response by O can prevent X from winning on the next move. A reasonable heuristic
is that any time the opponent has two winning moves the game is lost, so O need not
explore any further. In other words, the best possible result from this position is a loss,
while the worst possible result from any other position is a loss, but may be a draw or a
win. Since every possible response to X’s second move has led to a loss, O’s first move
is to a corner.

Tic-tac-toe is a trivial game; you can enumerate the entire game tree on paper in a few
minutes. Chess is more complex, but the basic idea is the same. At some point in
exploring the game tree, you find a position that you can’t win, your King versus King
and Queen. There’s no point in exploring that part of the game tree, since you’ll make a
move to avoid that position if you can. Less extreme cases require more sophisticated
heuristics. Is a Queen worth two Rooks? Are you better off trading a Bishop for a
Knight if the exchange damages your opponent’s Pawn formation? If you could continue
to explore the game tree, you could answer these questions, but there are far too many
possibilities. Instead, you apply heuristics to decide which lines of play to examine, and
do the best job you can to evaluate positions reached at the end of your search.

6.2 Negotiation as a Game
The negotiation protocol described in Section 4 is guaranteed to terminate in a finite
number of steps. Hence, we can view a negotiation as a finite game and expand the game
tree as described in Section 6.1. However, there are some complications that don’t
appear in conventional games.

The first complication is the fact that either party may introduce a new attribute into the
negotiation at any time, and there are no restrictions, other than those imposed by the
marketplace, on the values of that attribute. For example, I may have been negotiating

 19

the price of black wingtips when the seller introduces a shipping time attribute. The
seller may be able to offer a lower price if I’m willing to wait a week for a shipment
directly from the factory. I may have a problem if I’ve been traversing the game tree
along paths that include only price, a color attribute with a value black, and a style
attribute with a value wingtip. In trying to find a path that leads to a good result for me, I
may have led the negotiation to a place that excludes the best possible deal had I
considered waiting for delivery.

Another complication is that I don’t know what the other party wants. In chess, there is
one utility function; each side wants to win but will settle for a draw. When examining
nodes in the game tree, I know what you are trying to do and can use that information in
predicting how you will respond to my moves. In a multi-attribute negotiation, I don’t
know your utility function, so I can’t be sure what direction you’d like the negotiation to
take. I do know that the sign of the coefficients of unordered attributes in your utility
function is the opposite of mine. I also know your preferences for the ordererd attributes.
I don’t know the relative weights of the terms in your utility function.

These complicating factors make the game one of uncertain information. In such
situations, all I can do is estimate the missing information based on the available data.
The better my data, the better I will do in predicting your counteroffers.25 I’ll model
these uncertainties as probability distributions. In essence, I’ll adjust my evaluation of a
leaf of the tree by considering a lottery over your moves at each level of the tree. The
result will be a probability that the value of the leaf will be achieved.

In game theory, each player is assigned a type that denotes the choice the player will
make on each turn. Hence, each type is associated with a complete path through the
game tree from root to leaf. Even if two paths reach the same position, a transposition,
the types of the two players are different because they made different choices to reach the
common position. The assignment of the probability of the opponent making a particular
move is equivalent to the probability that the opponent is of a particular type.

We will assume that we know the distribution of types, but we don’t know the specific
type of the player for a given negotiation. This assumption can be relaxed if there is a
history of negotiation between two parties. We will update our estimate of the player’s
type as the negotiation proceeds using information gleaned from the counteroffers. For
example, a risk averse opponent will counter price offers differently than will one who is
risk neutral. Developing algorithms for refining the update procedure is expected to be
an ongoing activity.

6.3 Making Use of Disjunctions
There are some very simple situations that can lead to conundrums that the agent may not
be able to resolve. For example, consider the shoe example with the partial order

25 Bayesian updates may enable me to make more accurate predictions of your behavior if there is a history
of negotiations.

 20

 Black wingtips > brown loafers
 Brown loafers > black loafers
 Brown loafers > brown wingtips
Say that I’ve just received the convex hull offer
 Style = wingtips, loafer; Color = black, brown
My counteroffer must narrow the space. I really want black wingtips, but if I eliminate
either loafers or brown, I’ll rule out my second choice. The solution is to carry on two,
separate negotiations in parallel, one for black wingtips and one for brown loafers. If the
first negotiation fails, I may still get my second choice.

The solution is to use disjunctions, but which ones? My counteroffer can be the
disjunction
 Style = wingtips; Color = black
 Style = loafers; Color = brown
but this choice doesn’t give me the option of settling for black loafers. On the other
hand, either
 Style = wingtips, loafer; Color = black
 Style = wingtips, loafer; Color = brown
or
 Style = wingtips, loafer; Color = black
 Style = loafer; Color = black, brown
does keep all my options open.26 We see that either of these choices leaves all acceptable
deals on the table. If black wingtips are not available in the first pair, the first disjunction
includes black loafers, and the second includes brown loafers and brown wingtips. In the
second pair, the first disjunction leaves black loafers in the first term if black wingtips are
not available. Black or brown loafers are covered by the second term. Clearly, any set of
disjunctions must be selected to cover all possible deals that meet the constraints.

7 Sample Negotiation
This section steps through a simple negotiation to illustrate how the procedure works.
The intent is to make the example small enough that the game tree can be enumerated on
paper, not to produce a realistic case. Even so, the level of detail is well beyond the
tolerance of most readers. Feel free to skim this section, particularly Section 7.7. Don’t
skip it entirely, though, as it shows how several important issues get resolved.

26 Note that the four disjunctions is a full enumeration of every possible deal, something that is possible
with this simple example but not in general. If I could enumerate all possible deals, then I’d be submitting
a list of ultimatums, and the negotiation would reduce to each party eliminating one or more disjunctions
on each round. This approach is more like strategies found in the literature.

