

Extracting and Re-using Structured Data from Wikis
Jonathan Isbell and Mark H. Butler
Digital Media Systems Laboratory
Bristol

HPL-2007-182

14th November, 2007∗

wikipedia; semantic
web; information
extraction; wikis;
metadata

This report investigates simplifying the creation of
structured data for use in Semantic Web
applications. In the first phase of work, a prototype
is created that extracts structured data on
companies and unstructured data on acquisitions
from Wikipedia. It then reuses this information in
a data browser that can provide faceted, map and
timeline views. In the second phase, we investigate
more generic approaches for extracting structured
data and related schema information from
Wikipedia. We use this information to create user
interfaces that simplify the creation of structured
data about related topics. This demonstrates that it
is possible to simplify the creation and re-use of
structured data in ways that benefit users.

© Copyright 2007 Hewlett-Packard Development Company, L.P. Approved for External Publication

∗ Internal Accession Date Only

Extracting and Re-using
Structured Data from

Wikis
Jonathan Isbell
jon@isbell.net

Mark H. Butler
mark.butler2@hp.com

Digital Media Systems Department
HP Labs, Bristol

Abstract: This report investigates simplifying the
creation of structured data for use in Semantic Web
applications. In the first phase of work, a prototype is
created that extracts structured data on companies and
unstructured data on acquisitions from Wikipedia. It
then reuses this information in a data browser that can
provide faceted, map and timeline views. In the
second phase, we investigate more generic
approaches for extracting structured data and related
schema information from Wikipedia. We use this
information to create user interfaces that simplify the
creation of structured data about related topics. This
demonstrates that it is possible to simplify the
creation and re-use of structured data in ways that
benefit users.

Keywords: Wikipedia, Semantic Web, Information
Extraction, Wikis, Metadata

Acknowledgements: Jonathan Isbell, a student from
Bristol University, carried out the work described
here during a three month internship at HP Labs
Bristol. Many thanks to Georgi Kobilarov of the
DBPedia project for feedback on an earlier version of
this report.

1 Introduction

1.1 Context
Often we draw a distinction between unstructured
data, such as text or web pages, and structured data
that has been through a data modeling process, for
example data in a relational database [Grimes2005].
We also draw a distinction between data and
metadata, where the latter is commonly defined as
data about data, for example the name of the author of
an electronic document [Good2002].

There is an increasing need for everyday users to be
able to create metadata and structured data. For
example, they may be contributing information to a
very large collection of information, such as an item
description on Ebay, so it must be in a consistent
format in order to be found. Alternatively, the user
may need to describe an information resource that is
not textual so is not searchable using free text search,
such as photos, video or audio.

[Doctorow2001] gives six reasons why metadata is
often inaccurate or unreliable, and we propose they
are relevant to structured data as well:

1. Metadata creation can be too difficult or time
consuming to produce accurately.

2. People may seek to create advantage by providing
unreliable data.

3. Metadata creators are often not sufficiently
impartial.

4. The schemas used to capture the data are often not
neutral.

5. Measurements cannot completely capture all facets
of reality.

6. There are often multiple ways to describe or
classify things.

Although we do not agree with [Doctorow2001] that
these problems present “insurmountable obstacles”
we do think they are worthy of investigation. As
structured data is modeled data, when everyday users
create structured data they are performing some level
of data modeling. This is a conceptually hard
problem, so it is not surprising they can find it
difficult.

In this report, we describe work that investigates an
approach to simplifying the creation of structured
data. The work is divided into two phases: the first
phase involves building a domain specific prototype,
and the second phase involves investigating a more
generic approach.

1.2 Phase 1: Domain specific
prototype
In the first phase we investigate whether it is possible
to take information in Wikipedia, stored in both
structured and unstructured forms, and then transform
that information into a reusable structured form such
as RDF [Manola2004]. We create a prototype that

 1

Faceted browser Map View Timeline View
Figure 1 Screenshot of US Presidents Exhibit

extracts information on technology companies and
their corporate acquisitions. In Wikipedia, general
information about the company is available in
structured form whereas acquisition information is
only available as free text i.e. unstructured form.

Once we have extracted this information, we will then
present it in a summarized form using a faceted
browser called Exhibit [Huynh2007a]. This allows the
filtering of information based on properties, as well as
timeline or map views. An example of the views
possible in Exhibit is shown in Figure 1.

Our primary aim in this phase is to demonstrate an
approach for non-technical users to create structured
data in a standard, reusable form without having to
learn any new technical skills. Wiki software is an
ideal platform because it is easy for non-technical
users to learn and many organizations are already
using this technology.

The secondary aim is to demonstrate the potential
value of making data available in structured form by
providing the user with some alternative ways of
viewing and exploring the data. The approach
outlined here is equally applicable to Wikis used
within the enterprise domain, where providing
summary views would allow project leads to analyze
documentation and data created by their team and so
make better decisions.

1.3 Phase 2: Generic Approaches
In the second phase, we explore generic ways to
extract all types of structured information in
Wikipedia. We investigate how this extracted
information can be used to simplify the task of
creating additional structured data rather than just
reusing data that has already been created. The aim is

 2

to address three problems which contribute to the
difficulty of creating structured data.

The first problem is that for structured data to be
usable, users need to adopt a common approach to
encoding the data. Adopting a common vocabulary
when a system is under decentralized control can be
difficult, because the separate parts of the system all
tend to develop their own idiosyncratic vocabulary.

The second problem is that data representation
formats that support a wide range of vocabularies
often require the use of disambiguating mechanisms
such as namespaces in order to distinguish between
these different vocabularies. Often namespaces are
based on URIs, which increase complexity as they are
long and not always easy to remember. Some formats
support namespace prefixing i.e. the namespace only
need to be included once and is subsequently referred
to using a prefix. Even with prefixing, namespaces
drastically increase complexity for some users.

The third problem is that we need to that ensure
people encode concepts consistently, for example to
avoid several variations of a company name. One way
to avoid a proliferation of these variations is to list all
the names in a controlled vocabulary, so we
effectively agree on a single variation, and
misspellings are rejected at data entry time.

In our prototype we address these three issues as
follows: we avoid users having to formulate how to
describe a particular item, because we give them a
form to prompt them to enter appropriate information.
We do not require the user to remember namespaces,
although we do use namespaces internally. We also
automatically process existing metadata to create a
vocabulary to guide value data entry where
appropriate. Systems such as Ebay which depend on
users entering metadata use some of these
approaches. Another similar system is Freebase, a
system being developed by Metaweb technologies
[O'Reilly2007]:

“Freebase [is] a website that sits on top of a new kind
of database. Just as Wikipedia lets people contribute
information to its articles, Freebase will let anybody
contribute, correct or recombine data. The difference
is that information on Wikipedia tends to be
“unstructured”—i.e., buried in text—whereas on
Freebase it will be structured, so that each item can
be re-used in any context.” [Economist2007]

Unlike Ebay, the system presented here gives users
full control over what metadata is entered rather than
having to conform to a predetermined data model. In
contrast to Freebase, we propose a scheme which will
work with existing Wiki platforms rather than
requiring a new platform. In addition we use RDF to
ensure that the structured metadata is created in a
format that can be reused in a number of different
ways.

1.4 Structure of Report
The remainder of this report is structured as follows:
Section Two describes Phase One, specifically how
unstructured and structured data is represented in
Wikipedia, how we extracted information from
templates, how we converted this to RDF and how we
viewed it using Exhibit. Section Three describes
observations and further work based on Phase One.
Section Four details Phase Two which investigated
more generic extraction techniques that produce
schema information as well as instance data. It also
investigated how this information could be reused to
create better user interfaces. Section Five describes
observations and future work based on Phase Two.
Section six then finishes with conclusions.

2 Phase One: Domain Specific
Prototype

2.1 Wikipedia
Wikipedia [Wikipedia2007] is one commonly
consulted information resource on the Internet,
although there is some controversy about its authority
[Giles2005], [Britannica2006]. Originally Wikipedia
contained solely unstructured information, but it is
now incorporating structured information for certain
types of topics using templates. For example, entries
that describe companies may provide information
such as the name of the company, founder(s) and
chief executive officer in structured form as shown in
Figure 2. Currently these templates are primarily used
to ensure consistent formatting between different
topics in the same class.

 3

2.2 Structured Data in Wikipedia

2.2.1 WikiText
Both the unstructured and structured data in
Wikipedia is represented in a format called WikiText.
This format was deliberately created to be simpler to
edit than comparable formats for representing human
readable information such as HTML. Here is an
example of typical WikiText markup:

== heading ==
this is a paragraph
* this is a list item
* this is another list item
 [[Wikipedia|link to article]]

2.2.2 Templates
MediaWiki, the software platform behind Wikipedia,
introduced a feature in Version 1.2.6 called templates
that provides a way of representing certain pieces of
information that were common to a number of
different entries. Templates allow for the standardized

presentation of data for every instance of a template.

Articles which can be categorized into a certain type
e.g. a film or place often make use of special
MediaWiki templates called an Infobox Template. An
Infobox Template contains structured data about the
subject being discussed by an article. Templates not
used as Infoboxes are used for adding extra
information to a piece of text, for example linking to
coordinates on a map, or in a series of articles to give
links to related articles in a topic area, so that each
topic includes the same set of links.

Templates simplify the task of extracting structured
data and transforming it into other formats because
the data is in a consistent, easy to parse structured
format. The general format for templates is as
follows:

{{ TemplateName
| field1 = value1
| field2 = value2
| field3 = value3
}}

TemplateName is the name of the template to use
when reformatting. Field1 to Field3 are the names of
fields that exist in the template and value1 to value3
are the values to assign to the fields.

Figure 2 - Display of typical Infobox
template in Wikipedia

Here is an excerpt from the template that generates
the output shown in Figure 2:

{{Infobox_Company |
| company_name = Hewlett-Packard
| company_logo = [[Image:Hewlett-...
| company_type = [[Public company|...
| slogan = Invent.
| foundation = [[Palo Alto, Califo...
| location_city = Palo Alto, Calif...
| location_country = USA
| key_people = [[William Reddingto...
| num_employees = 156,000 (2007)
| industry = [[Computer Systems]]...
| products = [[Calculators]] [[C...
| revenue = {{profit}}$91.7 billio...
| net_income = {{profit}}$6.2 bill...
}}

In addition to Infobox templates, Pagelinks are
another potential source of structured information in
Wikipedia. We will discuss some ways of using
Pagelink data later in the report.

 4

2.2.3 Extracting Structured Data
Several different extraction methods were
investigated to get structured data from templates.

First, we investigated a web scraping approach to
retrieve articles from the Wiki in the same way as
HTML viewed by the user. This approach does not
work well because information is lost between the
WikiText version of the template and the HTML
version.

Second, we tried converting the raw WikiText into an
Abstract Syntax Tree (AST). This method avoided
some of the disadvantages of scraping HTML such as
unneeded presentational markup around templates.
However it was not possible to reuse an existing
WikiText parser as all existing parsers convert
WikiText directly to HTML rather than supporting an
intermediate stage, so it was necessary to implement a
simple parser from scratch. Due to time constraints it
was not possible to write a parser that supported the
entirety of MediaWiki WikiText syntax.

The method finally chosen uses regular expressions to
extract information. This means the required
information can be extracted from the page
independently of the rest of the structure of the page.

One limitation of the Java implementation of Regular
Expressions is that it does not support nested or
recursive expressions. This made it difficult to match
nested tokens such as when templates are nested
within templates as shown below:

{{TemplateName
| field1 = value1
| field2 = value2
| field3 = {{AnotherTemplate |
anotherfield1 = anothervalue1 }} value3
}}

At first we attempted to use regular expressions
which were written to include a fixed number of
recursion levels. However this means the length of the
expression grows and becomes unmaintainable as the
number of levels of recursion increases. This problem
was overcome by writing a Java method for dealing
with matching nested opening and closing tokens
which allowed bracket matching to an infinite level.

In the prototype the structured template extraction
was not totally generic as special stripping was
required on different fields of the template to remove
unrequired WikiText syntax. For example the profit

field used a different syntax and formatting to
presenting the information.

The work described here is not the first attempt to
extract structured information from Wikipedia. This
has already been performed by the DBPedia project
[DBPedia], [Auer2007]. For this work, we decided
not to use DBPedia, because we wanted to get a better
understanding of the extraction process. This was in
order to explore how these techniques could be
applied to general Wiki content, rather than just
Wikipedia. However an alternative approach would
have been to use the DBPedia dataset. There will be
more discussion on the relationship between this work
and DBPedia later in the report.