 21

7.1 Contract Template
We will assume a very simple contract template having only three sections. The first
section will describe the product; the second, the payment method; and the third, delivery
options. The goal is to show the linkage between attributes in different sections of the
contract.

7.2 Vocabularies
Each section of the contract template requires a specific vocabulary. For this example,
we’ll use very simple vocabularies.

The Shoe vocabulary is shown in Table 1. It includes two of the three types of attributes.
The manufacturer attribute was included as an attribute that doesn’t appear in the
negotiation.

Table 1. Shoe Vocabulary

Attribute Value
Type

Multiple Required Must
Match

Matching
Rule

Type

Style String Yes Yes Yes Any = = Ordered

Color String Yes Yes Yes Any27 = = Ordered

Manufacturer String or
*28 Yes No No Soundex[7]29 Ordered

In Table 2 we show almost the simplest payment vocabulary possible. The type of the
payment method is ordered because the seller has costs for each type of payment and
would like to provide preferences. We’re familiar with the fees charged by credit card
companies, but check validation services also charge the merchant. What’s less well
known is that taking cash also has a cost. The obvious problem is theft, but another
significant cost is the additional insurance premium charged for businesses that deal with
large amounts of cash.

Similarly, we don’t know the sign of the payment term in the buyer’s utility function.
Some buyers prefer to use a credit card because of the float; others want to avoid running
up a large bill. Although it violates the agreement between the merchant and the credit
card issuer, it is not unheard of for buyers to negotiate a reduced price in exchange for
using cash because of the fee the merchant pays on each transaction. Again, the buyer
would like to express preferences.

27 We might also require that any number of values match, as when looking for two tone shoes.
28 A value of * indicates that any value will match. In our example, it may be that the seller can order
shoes from any manufacturer.
29 This matching rule allows matches with misspellings using the Soundex algorithm.

 22

Table 2. Payment Vocabulary

Attribute Value
Type

Multiple Required Must
Match

Matching Rule Type

Method Set:
Cash,
Check,
Visa

Yes Yes Yes Any = = Ordered

Price Integer No Yes Yes One of: = =, <, > Unordered

Table 3 is another very simple vocabulary. In declaring its one attribute ordered, we are
assuming that both parties benefit with a shorter delivery time. Perhaps the buyer wants
the merchandise as soon as possible, and the seller only gets paid once the goods are
delivered. This attribute could also be unordered if, for example, the delivery charge is
included in the price, and faster delivery costs more.

Table 3. Shipping Vocabulary

Attribute Value Type Multiple Required Must
Match

Matching
Rule

Type

Delay Integer in 0-
7

No No No In range30 Ordered

7.3 Finding a Vendor
In Section 4.1 we saw that the negotiation starts with an advertisement and a lookup
request. In our case, we’ll assume that the seller advertises his wares and the buyer
searches for them. Thus, the seller has the role of listener; the buyer, that of initiator.

Let’s assume that the seller posts the following advertisement.
Shoe Vocabulary

Style = sandal, loafer, wingtip
Color = black, brown, tan
Manufacturer = Florscheim, Dexter
Price31 = 50

Payment Vocabulary
Payment = cash, Visa

Delivery Vocabulary
 Delay = 0-5

The buyer might specify a constraint expression

30 The range specified in the advertisement must overlap the range specified in the search request.
31 The interpretation of the single value specified for a numeric, unordered attribute depends on the context.
If the value represents a price, it is the minimum (maximum) price if the advertiser is a seller (buyer).

 23

Shoe Vocabulary
 Style = wingtip OR loafer

Color = black OR brown
Price < 300

Payment Vocabulary
Payment = cash OR check OR Visa

Delivery Vocabulary
Delay < 3

These two are compatible, so the buyer will find this seller and can enter into negotiation.

Haven’t the buyer and seller revealed too much information? After all, the seller has
specified a minimum acceptable price, and the seller has given a maximum. There are
two reasons why this information doesn’t present a problem. Firstly, in many
middleware systems, the matching is done by a disinterested third party. In such an
environment, the buyer doesn’t see the advertisement, and the seller doesn’t see the
search expression. Secondly, these numbers need not be the actual bounds. By
expanding the available range, both buyer and seller leave some additional room for
negotiation since either or both may be willing to relax their constraints. Mutually
anonymous lookups are also possible.32

Note that the advertisement gives us enough information to expand the game tree.
However, the buyer’s initial offer will certainly reduce the size of this tree significantly,
so we’ll delay this step until Section 7.6.

7.4 Utility Functions
Let’s look at the utility functions for this example. The buyer’s utility for black wingtips
is 3, and 2 for brown loafers. The buyer doesn’t have a preference between the other two
combinations, so we can assign each one a value of 1. The buyer wants the lowest price,
but won’t pay more than $200; a higher price violates a constraint. Hence, the utility
assigned to price is P−200 . The buyer also insists on paying cash if carrying the shoes
out of the store and by Visa if they will be delivered. In this simple case, the buyer’s
utility is

+




















+








+
































+
















=

1
1

max
0
2
3

max
,

,
,

,

carrycash

deliveryvisa

absent

loafersbrown

wingtipsblack

buyer b
b

b
b
b

V
r

 tPH
b
b
b

b
b
b

absent

brown

black

absent

loafers

wingtips

−∞−−+































+
















+
































+
















),,200(

0
1
1

max
0
1
1

max .

32 One example is the millionaire’s algorithm that allows two wealthy people to decide which is worth
more without revealing either’s net worth.

 24

We take H to be 0 if price is not included in the offer, in analogy to the way we handle
the other attributes. Note that only the listed combinations of payment method and
delivery are possible; all others lead to a failed negotiation.