2.2.4 Limitations of Wikipedia
Structured Data
As already mentioned, templates in MediaWiki were
designed to support the common formatting of data in
related topics. Therefore, when using them to extract
data, a number of potential problems become
apparent: first, different authors do not encode values
the same way, even though the information is about
the same type of thing. For example the profit field of
the company template could include the actual profit,
an icon to show whether a profit or loss was made,
the year the data was collected from or a reference to
the source of the data. There are standard ways to
write certain properties such as dates and currency in
Wikipedia but even when there are standards there are
no way to enforce them.

Second, there are variations in the property names
used on different templates. For example in the
template about companies, both company_name and
name are used, because company_name has been
deprecated in favor of name.

This is related to the third problem, which is there is
no standard way to denote the deprecation of a field
within a template. This often means templates will
contain unnecessary markup within template design.
This means Wikipedia's Company Infobox has to
check the existence of both company_name and
name.

Despite these complexities, extracting template data is
much easier than unstructured data, which will be
discussed later.

 5

2.3 Retrieving Articles from
Wikipedia
Because we were interested in extracting structured
information represented in templates, our prototype
needed to work on the underlying WikiText rather
than the HTML presented to the user. MediaWiki
offers three HTTP interfaces for extracting data apart
from the HTML view presented to users. The first
way is called Special:Export which allows the
exporting of entire categories. Articles are returned as
WikiText within an XML container. The second way
is to append ?&action=raw to the URL of any
article in order to obtain the WikiText. The third way
is using the Mediawiki API which allows more
specific retrieval of articles such as different revisions
and metadata about the article.

We decided the second way was the best approach to
retrieve individual pages, as the article would be in its
original WikiText form. The prototype can retrieve
articles listed in a file or from a specific Wiki
category. It also uses the Special:Export feature
to get a list of all articles within a category.

Because we were extracting the information from a
local replica of Wikipedia, it was possible to create
retrieval lists by placing articles within specific
categories. This made it easy to use the software as
then it was just a case of tagging the relevant articles
so that it would be included in the extraction process.

It would have been more difficult to do this on the
primary version of Wikipedia as live articles would
need to be changed. However this process of cleaning
or fixing errors in the data which only become
apparent when it is treated as structured data is
common in data extraction and reuse.

In the prototype, conversion from the Wiki to RDF
was done on an on-demand basis. This was only
practical because the prototype was working on a
limited set of topics. More scalable approaches are
discussed in Section 3.2.3.

2.4 Unstructured Data in Wikipedia
As previously explained there is a lot of information
within Wikipedia about related topics which does not
have a consistent structure. Sometimes the
information is written as free text, but other times it is
structured in some way.

The acquisition data, like the classified advert data
investigated in [Soderland1999], is semi-structured
text that may be ungrammatical and is represented in
a tabular or abbreviated form. Although this data does
have some structure, different authors will have
represented the data in different ways, so it is
necessary to check that any algorithm supports these
multiple representations. For example, information
about acquisitions by technology companies is
formatted using tables, lists, paragraphs and links to
other articles.

Here is an example of the tables approach:

| [[June 5]], [[2007]]
| [[PeakStream]]
| Parallel Processing
| '''undisclosed'''
|<ref
name="PeakStream">"[http://www.theregis
ter.com/2007/06/05/google_buys_...

And here is an example of the list approach:

*'''Opsware''': On [[July 23]]
[[2007]], HP announced it was going to
acquire [[Opsware]], a developer of
data centre management systems, for
$1.6 billion<ref>{{cite news |title= HP
buys Opsware for $1.6 billion
|url=http://edition.cnn.com/2007/TECH/b
iztech/07/23/opsware.hp.reut/
|work=[[CNN]] |date=2007-07-23
|accessdate=2007-07-23 }}</ref>.

Semi-structured data of this type is not amenable to
natural language processing methods that try to
analyze sentence structure, for example identifying
verbs, nouns etc. Instead it is necessary to use
information extraction techniques [Grisham1997],
[Manning2005], [Cunningham2005] such as list
lookup extraction, fillers and spatial / proximity
analysis. Unfortunately, because of the variations in
representation, a certain amount of hand tailoring of
the algorithms was necessary. There has been work
on assisting users to create extractors for these tasks
[Kuhlins2002], [Soderland1999], but we decided
adaptive assisted extraction was too complicated to
investigate within the scope of the current work.

2.4.1 List Lookup extraction
One information extraction technique we used was
list look up extraction. This finds and extracts names,
places and classifications using simple pre-computed

 6

lists of words known as gazetteers [Tablan2003]. For
example, this method of extraction could be used to
determine the industry of an acquired company using
a list of technology company keywords. Here is a
simple gazetteer for this purpose:

Print
Web
VOIP
Storage

By searching the text about the acquisition for any
incidences of these words, it is possible to determine
the type of acquisition. However this does require
pre-existing, possibly manually created gazetteers.

2.4.2 Fillers
Fillers [Manning2005] involve search for known
patterns using regular expressions [JavaRegex2007].
For example, we can often identify years if we make
the assumption they will either be in the twentieth or
twenty first century as then they will follow the
pattern:

(19|20)\d{2}

Sometimes the pattern is identified by context, so it is
necessary to search for a pattern before, known as a
pre-filler, or after, known as a post-filler. For example
a reference to a transfer of money uses both a pre and
post filler so can be matched by an expression such
as:

[\$£][\d,]+\s*(in cash|in stock)

2.4.3 Spatial / Proximity Analysis
Spatial / proximity analysis is where information is
extracted because of its location to other extracted
information in the text. For example a year, month
and day are often close together in a single date.
Therefore if we can locate the year and month and
find another number nearby it is probably a day.

2.4.4 Extensibility
There are a number of frameworks for information
extraction such as GATE [Cunningham2002]. We
investigated this framework but we decided the
learning curve was high so we did not use it in the
work described here. Instead the prototype was
designed in an extensible way so that code for dealing
with different forms of acquisition data could be

added with minimal changes. This was done using a
Factory design pattern. Different extractors can
register with the factory using Java Reflection
[Sun2007] so it is simple to add new extractors.
Future work, as described in Section 3.2.4, could
investigate how the current prototype could be
developed into a more generic framework.