If we assume the seller doesn’t care what shoes he sells, prefers cash to credit regardless
of delivery method, and wants the highest price that exceeds $100, then this utility is

 +































+
















+
































+
















=

0
1
1

max
0
1
1

max

absent

brown

black

absent

loafers

wingtips

seller

b
b
b

b
b
b

V

 tPH
b
b
b

b
b
b

absent

delivery

carry

absent

credit

cash

−∞+































+
















+
































+
















),,100(

0
1
2

max2
0
1
2

max3 .

In this example, price is unordered because its sign is different in the two utility
functions, but the other attributes are ordered, even though there is a disagreement on the
value of the payment conditions. You’ll notice that the seller does not specify any
combinations. Time has been included as a linear penalty term having a value of $1 per
round.

7.5 First Offer
We can’t determine these valuations without knowing the current offer. If the buyer
offers

 style=wingtips, loafers; color=brown,black; P = $125,

we get

[] [] [] ,807511max11max23max =+∞−+∞−+∞−= TTT
buyerV

and

[] [] 272511max11max =+∞−+∞−= TT
sellerV .

These two valuations should not be compared to each other, because their relative scaling
is arbitrary. Notice, too, that the attributes of payment and delivery are not included, so
they contribute nothing to the utility.

7.6 Encoding Offers
The agents negotiate over the contract by sending changes to each other. These changes
are in the form of a list of 3-element tuples. Each tuple consists of a vocabulary name, an
attribute name, and a list of values. If the values do not obey the protocol, the negotiation
is declared to have failed.

 25

Thus far, we’ve been using a human readable representation. However, both this notation
and the tuple form used in the software are too cumbersome to represent the expansion of
the game tree. Instead, we’ll use a compact notation and explain the essential points in
text. The form chosen is an outline. At the highest level is the vocabulary. The next
level will be attributes within each vocabulary. The third level will be for attribute
values. Attributes with a numeric value type are represented by a range, which may be of
zero size.

I Shoe
 A Style

0 Absent
1 Wingtips
2 Loafers

 B Color
0 Absent
1 Black
2 Brown

 C Manufacturer
0 Absent
1 Dexter
2 Florsheim

II Payment
 A Method

0 Absent
1 Cash
2 Visa

 B Price
0 Absent
1 Value range

III Shipping
 A Delay

0 Absent
1 Value range

7.7 Expanding the Game Tree
There is an offer on the table that the seller must respond to. As stated in Section 6.2, the
next step is to expand the game tree by considering every possible counteroffer and all
responses to each of them, etc. First, we’ll look at all possible counteroffers to the
buyer’s initial offer. Completely specified deals will be shown in bold. We won’t bother
showing rejected offers. We’ll start with an offer that includes a value for each attribute,
and in Section 7.9 we’ll describe how missing attributes are handled.

Normally, the buyer would not offer a price this early in the negotiation. However,
delaying makes the hand expansion of the game tree more tedious. For the same reason,
the seller’s first counteroffer includes a price.

Why would the buyer offer so much? Perhaps to avoid violating the seller’s price
constraint. We can see from the seller’s advertisement, that the minimum acceptable
offer is $50, but the buyer doesn’t know this value. The buyer must assign a probability
that a given price offer will result in a failed negotiation. In this example, the buyer has
judged that an offer of $100 is the lowest one with a sufficiently large probability of
being acceptable to the seller.

Offer

I

A B C

II

A B

III

A
1 1,2 1,2 0

1 100

0:0

 26

1.A33 1 1 0

1 100:100

0:0

1.B 1 2 0

1 100:100

0:0

1.C 2 1 0

1 100:100

0:0

1.D 2 2 0

1 100:100

0:0

1.E 1,2 1,2 0

1 100:200

0:0

1.F 1 1,2 0

1 100:200

0:0

1.G 2 1,2 0

1 100:200

0:0

1.H 1,2 1 0

1 100:200

0:0

1.I 1,2 2 0

1 100:200

0:0

1.J 1 1 0

1 100:200

0:0

1.K 1 2 0

1 100:200

0:0

1.L 2 1 0

1 100:200

0:0

1.M 2 2 0

1 100:200

0:0

Next, we’ll look at the buyer’s first round of counteroffers.

Offer I

A B C

II

A B

III

A
1.E.1 1 1,2 0

1 100:200

0:0

1.E.2 2 1,2 0

1 100:200

0:0

1.E.3 1,2 1 0

1 100:200

0:0

1.E.4 1,2 2 0

1 100:200

0:0

1.E.534 1 1 0

1 100:200

0:0

33 This offer constitutes an ultimatum, since the buyer can only accept the offer or declare a failed
negotiation. We won’t show counteroffers to ultimata.
34 This offer is not the same as 1.J because the seller must respond to this offer, and the buyer must respond
to 1.J. Being the first to make a price concession is often disadvantageous.

 27

1.E.6 1 2 0

1 100:200

0:0

1.E.7 2 1 0

1 100:200

0:0

1.E.8 2 2 0

1 100:200

0:0

1.E.935 1,2 1,2 0

1 (100+x):200

0:0

1.E.10 1 1,2 0

1 (100+x):200

0:0

1.E.11 2 1,2 0

1 (100+x):200

0:0

1.E.12 1,2 1 0

1 (100+x):200

0:0

1.E.13 1,2 2 0

1 (100+x):200

0:0

1.E.14 1 1 0

1 (100+x):200

0:0

1.E.15 1 2 0

1 (100+x):200

0:0

1.E.16 2 1 0

1 (100+x):200

0:0

1.E.17 2 2 0

1 (100+x):200

0:0

1.F.136 1.E.5

Nothing in the rules prevents the buyer from changing the upper bound to a smaller
value, in effect changing the seller’s offer. For the purpose of this hand expansion, we’ll
assume the probability of such an offer being accepted is zero. The code will have to
include this possibility as an option.