2.5 Output to RDF
Once the data was extracted from Wikipedia, it was
represented using RDF. RDF provides a way to
express simple statements, describing resources with
properties and values [Manola2004]. In RDF
resources and properties are represented by globally
unique URIs. Because of this global uniqueness, it is
very easy to merge two pieces of RDF compared with
other data modeling formats.

The Jena Framework was used to create RDF models
from the company and acquisitions data extracted
from Wiki articles. In addition to the standard RDF
formats, it was necessary to support JavaScript Object
Notation (JSON) [JSON] because it is required by the
Exhibit faceted browser. JSON is an alternative
lightweight data exchange format that is increasing in
popularity. As the only way to get Jena to produce
JSON is from SPARQL SELECT queries, it was
necessary to write a custom class to output RDF
models in JSON. It is important to note the
conversion from RDF to JSON is inherently lossy, as
it omits namespace information. [JDIL] discusses
some possible approaches to overcome this. Some
typical output from this custom class is shown over
the page:

 7

{"items": [
 {
 "logo":
"http://upload.wikimedia.org/wikipedia/
en/...",
 "label": "Hewlett-Packard",
 "type": "Company",
 "city": "Palo Alto, California",
 "country": "USA",
 "slogan": "Invent.",
 "founded": "Palo Alto, California,
California (1939)",
 "keypeople": [
 "Dave Packard, Co-founder",
 "Mark V. Hurd, Chairman, CEO and
President",
 "William Reddington Hewlett, Co-
founder"
],
 "netincome": "$6.2 billion United
States dollar (2006)",
 "latlng": "37.44462,-122.16077",
 "industry": [
 "Computer Systems",
 "Computer software",
 "Consultant",
 "IT Service Management",
 "Peripheral"
],
 "ORG": "Hewlett-Packard",
 "employees": "156,000 (2007)"
 },
 {
 "description": "On August 23 2003,
HP acquired PipeBeach...",
 "month": "August",
 "acquired": "PipeBeach",
 "year": "2003",
 "acquirer": "Hewlett-Packard",
 "label": "PipeBeach",
 "day": "23",
 "type": "Acquisition",
 "date": "2003-08-23"
 }
]}

2.6 Viewing with Exhibit
Exhibit [Huynh2007a] is a simple framework for
publishing structured data that supports faceted
browsing and multiple views of data. It does not
require a database or server side programming
languages as it runs on the client side using
JavaScript.

Setting up Exhibit is very simple and involves
including two JavaScript files: one to call the Exhibit
API and the other containing the data source of RDF
encoded as JSON. Separating the instance and
schema JSON data sources in this way allows for easy
regeneration of instance data. The output from
Exhibit can then be styled and configured using
HTML and XML. There are a number of tutorials
[Huynh2007b] available which give details on the
creation of exhibits.

In addition to a faceted view, Exhibit also made it
possible to provide a timeline with the dates of
acquisitions and a map view. This displayed the
locations of the headquarters of the acquired and
acquiring companies, generated by calling a
Geocoding service to convert place names into
latitude and longitude coordinates. See Figure 3 and
Figure 4 for screenshots of these views on the
extracted data.

 8

 Results list of
acquisitions Faceted browser

Callout giving
company detail

Timeline view of
acquisitions

Figure 3 Prototype listing extracted acquisition information

Figure 4 Prototype displaying dates of acquistions on a timeline

 9

3 Phase One: Conclusions and
Further Work

3.1 Conclusions
In summary, in Phase One we demonstrated that it is
possible to extract and reuse structured data about
companies and unstructured data about acquisitions
from Wikipedia. Once the information was extracted
as RDF, it was possible to view this in Exhibit. The
prototype is able to run alongside existing MediaWiki
installations without making any changes to the
installation, although we did make some small
changes and corrections to the data to get the system
to work efficiently. Displaying data in a different
format, such as being able to view the company and
acquisition data as a timeline, allows the user to
extract more information from the data.

Technologies such as Wikis make it increasingly easy
for users to create and publish content on the Internet.
This work shows by paying attention to how content
is structured, it is possible to reuse that content in a
variety of new ways. Even if the content was not
structured at creation time, it is possible to use
automatic techniques to create structured versions of
the content that can be used in this way.

3.2 Further Work
We have identified a number of possible future
directions for the work conducted in Phase One.

3.2.1 Increasing Use of Structured
Data in Wikipedia
At the moment, templates are primarily summaries of
articles. However articles often contain detail, for
example the acquisitions data on companies, which
does not belong in the summary, that could be
browsed as structured data. Therefore the Wikipedia
community should be encouraged to create templates
for this type of common data, allowing common
presentation, consistent structure and making it easier
to extract information. This would avoid the need for
the more difficult unstructured extraction we describe
here.

3.2.2 Encouraging Common data
formats in Wikipedia
Another key issue raised by the work here is the
variety of formats used for data fields in Wikipedia
such as earnings. It would be useful to implement a
feature which enforces field formats within templates.
This would ensure that data is written in a standard
format, for example that a date field is always in the
standard Wiki date format. [Auer2007] also gives
some guidelines on producing better Wikipedia
templates such as standardizing units and separating
presentation and unneeded attributes.

3.2.3 Automating Recent Changes
using RSS Feeds
Clearly it is desirable to keep the extracted
information up to date with Wikipedia. One way to
keep these up to date is to schedule the program to
run at predetermined intervals. As the current
implementation works by downloading all the articles
from a list or specific category, this causes a large
amount of network traffic every time the RDF graph
is rebuilt, which limits how frequently it can occur.

One way to optimize this is by monitoring the RSS
Feed for Recent Changes on the Wiki and only
download changed articles that are part of the
extracted data set. This would mean the program
could be run more regularly and update automatically.

3.2.4 Framework for Extraction of
Unstructured Data in WikiText
Although DBPedia provides a source of structured
data extracted from Wikipedia templates, there are no
similar tools aimed at free text in Wikipedia. A
framework that contained tools to simplify the task of
extracting information from free text in Wikipedia,
perhaps based on existing frameworks such as GATE
[Cunningham2002], is potentially very useful for
building applications such as those described here.

4 Phase Two: Generic
Approaches
In Phase Two we investigate whether the ideas
developed in Phase One can be applied for generic
extraction of structured data from Wikipedia Infobox
templates. We explore using information in
Wikipedia templates to automatically create schemas

 10

or ontologies, in order to simplify the reuse of the
extracted information. We then reuse the instance and
schema data in order to create a user interface that
makes it easier for users to create more data that
conforms to a specific template.

4.1 Generic data and schema
extraction
First, we discuss generic ways of extracting schema
and instance information from Wikipedia.

4.1.1 Describing RDF vocabularies
As well as describing data, RDF can also be used to
describe vocabularies, which define classes of
resources and properties used to describe those
resources, using a schema or ontology language such
as RDF Schema (RDFS) [Manola2004] or OWL
[McGuiness2004]. One important reason for creating
such descriptions is they avoid hard coding
information about a vocabulary into a program,
making them more generic.

For example, RDFS contains constructs to specify
human readable information about a vocabulary. In
RDFS it is possible to specify a human readable label
to use for a specific resource using rdfs:label, a
longer textual description for a resource using,
rdfs:description, and a way of linking resources
to other sources of information elsewhere using
rdfs:seeAlso. It is also possible to specify the type
of class that may have a specific property, using
rdfs:domain, and the type of object that a specific
property can take using rdfs:range.

Information to create the RDFS can be extracted from
Wiki template definitions. These are essentially Wiki
articles prefixed with a special Wiki namespace
[WikiNamespaces]. It is possible to pull out
structured data from the template using regular
expressions. On first glance, it looks difficult to
extract information from templates as they are
essentially designed to present information so there
are many different ways of designing a template.
Fortunately, most Wikipedia Infoboxes follow one of
a number of different structures and so a brute force
method can be attempted by testing regular
expressions aimed at common designs against other
template definitions to see if any of them match. If
none of the standard Infobox formats match, it is still
possible to extract the names of the fields from the

templates as these are defined in the WikiText syntax
({{{field}}}) and also to generate a label from
the field name by replacing underscores in the name
with spaces and capitalizing the first letter of words
within the field name. Here is an example of a
Wikipedia template:

<includeonly>{| class="infobox vcard"
style="font-size:90%; width:23em;" |-!
class="fn n org" style="text-
align:center; font-size:120%;"
colspan="2" |
{{{name|}}}<!--deprecated:-->
{{{company_name|}}}<!----> |-
{{#if:{{{logo|}}}<!--deprecated:--
>{{{company_logo|}}}<!----> | <tr
class="logo"><td colspan="2"
style="text-align:center; padding:16px
0 16px 0;">{{{logo|}}}<!--deprecated:--
>{{{company_logo|}}}<!----></td></tr>}}
|-<tr class="note"><th style="text-
align:right; padding-
right:0.75em;">[[:Category:Types of
companies|Type]]</th><td>{{{type|}}}<!-
-deprecated:-->{{{company_type|}}}<!---
-></td></tr><!---->
{{#if:{{{locations|}}} | <tr
class="note"><th style="text-
align:right; padding-
right:0.75em;">No. of
locations</th><td>{{{locations}}}</td><
/tr>}}<!---->
{{#if:{{{operating_income|}}}| <tr
class="note"><th style="text-
align:right; padding-
right:0.75em;">[[Earnings before
interest and taxes|Operating
income]]</th><td>
|}</includeonly><

 11

Here is the RDF Schema containing information
derived from this template:

@prefix company:
<http://en.wikidata.org/wiki/Template:I
nfobox_Company#>
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-
syntax-ns#>
@prefix rdfs:
<http://www.w3.org/2000/01/rdf-schema#>

company:company
 a rdfs:Class .

company:locations
 a rdf:Property ;
 rdfs:domain company:company ;
 rdfs:label "No. of locations" .

company:operating_income
 a rdf:Property ;
 rdfs:domain company:company ;
 rdfs:label "Operating income" ;
 rdfs:seeAlso
<http://en.wikipedia.org/wiki/Operating
_income> .

The OWL ontology language has some additional
constructs. owl:sameAs indicates if two resources
refer to the same thing. owl:deprecatedProperty
indicates if a property has been superseded, and
owl:equivalentProperty indicates if two
properties are the same. As already noted Wiki
templates definitions often contain fields which have
been deprecated, although there is no formal way to
indicate this within MediaWiki's WikiText syntax.
Here is a one approach used in Wikipedia to indicate
the depreciation of a property company_slogan:

{{#if:{{{slogan|}}} |
<tr class="note">
 <th style="text-align:right; padding-
right:0.75em;">
 [[Slogan]]

 </th>
 <td>{{{slogan}}}
 <!--deprecated:-->
 {{{company_slogan|}}}
 <!---->
 </td>
</tr>}}

Once a deprecated property is identified,
owl:DeprecatedProperty could be used to

indicate that a property has been deprecated and then
owl:equivalentProperty could be used to denote
that the deprecated property is equivalent to the
superseding property.

4.1.2 Assigning URIs
One important part of generic extraction of both
instance and schema information is assigning URIs to
concepts and properties. In Wikipedia, there is a
danger that different templates may use the same
property name with a different meaning. For example
many templates use a property called type, which
can be used to describe entities as diverse as Pokémon
characters, newspapers, New Testament Pypri,
Military Units, Military Structures, Digital Cameras
and Aircraft. Clearly type has a different meaning in
these different contexts. Instead we consider other
ways of assigning URIs to properties. Therefore we
decided to assign a different namespace to each type
of template, so that for example military unit type will
have a different URI to digital camera type.

However, there are also examples of templates with
properties that have the same name and do have the
same meaning. For example there are three related
templates, company, defunct company and
cooperative. These templates describe similar
entities, so they use the same properties. One way to
identify this is using WikiLinks, as template
definitions often use them to define properties. For
example here the property founder links to the
definition Entrepreneur:

{{#if:{{{founder|}}}|
<tr>
 <th style="text-align:right; Padding-
right:0.75em;">
 [[Entrepreneur|Founder]]
 </th>
 <td>{{{founder}}}</td>
</tr>}}

If two different templates point to the same definition,
we know they refer to the same concept. Therefore
instead of creating a new URI from the template and
the property name, we use a URI derived from the
property definition. Then if several different
templates use the same property they will all use the
same URI. In the generated schema we can use
rdfs:seeAlso, to point to the human readable
definition.