The transpositions don’t need to be expanded separately although they may affect the
estimates of the opponent’s responses to specific counteroffers. In game theory, we say
that the type of the player is assigned at the start of the game, and the player’s type
determines the specific response. So, in this example, a player who responded to the
initial offer with 1.E is a different type than one who responded with 1.F. Even though
the set of legal moves from 1.F.1 is the same as from 1.E.5, the probabilities will change.
Hence, the software that follows the tree must include the ability to update the
estimations assigned to the probabilities of a response to include the path by which that
node was reached. In our software, we’ll use the labeling shown in the table to indicate

35 This offer denotes that the buyer is willing to spend more than $100. In subsequent rounds, the value of
x can only be increased.
36 Selecting 1 for attribute B of vocabulary I gives an offer seen elsewhere in the tree. In games, we call
such a situation a transposition. Since a substantial proportion of the counteroffers result in transpositions,
they will be collected into a separate table and presented in a more compact form.

 28

the player’s type. Thus, one of our players will be of type 1.E.5 and the other of type
1.F.1.

Transpositions for Buyer’s Response
1.F.1 = 1.E.5 1.F.2 = 1.E.6 1.F.3 = 1.E.10 1.F.4 = 1.E.14 1.F.5 = 1.E.15
1.G.1 = 1.E.7 1.G.2 = 1.E.8 1.G.3 = 1.E.11 1.G.4 = 1.E.16 1.G.5 = 1.E.17
1.H.1 = 1.E.5 1.H.2 = 1.E.7 1.H.3 = 1.E.12 1.H.4 = 1.E.14 1.H.5 = 1.E.16
1.I.1 = 1.E.6 1.I.2 = 1.E.8 1.I.3 = 1.E.13 1.I.4 = 1.E.15 1.I.5 = 1.E.17
1.J.1 = 1.E.14 1.K.1 = 1.E.15 1.L.1 = 1.E.16 1.M.1 = 1.E.17

Now it’s the seller’s turn again.

Offer I

A B C

II

A B

III

A
1.E.1.C 1 1,2 0

1 100:(200-y)

0:0

1.E.1.D 1 1 0

1 100:(200-y)

0:0

1.E.1.E 1 2 0

1 100:(200-y)

0:0

1.E.2.C 2 1,2 0

1 100:(200-y)

0:0

1.E.2.D 2 1 0

1 100:(200-y)

0:0

1.E.2.E 2 2 0

1 100:(200-y)

0:0

1.E.3.C 1,2 1 0

1 100:(200-y)

0:0

1.E.4.C 1,2 2 0

1 100:(200-y)

0:0

1.E.9.A 1 1,2 0

1 (100+x):200

0:0

1.E.9.B 2 1,2 0

1 (100+x):200

0:0

1.E.9.C 1,2 1 0

1 (100+x):200

0:0

1.E.9.D 1,2 2 0

1 (100+x):200

0:0

1.E.9.E 1 1 0

1 (100+x):200

0:0

1.E.9.F 2 1 0

1 (100+x):200

0:0

1.E.9.G 1 2 0

1 (100+x):200

0:0

1.E.9.H 2 2 0

1 (100+x):200

0:0

1.E.9.I 1,2 1,2 0

1 (100+x): (200-y)

0:0

1.E.9.J 1 1,2 0

1 (100+x): (200-y)

0:0

1.E.9.K 2 1,2 0

1 (100+x): (200-y)

0:0

 29

1.E.9.L 1,2 1 0

1 (100+x): (200-y)

0:0

1.E.9.M 1,2 2 0

1 (100+x): (200-y)

0:0

1.E.9.N37 1 1 0

1 (100+x): (200-y)

0:0

1.E.9.O 2 1 0

1 (100+x): (200-y)

0:0

1.E.9.P 1 2 0

1 (100+x): (200-y)

0:0

1.E.9.Q 2 2 0

1 (100+x): (200-y)

0:0

Transpositions for Seller’s Response
1.E.1.A = 1.J 1.E.1.B = 1.K 1.E.2.A = 1.L 1.E.2.B = 1.M
1.E.3.A = 1.J 1.E.3.B = 1.L 1.E.3.D = 1.E.1.D 1.E.3.E = 1.E.2.D
1.E.4.A = 1.K 1.E.4.B = 1.M 1.E.4.D = 1.E.1.E 1.E.4.E = 1.E.2.E
1.E.5.A = 1.E.1.D 1.E.6.A = 1.E.1.E 1.E.7.A = 1.E.2.D 1.E.8.A = 1.E.2.D
1.E.10.A = 1.E.9.E 1.E.10.B = 1.E.9.G 1.E.10.C = 1.E.9.J 1.E.10.D = 1.E.9.N 1.E.10.E=1.E.9.P
1.E.11.A = 1.E.9.F 1.E.11.B = 1.E.9.H 1.E.11.C = 1.E.9.K 1.E.11.D = 1.E.9.O 1.E.11.E=1.E.9.Q
1.E.12.A = 1.E.9.E 1.E.12.A = 1.E.9.F 1.E.12.A = 1.E.9.C 1.E.12.A = 1.E.9.N 1.E.12.A=1.E.9.P
1.E.13.A = 1.E.9.G 1.E.13.A = 1.E.9.H 1.E.13.A = 1.E.9.D 1.E.13.A = 1.E.9.P 1.E.13.A=1.E.9.Q
1.E.14.A = 1.E.9.N 1.E.15.A = 1.E.9.P 1.E.16.A = 1.E.9.O 1.E.17.A = 1.E.9.Q

Here we see another simplification in the equivalence of offers from different rounds. If
time appears in one or both of the utility functions, then the state of the world is not truly
the same for offers made at different times. We can calculate the effect, though when the
time enters the utility function linearly, as it does in this case.

The next round leaves only a few possible counteroffers.

Offer I

A B C

II

A B

III

A
1.E.1.C.138 1 1 0

1 100: (200-y)

0:0

1.E.1.C.2 1 2 0

1 100: (200-y)

0:0

1.E.1.C.3 1 1,2 0

1 (100+x): (200-y)

0:0

1.E.1.C.4 1 1 0

1 (100+x): (200-y)

0:0

1.E.1.C.5 1 2 0

1 (100+x): (200-y)

0:0

37 This offer and the next three will be accepted deals when 100+x=200-y.
38 As before, this offer is not the same as 1.E.1.D because the seller must respond to this one and the buyer
to the other.

 30

1.E.2.C.1 2 1 0

1 100: (200-y)

0:0

1.E.2.C.2 2 2 0

1 100: (200-y)

0:0

1.E.2.C.3 2 1,2 0

1 (100+x): (200-y)

0:0

1.E.2.C.4 2 1 0

1 (100+x): (200-y)

0:0

1.E.2.C.5 2 2 0

1 (100+x): (200-y)

0:0

1.E.3.C.3 1,2 1 0

1 (100+x): (200-y)

0:0

1.E.4.C.3 1,2 2 0

1 (100+x): (200-y)

0:0

1.E.9.I.5 1,2 1,2 0

1 (100+x): (200-y’)

0:0

1.E.9.J.3 1 1,2 0

1 (100+x): (200-y’)

0:0

1.E.9.K.3 2 1,2 0

1 (100+x): (200-y’)

0:0

1.E.9.L.3 1,2 1 0

1 (100+x): (200-y’)

0:0

1.E.9.M.3 1,2 2 0

1 (100+x): (200-y’)

0:0

1.E.9.N.1 1 1 0

1 (100+x): (200-y’)

0:0

1.E.9.O.1 2 1 0

1 (100+x): (200-y’)

0:0

1.E.9.P.1 1 2 0

1 (100+x): (200-y’)

0:0

1.E.9.Q.1 2 2 0

1 (100+x): (200-y’)

0:0

Transpositions for Buyer’s Response
1.E.1.D.1 = 1.E.1.C.4 1.E.1.E.1 = 1.E.1.C.5 1.E.2.D.1 = 1.E.2.C.4 1.E.2.E.1 = 1.E.2.C.5
1.E.3.C.1 = 1.E.1.C.1 1.E.3.C.2 = 1.E.2.C.1 1.E.3.C.4 = 1.E.1.C.4 1.E.3.C.5 = 1.E.2.C.4
1.E.4.C.1 = 1.E.1.C.1 1.E.4.C.2 = 1.E.2.C.1 1.E.4.C.4 = 1.E.1.C.4 1.E.4.C.5 = 1.E.2.C.4
1.E.9.A.1 = 1.E.14 1.E.9.A.2 = 1.E.15 1.E.9.A.3 = 1.E.1.C.3
1.E.9.B.1 = 1.E.16 1.E.9.B.2 = 1.E.17 1.E.9.B.3 = 1.E.2.C.5
1.E.9.C.1 = 1.E.14 1.E.9.C.2 = 1.E.15 1.E.9.C.3 = 1.E.3.C.3
1.E.9.D.1 = 1.E.15 1.E.9.D.2 = 1.E.17 1.E.9.D.3 = 1.E.4.C.3
1.E.9.E.1 = 1.E.1.C.4 1.E.9.F.1 = 1.E.2.C.4 1.E.9.G.1 = 1.E.1.C.5 1.E.9.H.1 = 1.E.2.C.5
1.E.9.I.1 = 1.E.1.C.3 1.E.9.I.2 = 1.E.2.C.3 1.E.9.I.3 = 1.E.3.C.3 1.E.9.I.4 = 1.E.4.C.3
1.E.9.J.1 = 1.E.1.C.4 1.E.9.J.2 = 1.E.1.C.5 1.E.9.K.1 = 1.E.2.C.4 1.E.9.K.2 = 1.E.2.C.5
1.E.9.L.1 = 1.E.1.C.4 1.E.9.L.2 = 1.E.2.C.5 1.E.9.M.1 = 1.E.1.C.5 1.E.9.M.2 = 1.E.2.C.5

All the deals in the final round of negotiation result in transpositions.

 31

Transpositions for Seller’s Response
1.E.1.C.1.A = 1.E.9.N 1.E.1.C.2.A = 1.E.9.O 1.E.1.C.3.A = 1.E.9.N 1.E.1.C.3.B = 1.E.9.P
1.E.2.C.1.A = 1.E.9.O 1.E.2.C.2.A = 1.E.9.Q 1.E.2.C.3.A = 1.E.9.O 1.E.2.C.3.B = 1.E.9.Q
1.E.3.C.3.A = 1.E.9.N 1.E.3.C.3.B = 1.E.9.O 1.E.4.C.3.A = 1.E.9.P 1.E.4.C.3.B = 1.E.9.Q
1.E.9.I.5.A = 1.E.9.J 1.E.9.I.5.B = 1.E.9.K 1.E.9.I.5.C = 1.E.9.L 1.E.9.5.D = 1.9.E.M
1.E.9.I.5.E = 1.E.9.I
1.E.9.J.3.A = 1.E.9.N 1.E.9.J.3.B = 1.E.9.P 1.E.9.J.3.C = 1.E.9.J
1.E.9.K.3.A = 1.E.9.O 1.E.9.K.3.B = 1.E.9.Q 1.E.9.K.3.C = 1.E.9.K
1.E.9.L.3.A = 1.E.9.N 1.E.9.L.3.B = 1.E.9.O 1.E.9.L.3.C = 1.E.9.L
1.E.9.M.3.A = 1.E.9.P 1.E.9.M.3.B = 1.E.9.Q 1.E.9.M.3.C = 1.E.9.M
1.E.9.N.1.A = 1.E.9.N 1.E.9.O.1.A = 1.E.9.O 1.E.9.P.1.A = 1.E.9.P 1.E.9.Q.1.A = 1.E.9.Q