 12

Rather than reusing existing URIs from Wikipedia to
identify topics, and hence risk confusion about
whether the URL refers to the original Wikipedia
page or the extracted structured data we decided to
create new URLs for the extracted data We note that
it is considered best practice to choose namespaces
which are under the control of the creator of the
namespace, so that they will not conflict with
someone else using the namespace for an alternative
purpose, and this allows the possibility of retrieval of
resources from the URI of the namespace. In the
examples presented here we have used a fictitious
wikidata.org domain.

Good general principles for publishing data are
described in [Bizer2007]. For example, even if
different URIs are adopted for the extracted data, it is
possible to use content negotiation to provide human
readable versions of the extracted data.

4.1.3 Redirects
Another potential problem is that Wikipedia uses
redirects so that multiple URIs may redirect to a
specific article so that people can find the article more
easily. Using redirects is not ideal as according
[Jacobs2004] it is better to have one URI for a
resource. One approach to dealing with these redirects
in RDF is to dereference a page in Wikipedia until we
find the resource it corresponds to, then represent the
relationship between the original URI and the target
URI using owl:sameAs to indicate that the two URIs
are equivalent. However, this means the resulting data
needs to be processed by an inference engine, in order
to add extra triples so that the redirected URIs return
the same data as the target URI. The DBPedia project
considered this approach and decided against using it,
because they note the targeted URI is a preferred
term, whereas the original URI is non-preferred term,
and using owl:sameAs does not convey this
information. However, we note this means it can be
more difficult to find data, as then URIs that appear to
work in Wikipedia do not work in the extracted data,
so here we have decided to take a different approach
to DBPedia and implement redirects.

4.1.4 Data Extraction
We used the same approach as described in Phase
One to retrieve articles from the Wiki over HTTP.
There are also a number of templates which are used
within some Infoboxes to reformat data. One example

of this is Birth_date_and_age template which
converts a date in a non-standard format to the
standard Wiki date format and calculates an age.
Once the articles have been retrieved, a token
matching function is used to extract template
instances from the article to deal with these nested
templates.

Then several regular expressions are used to extract
the structured information from the template as
before. Once the RDF representation of the template
instance has been created, it is added to the Jena RDF
store.

Here is an example of a template instance about
England:

{{Infobox Country or territory
|area = 130,395
|calling_code = 44
|capital = [[London]](''[[de facto]]'')
|common_name = England
|currency = [[Pound sterling]]
|GDP_nominal = $2.2 trillion
|prime_minister = Gordon Brown
|sovereignty_type = Unified
|symbol_type = Royal Coat of Arms
|time_zone = GMT
|utc_offset = 0
|time_zone_DST = BST
|utc_offset_DST = +1
}}

 13

Here is the RDF, written in N3 format, extracted from
that template.

@prefix : <#> .
@prefix wiki:
<http://en.wikipedia.org/wiki/> .
@prefix wikidata:
<http://en.wikidata.org/data/> .
@prefix country_or_territory:
<http://en.wikidata.org/wiki/Template:I
nfobox_Country_or_territory#> .

wikidata:England
 rdfs:seeAlso wiki:England ;
 country_or_territory:area
 "130,395" ;
 country_or_territory:calling_code
 "44" ;
 country_or_territory:capital
 "[[London]] ([[de facto]])" ;
 country_or_territory:common_name
 "England" ;
 country_or_territory:currency
 wikidata:Pound_sterling ;
 country_or_territory:currency_code
 "GBP" ;
 country_or_territory:gdp_nominal
 "$2.2 trillion" ;
 country_or_territory:prime_minister
 "Gordon Brown" ;
country_or_territory:sovereignty_type
 "Unified" ;
 country_or_territory:symbol_type
 "Royal Coat of Arms" ;
 country_or_territory:time_zone
 "GMT" ;
 country_or_territory:time_zone_dst
 "BST" ;
 country_or_territory:utc_offset
 "0" ;
 country_or_territory:utc_offset_dst
 "+1" .

wikidata:Pound_sterling
 rdfs:seeAlso wiki:Pound_sterling ;
 rdfs:label "Pound Sterling" .

wikidata:England
 country_or_territory:capital
 wikidata:London .

wikidata:London
 rdfs:seeAlso wiki:London ;
 rdfs:label "London"

4.1.5 Lists
A large number of the fields within Wiki templates
contain lists of items, for example:

products =
[[Calculators]]

[[Computer Monitor]]s

[[Digital Camera]]s

[[Computer network|Networking]]

[[Personal Computer]]s and
[[Laptop]]s

[[Personal Digital Assistant]]s

[[Computer printer|Printer]]s

[[Scanner]]s

[[Server (computing)|Servers]]

[[Computer storage|Storage]]

[[Television]]s
|

Converting the field into a list of separate items
makes the data more structured and useful for the
suggestion feature of the UI. However there is no
standard way within Wikipedia for encoding list
items, so this is largely determined by the preference
of the editor. Common list separators include “,”, “;”
and “
”. Currently the list is just split when a
 is encountered within the field.

A possible algorithm here would be to count the
number of occurrences of each type of list separator,
choose the most frequently occurring list separator. If
it has more occurrences than a minimum threshold
then the field is split into a list using that token.

In some cases, such as the list of key people at
Google, each list item contains a composite value i.e.
it contains a number of values without using template
markup to indicate their meaning. In the case of the
Google page, the list contains not only the person’s
name but also their role. Mixing different types of
values in this way without some kind of structure
makes it very difficult to extract the information
automatically, so we have not yet identified a generic
solution to this problem.

4.1.6 Data types
Another issue to consider when extracting
information from the template instances is that
although there are standards within Wikipedia
denoting how different types of data should be
formatted, for example dates or money, there is no
enforcement of this and no way of denoting that a
field should use this format. As RDF supports XML
data typing, it would be helpful to get the data type of

 14

the extracted values corrected. However due to the
ambiguity in the Wikipedia data, it is hard to present
data in its correct XML data type, so in the current
implementation all fields are treated as either string
literals or lists of string literals.

4.2 User Interface
The UI component allows non-technical users to
interact with the prototype and presents them with a
visual interface to guide them in creating structured
data.