Since we’ve expanded the game tree, there’s no need to determine the value of
intermediate nodes. Each party only needs to evaluate the leaves of the game tree, and
then make counteroffers that drive the negotiation toward the best possible deals. The
values in the following table come from the utility functions in Section 7.4

Offer I

A B

II

B

Buyer Seller

1.A 1 1

100:100

104 1

1.B 1 2

100:100

101 1

1.C 2 1

100:100

101 1

1.D 2 2

100:100

103 1

1.E.9.N 1 1

(100+x): (200-y)

3+x 100-y

1.E.9.O 2 1

(100+x): (200-y)

x 100-y

1.E.9.P 1 2

(100+x): (200-y)

x 100-y

1.E.9.Q 2 2

(100+x): (200-y)

2+x 100-y

1.E.1.C.4 1 1

(100+x): (200-y)

3+x 100-y

1.E.1.C.5 1 2

(100+x): (200-y)

x 100-y

1.E.2.C.4 2 1

(100+x): (200-y)

x 100-y

1.E.2.C.5 2 2

(100+x): (200-y)

2+x 100-y

The following figure shows the complete game tree. The players’ counteroffers are
denoted by the red and blue links. Green lines connect identical states of the world, i.e.,
transpositions.

 32

7.8 Choosing a Strategy
Recall that the seller doesn’t know the buyer’s valuation, nor does the buyer know the
seller’s. It is clear that the seller will do better than any of the first four deals if the price
exceeds $100, i.e., 99<y , so the first counteroffer will not include a price of $100. The
buyer is aware of this fact and assigns a low probability of reaching any of the first 4
leaves in the game tree. The seller doesn’t know exactly what shoes the buyer is looking
for. However, the ordering of the options in the attributes of style and color indicate that
black wingtips are preferred to brown loafers. Hence, the seller assigns a higher
probability of reaching leaves 1.E.9.N and 1.E.1.C.4 than either 1.E.9.Q or 1.E.2.C.5.
The seller can’t draw any conclusions from the initial offer, but can adjust these
probabilities based on intermediate offers. For example, if the buyer counters with
color=black, the seller can increase the probability of reaching 1.E.9.P and 1.E.1.C.5.
This information might also prove useful in future negotiations with the same buyer.

The seller doesn’t care what combination of style and color is ultimately decided upon, so
the risk of a failed negotiation is minimized by keeping options open as long as possible.
Thus, the seller’s first counteroffer is most likely to be 1.E, namely,

style=wingtip,loafer, color=black,brown, price=200.

The buyer may misjudge this component of the seller’s utility and assume that the seller
would rather sell wingtips than loafers. That error may affect the buyer’s judgment of the
likelihood of ending up with a particular deal.

As noted in Section 6.3, the buyer can’t narrow the space of style and color without
precluding the possibility of getting his first or second choice. Hence, the buyer must
introduce a disjunction. Recall that each disjunction must follow separately the rules of
the negotiation. Hence, each disjunction is represented by a node in the game tree, so no
further analysis is needed. Each disjunction will have its own valuation. At some stage,
the buyer will declare one of them failed and accept the other. In our example, one
disjunction will lead to 1.E.9.N, and the other to 1.E.9.Q. Since the buyer’s valuation for

 33

the former exceeds that of the latter, the buyer will declare 1.E.9.Q failed and will accept
1.E.9.N, after settling on a price, of course.

We also need to deal with the continuous variables, price in this example. We’ve used a
special notation that indicates a specific node in the tree, 1.E.9.N, for example, is re-
entered when an offer that changes just the price attribute is made. We need to assign a
probability of the other party’s response to each possible value of the price increment.
We know, for example, that a price equal to the other party’s offer is almost certain to be
acceptable. We also know that a very small increment is likely to lead to a failed
negotiation. Neither party knows the other’s sensitivity, though. As a first guess, we
might take a linear function with values between 0 and 1 as the offer varies from no price
increment to agreeing with the other party’s price. For example, the buyer might assign
the probability that a counteroffer on price will not lead to a failed negotiation to be

yp
yx
xppPbuyer −≤

−−
+−= 200 ,

100
)100()(,

and the seller

 xp
yx
pypPseller +≥

−−
−−= 100 ,

100
)200()(.

Of course, the probabilities need not be linear, or even analytic.

With the conditions specified, and both parties acting rationally, the negotiation that
results can be represented by 1.E.1.C.4 with a price determined by the relative price
sensitivity of the parties. Assuming both are risk neutral means that their probability of
finding a price offer unacceptable is a linear function of price. Using the data from the
advertisement in Section 7.3, namely that the seller wants at least $50 and the buyer
won’t pay more than $250, and the first offer each introduced into the negotiations, $100
and $200 for the buyer and seller, respectively, gives

3
1

150
)(−= ppPseller , and

3
5

150
)(+−= ppPbuyer .

These two straight lines cross at 150=p , the most likely price, with a probability of
being accepted of 2/3.

Of course, the two parties don’t know their opponents’ true limits. If the buyer thinks the
seller’s true minimum is $100 instead of $50, the straight lines

 1
100

)(−= ppPseller , and
3
5

150
)(+−= ppPbuyer

intersect at $160 and a probability of 3/5. If the seller thinks the buyer’s true maximum is
$200 instead of $250, then the straight lines

 34

3
1

150
)(−= ppPseller , and 2

100
)(+−= ppPbuyer

intersect at $140 with probability of acceptance of 3/5. It is clear that the buyer may
evaluate a deal as if paying more than the true equilibrium price and the seller settling for
less. Fortunately, we can use the results of the extensive literature on bargaining over
one, competitive attribute for this case.

One further point needs attention. There is nothing to prevent one party from changing
the other’s proposal for a numerical attribute. The only rule is that the increment must be
narrowed. Thus, the seller could increase the value of x, in essence saying. “Would you
be willing to pay $10 more?” Such an offer is not guaranteeing this price, which would
be done by increasing y. Of course, the buyer is likely to be surprised by such an offer
and may declare a failed negotiation.

7.9 Introducing a New Attribute
The example in Section 7.7 did not involve introducing a new attribute during the
negotiation. Had we done so, the subsequent part of the game tree would have been
expanded by a factor related to the number of attribute values included. Here, we’ll show
the effect of such an offer.

For simplicity, we’ll assume that the new attribute is introduced just before agreeing to an
ultimatum. Also, for simplicity, we’ll assume that the seller introduces the attribute
manufacturer from the shoe vocabulary with two values Dexter and Florscheim.

Offer I

A B C

II

A B

IV39

A
1.E.1.C.4.A 1 1 0

1 (100+x): (200-y)

1,2

1.E.1.C.4.A.1 1 1 0

1 (100+x): (200-y)

1

1.E.1.C.4.A.2 1 1 0

1 (100+x): (200-y)

2

As shown by this example, the new attribute can affect the buyer’s and seller’s
valuations. It is important to carry these nodes through the game tree with the probability
that they will be introduced later. Unfortunately, unless the marketplace has limited the
number of legal attribute values, the probabilities assigned to the various values are likely
to be unreliable.

39 Since an attribute with an agreed upon value can never re-enter the negotiation, we’ve removed the
delivery attribute from the table.

 35

8 Experimental Validation
I have written a prototype that implements everything discussed thus far except for the
tree search strategy. This object-oriented code includes classes related to the
specification of the offers. These classes specify attributes, vocabularies, sections,
contracts, and offers. The last of these enforces the negotiation protocol. The properties
of the participants are captured in classes for valuations, negotiators, and a negotiation
class that controls the sequence of the negotiations. This last class is the only one that
assumes two-party negotiation; all the others are generic in this regard. The strategy
method is a parameter passed to the constructor for the negotiator. Its valuation and
strategy methods are what distinguishes it from other negotiatiors. Thus, the only thing
that distinguishes a buyer from a seller is the sign of the price dependence of its
valuation. While the real negotiation tool will involve sending messages between, and
ultimately among, the participants, for now everything runs within a single program.

The file containing each class comes with a unit test for that class. Thus, all type
checking of attribute values is done in the attribute class, and we know violations will be
caught because of the tests. In addition, there are no cycles in the has-a relation. That
means that the unit tests can also test all interactions with other classes, and a change in
one class does not involve retesting any other classes.

In order to test the code developed so far, I ran a simple negotiation using the
vocabularies and utility functions in Section 7. Since the strategy module isn’t ready yet,
I used a “random” strategy. This code steps through the attributes of the current offer.
When it encounters an attribute with multiple values, it selects the first in the list as its
counteroffer. If it finds an attribute with a numeric range, it selects the lower endpoint if
that results in a finite valuation or the upper limit if it doesn’t. A trace of the negotiation
showing the changes follows.

(1.0, 1, [('payment', 'price', [300.0, 300.0])], 13.8)
(2.0, 0, [('payment', 'method', ['check', 'cash'])], 15.4)
(3.0, 1, [('payment', 'method', ['cash'])], 13.4)
(4.0, 0, [('shoe', 'style', ['loafer'])], 13.4)
(5.0, 1, [('shoe', 'color', ['brown'])], 13.0)
(6.0, 0, [('delivery', 'delay', [0, 0])], 12.6)

The first column is the time, measured in rounds. The second denotes the player. The
next field is a list of changes, in this simple case only a single attribute. The final number
is the player’s valuation of the deal using the method described in Section 5.

I’ve also created a strategy that looks at the attribute values and eliminates the one with
the lowest utility. I’ve run that strategy for the seller against a random one for the buyer
with the result that follows. We see that in this simple case, the seller didn’t benefit but
the buyer did end up worse off. This poor behavior is a failure of the strategy to take into
account the preferences listed by the buyer for the ordered attributes. When the seller
doesn’t care, he should base his counteroffer on his estimate of the buyer’s preferences.

 36

(1.0, 1, [('payment', 'price', [300.0, 300.0])], 17.8)
(2.0, 0, [('payment', 'method', ['check', 'cash'])], 15.4)
(3.0, 1, [('payment', 'method', ['cash'])], 14.4)
(4.0, 0, [('shoe', 'style', ['loafer'])], 13.4)
(5.0, 1, [('shoe', 'color', ['black'])], 16.0)
(6.0, 0, [('delivery', 'delay', [0, 0])], 8.4)

9 Future Work
Substantial progress has been made, but much remains to be done. The bulk of this
document is a proof of concept that shows the idea of expanding the negotiation as a
game tree is feasible. The infrastructure is largely complete, albeit only as a prototype.
The basic mechanisms are in place, and a negotiation can be driven to completion.
Several problems needed to be solved to complete the formulation. Some of these
problems are straightforward applications of known ideas; others will involve solving
some interesting research problems.