As in Phase One, a prototype of the system was
implemented using Java, MediaWiki [Mediawiki] and
the Jena framework [Jena]. Apache Tomcat was used
as a JSP server to allow the prototype to interact with
from a web browser.

A Firefox browser plug-in called GreaseMonkey
[GreaseMonkey] and a JavaScript implementation of
an AutoSuggest widget [Kepley2005] were used to
provide client-side interaction within the browser.
GreaseMonkey allows client-side changes to be made
to web pages on-the-fly using JavaScript. It was
possible to create a GreaseMonkey script which
added a button to the toolbar on any MediaWiki
editing page by manipulating the DOM of the page.
This allows us to extend MediaWiki without having
to change the MediaWiki code. Currently the user has
to install a Firefox extension GreaseMonkey and our
JavaScript file, although there are ways around this
such as using a compiler which turns the
GreaseMonkey script into a Firefox extension.

The button is linked to our external service which
creates an overlaid form as shown in Figure 5. The
overlay is populated with input elements using names
and labels retrieved from the RDF model maintained
by the servlet. If the template schema has not been
previously extracted from the Wiki, then the servlet
extracts it. Figure 6 shows all the interactions made
with the user interface.

As the web service is hosted on a different domain to
that of Wikipedia, it is difficult to make standard
AJAX [Garret2005] requests using XMLHttpRequest
as they are restricted to the same host. This is caused
by a security restriction called Same Origin Policy
implemented in all modern browsers. One way to
overcome this is to use the “dynamic script tag”
method, where <script> tags are inserted into the

DOM and the src attribute is pointed at a JSON
based web service [Herrington2006].

 15

Overlaid form

Button to launch UI Template Instance

Suggestion Button to save

Close

Figure 5 - Screenshot of suggest user interface

4.2.1 Suggest
The suggest component is inspired by Google Suggest
[Google2004], an AJAX web application which
suggests possible query strings after each new
character is entered into an input box. For example if
the letters “hp” are typed Google Suggest might
return “hp printers” and “hp laptops” as possible
suggestions.

As with other AJAX applications, the suggest
component consists of a client and server. The client-
side used a modified version of a JavaScript
AutoSuggest widget [Kepley2005]. Additional

functionality was added to allow the suggestions to be
looked up from an external web service. The same
dynamic script tag method used for retrieving
schemas was also used to retrieving suggestions.

On the server side a web service was written as a
servlet for Apache Tomcat. It receives requests from
the browser in the form:

/suggest.js?template=Infobox_Company&fi
eld=name&pattern=He

The servlet responds with an XML document
containing a list of potential strings that the user could

 16

Figure 6 - UML sequence diagram showing interaction of components

choose to complete the field. Potential strings are
chosen by querying the template instances which are
cached in a local RDF store using Jena's
implementation of SPARQL. SPARQL is a query
language for RDF [Prud'hommeaux2007] that has
some similarities to SQL.

The query is first restricted by the namespace of the
template, then the field and finally the pattern that has

been typed. This ordering is used to make the query
more efficient as there will be fewer records to pattern
match against.

 17

Here is an example SPARQL query used for this task:

PREFIX a: <http://en.wikiped...Company>
SELECT DISTINCT ?o WHERE {
 ?s a:name ?o .
 FILTER regex(?o, "^H", "i") .
}
LIMIT 10

The current implementation has reasonable
performance for small data sets, but some
optimization will be necessary for larger data. For
example it might be possible to make use of LARQ
[LARQ], a version of ARQ which uses a Lucene
index, in order to make the pattern matching faster.
Another approach would have been to store the
records in a String Trie [Fredkin1960], which is a tree
where each node is a character from the key.

5 Phase Two: Conclusions and
Further Work
The prototype developed in Phase Two demonstrates
potential solutions to the three problems that we
defined in the introduction:

1. Ensuring re-usability of structured data.
We have demonstrated that a large amount of
the structured data, including schema data,
stored in Wikipedia in templates can be
extracted into RDF. There are a few potential
complexities such as the embedding of
templates such as date of birth, determining
data types of fields and the absence of a
standard list format in WikiText.

2. People find it difficult to remember
technical details such as namespaces. By
extracting the WikiText template schemas
and presenting the fields from the template as
input boxes within a form, the technical
details such as namespace URIs are hidden
from the user.

3. People naturally encode the same concept
in different ways. We have addressed this
problem by implementing a “suggest” feature
within the UI which suggests values for fields
based on the field being completed and the
characters entered.

5.1 Relationship to DBPedia
As already mentioned the DBPedia project
[DBPedia], [Auer2007] has already done work on
extracting structured data from Wikipedia as RDF.
We did not use DBPedia in this work because we
wanted to better understand the extraction process,
but clearly the extraction process is difficult and the
prototype we have developed here is less mature than
the work currently being done by DBPedia. If this
work is taken further, it would be worth revisiting the
decision whether it is appropriate to use DBPedia.
Interestingly though we made a number of alternative
design decisions compared to DBPedia:

First, in DBPedia all properties are in the same
namespace. Therefore if two pages use a property
with the same name, it will be given the same URI.
This assumption has been made for ease of query.
Because of the number of authors on Wikipedia, and
also the range of subjects, we did not wish to make
this assumption, because it is problematic for
properties like type which are used in a wide range
of templates. Instead we consider other ways of
assigning URIs to properties.

Second, DBPedia does not make use of redirect
information. This is a deliberate design decision
because the DBPedia decided that redirects contain
information that certain terms are preferred over
others. However, for naïve users this can be
confusing: for example DBPedia does contain data
about “Hewlett-Packard” but not “Hewlett Packard”
whereas on Wikipedia this distinction is not apparent.

Third, at the time of writing, DBPedia does not
extract schema information from Wikipedia. We think
extracting schema information is potentially very
useful.

Fourth, DBPedia does not, as far as we know, extract
information from free text, only from templates and
Pagelinks. In this work we explore this in addition to
structured extraction techniques.

5.2 Further Work
There are a number of possible areas of future work
arising from the work in Phase Two.

5.2.1 Better Presentation of Forms
Currently the form fields within the UI interface are
rendered in the same order that they are retrieved

 18

from the RDF model i.e. a random order. The UI
would be more user-friendly if the input fields
retained a consistent order. At present there is no
agreed standard schema for describing presentation of
a specific vocabulary in RDF, although there is a
proposal for presentational RDF markup called
Fresnel [Lee2007]. By using Fresnel, or a similar
approach, it would be possible to encode ordering
information in the schema, derived from the order
which the fields occurred within the WikiText
template schema.