A real strategy needs to deal better with attributes with continuous values, such as integer
and floating point value types. The difficulty of finding a value for a counteroffer has
several components. First, there’s the problem of finding a value that satisfies the
constraints of both parties. We have an interval representing the current offer, and we
know that this range overlaps the acceptable values for both parties. We don’t know if
this range encompasses one or both of the endpoints, is contained in one or both, or
extends beyond on one side or the other. Fortunately, we have a scale factor since
attributes have been programmed to disallow a doubly infinite interval.40 Hence, we can
use standard methods for finding a feasible solution for an optimization problem.

Once we’ve found a feasible solution, we need to find a new range as a counteroffer.
The first step is to find the sign of the term in the utility function of either party. While it
is possible to examine the utility representation, this function may be arbitrarily complex.
For example, price may enter into combinations and individual terms and may have a
highly non-linear dependence on time. It appears that the best approach is to treat the
utility function as a black box. We can then use techniques of mathematical optimization
to find a counteroffer.

Another problem that needs to be addressed is inferring the opponent’s utility function.
More important is coming up with a procedure to update this estimate based on the
course of the negotiation. We’ve seen some simple ideas earlier, which need to be
formalized before code implementing them can be written. We also need to convert these
utility estimates into probabilities that the opponent will agree to a particular deal.

There are a number of unanswered questions. Is there a way to make use of the fact that
we don’t know if an attribute is cooperative or competitive for one of the parties? Can
the strategy use a rank ordering, as opposed to a quantification, of the possible deals? Is
the meta-negotiation that decides what sections go into a contract template identical to

40 A doubly infinite interval would correspond to no preference. Not including the attribute has the same
meaning.

 37

the negotiation over that template? How much state must parties save to avoid cycles
when restarting failed negotiations?

10 Conclusions
A search of the literature, some of which is listed in Section 11, has shown some gaps.
Little work has been done that focuses on the cooperative aspects of negotiation; most of
the literature centers on competitive attributes. Also, the complex offers are almost
universally handled in a manner that won’t scale to large numbers of attributes and
attribute values. Additionally, none of the work found to date looks at the negotiation as
a game to be played by expanding the game tree.

While some of the following ideas may have appeared in the literature, neither I nor the
people I’ve asked, know of any reference to previous publication of them, at least as
applied to automatic negotiation. Please let me know where these ideas have been
proposed by others.

• Use of the same vocabularies for lookup and as negotiation ontologies.
• The negotiation protocol that is guaranteed to terminate, modified slightly from

the protocol developed for e-speak.
• The specific valuation function used, particularly but not solely as it applies to

convex hull offers.
• Finite support for attributes with continuous values.
• The particular method used for accounting for time.
• Treating the negotiation like a chess game with uncertain information of the

opponent’s utility.
• Dealing with continuous variables in expanding the game tree.

11 References

1. Mihal Barbuceanu and Wai-Kau Lo, “A Multi-Attribute Utility Theoretic
Negotiation Architecture for Electronic Commerce”, presented at Agents 2000,
Barcelona, Spain, (2000)

2. R. Lewicki, D. Saunders, and J. Minton, Essentials of Negotiation, Irwin (1997)
3. P. Faratin, C. Sierra, and N. R. Jennings, “Using Similarity Criteria to Make

Negotiation Trade-offs”, International Conference on Multiagent Systems
(ICMAS-2000), Boston, MA. pp. 119-126 (2000) (describes trade-offs on
indifference curve that improves opponent’s utility; ideas on estimating
opponent’s utility function and “distance” between deals)

4. N. R. Jennings, S. Parsons, C. Sierra, and P. Faratin , "Automated Negotiation"
Proc. 5th Int. Conf. on the Practical Application of Intelligent Agents and Multi-
Agent Systems (PAAM-2000), Manchester, UK, pp. 23-30 (2000) (refers to an
offer being a “point or a region” in the agreement space.

5. P. Faratin, C. Sierra and N. Jennings Negotiation Decision Functions for
Autonomous Agents in Int. Journal of Robotics and Autonomous Systems, 24(3-
4):159-182 (1997)

6. H. Raiffa, The Art and Science of Negotiation, Harvard University Press (1982)

http://ccs.mit.edu/peyman/pubs/paam2000-inv.ps
http://ccs.mit.edu/peyman/pubs/RAS.ps
http://ccs.mit.edu/peyman/pubs/RAS.ps

 38

7. http://www.nara.gov/genealogy/soundex/soundex.html
8. R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and

Value Tradeoffs, Cambridge University Press (1993)
9. “Conceptual Model for Electronic Contract Framework in B2B Systems”,

Morciniec, Michal; Bartolini, Claudio; Boulmakoul, Abdel, HP Labs Technical
Report HPL-2001-10, http://lib.hpl.hp.com/techpubs/2001/HPL-2001-10.pdf
(2001)

http://www.nara.gov/genealogy/soundex/soundex.html
http://lib.hpl.hp.com/techpubs/2001/HPL-2001-10.pdf

	Introduction
	Vocabularies and their Attributes
	Value Type
	Multiplicity
	Required
	Must-match
	Matching Rule
	Designation

	Contracts
	Negotiation Protocol
	Finding Possible Deals
	Two-Party Protocol
	Dealing with Attribute Types
	Disjunctions
	Summary of Protocol

	Evaluating an Offer
	Conventional Utility Function
	Evaluating Convex Hull Offers
	Composite Utility Functions
	Price Equivalence
	Utility as a Partial Order
	Finding the Worst Feasible Result
	Attributes with Continuous Values
	Why Separate Deals
	Accounting for Time
	Representing Utility

	Constructing a Counteroffer
	Playing a Game
	Negotiation as a Game
	Making Use of Disjunctions

	Sample Negotiation
	Contract Template
	Vocabularies
	Finding a Vendor
	Utility Functions
	First Offer
	Encoding Offers
	Expanding the Game Tree
	Choosing a Strategy
	Introducing a New Attribute

	Experimental Validation
	Future Work
	Conclusions
	References