5.2.2 Merging Namespaces
As discussed in Section 5.1.3, many templates use the
same property. One way to avoid this problem is to
assume all properties with the same name have the
same URI, as done in DBPedia.

However, let us assume we adopt the naming
approach used here, i.e. that we should not assume
that two properties used in different templates are the
same because they have the same name. Then in
addition to using WikiLinks to link properties to
definitions, we would like to propose two other ways
of explicitly reusing properties in different templates
in Wikipedia:

1. In the template definition, add some syntax so
it is possible to map the field name to field
name in another template.

2. Support the stacking of multiple template
instances within a single article.

The first alternative involves mapping fields to fields
defined in other templates within the template
definition. This could be done as follows:

{{{field->otherTemplate_fieldName}}}

One advantage of doing this in the template definition
is this is done by template editors rather than Wiki
contributors. This is advantageous because
understanding mappings between templates may be
difficult for contributors.

In the second alternative, a number of Infoboxes are
stacked on a page. For example a page about a
musical artist might use a general person template and
then a more specific template which contains fields
relevant to music artists:

{{Person
| firstname = blah
| lastname = blah
}}
{{Artist
| aliases = sumer cool
| instrument = piano
}}

Splitting up Infoboxes in this way reduces the number
of templates that contain a specific property, avoiding
the problem that multiple templates use the same
property. However we note that [Auer2007] argues
against having multiple templates on the same page
but does not give an explanation why.

5.2.3 Determining data types
As discussed in Section 6.1.4 there is some difficulty
in determining the data types of fields. However by
examining a number of instances of a template, some
but not all will contain information that can help
determine the type. Consider this example:

revenue = {{profit}} [[United States
dollar|US $]]91.7 [[1000000000
(number)|billion]] (2007)

Here we could have deduced that this property is
talking about currency and money, as United States
Dollar is a type of currency. Future work could
investigate the implementation of an algorithm which
several instances of fields of the same template and
knowledge of common formatting to automatically
classify a field to be of a certain type, which can then
be encoded in the Schema using XML Datatypes
[XSD2004].

6 Conclusions
In conclusion, we have described how Wikis can be
used to create structured information in the form of
RDF. In Phase One we created a prototype that
demonstrated this by providing a novel browse view
on information about companies and acquisitions.
Then in Phase Two we investigated more generic
extraction of data and schemas. We also reused this
information to create forms that support AutoSuggest
to help users create more structured data.

In the process we highlighted a number of difficulties
with performing these tasks on Wikipedia, which
stem from the fact that the structured data was created
to be rendered using a stylesheet rather than reused

 19

programmatically. However we are optimistic that
demonstrating how this structured data can be reused
and browsed in novel ways or support authors
provides a compelling argument for this type of data
and the creation of tools that simplify authoring such
data.

7 Bibliography
[Auer2007] S. Auer and J. Lehmann, “What have
Innsbruck and Leipzig in common? Extracting
Semantics from Wiki Content”, The Semantic Web:
Research and Applications, pages 503-517, 2007,
http://www.eswc2007.org/pdf/eswc07-auer.pdf

[Bizer2007] C. Bizer, R. Cyganiak and T. Heath,
“How to Publish Linked Data on the Web”, 2007,
http://sites.wiwiss.fu-
berlin.de/suhl/bizer/pub/LinkedDataTutorial/

[Britannica2006] “Fatally Flawed”, Encyclopedia
Britannica, March 2006,
http://corporate.britannica.com/britannica_nature_res
ponse.pdf

[Cunningham2002] H. Cunningham, D. Maynard, K.
Bontcheva, V. Tablan, “GATE: A Framework and
Graphical Development Environment for Robust NLP
Tools and Applications”, Proceedings of the 40th
Anniversary Meeting of the Association for
Computational Linguistics (ACL'02), Philadelphia,
July 2002, http://gate.ac.uk/

[Cunningham2005] H. Cunningham, "Information
extraction, Automatic", Encyclopedia of Language
and Linguistics, 2nd Edition, 2005, Elsevier,
http://gate.ac.uk/sale/ell2/ie/main.pdf

[DBPedia] “DBPedia”, http://dbpedia.org/

[Doctorow2001] C. Doctorow, “Metacrap: Putting
the Torch to the Seven Straw-Men of the Meta-
utopia”, 2001,
http://www.well.com/~doctorow/metacrap.htm

[Economist] “Sharing what matters: A computing
maverick hopes to upgrade the web, transforming it
from a document collection into a data commons”,
The Economist, June 7th 2007,
http://www.economist.com/printedition/displaystory.c
fm?story_id=9249171

[Fredkin1960] E. Fredkin, “Trie Memory”,
September 1960, Communications of the ACM,
3(9):490-499

[Garrett2005] J. J. Garrett, “Ajax: A New Approach to
Web Applications”, 2005,
http://www.adaptivepath.com/ideas/essays/archives/0
00385.php

[Giles2005] J. Giles, “Internet encyclopaedias go
head to head”, Nature, Volume 438, Number 7070,
14 December 2005, pages 900-901,
http://www.nature.com/nature/journal/v438/n7070/ful
l/438900a.html

[Good2002] J. Good, “A Gentle Introduction to
Metadata”, 2002, University of California, Berkeley,
http://linguistics.berkeley.edu/~jcgood/bifocal/Gentle
Metadata.html

[Google2004] Google, “Google Suggest FAQ”, 2004
http://labs.google.com/suggestfaq.html

[Greasemonkey] “Greasemonkey”,
http://www.greasespot.net/

[Grimes 2005] S. Grimes, “Is 'Unstructured' data
merely unmodeled?”, Intelligent Enterprise, 1 March
2005,
http://www.intelligententerprise.com/showArticle.jht
ml?articleID=59301538

[Grisham1997] R. Grisham, “Information Extraction:
Techniques and Challenges”, SCIE, 1997, pages 10-
27,
http://citeseer.ist.psu.edu/grishman97information.htm
l

[Herrington2006] J. D. Herrington "The Ajax
transport method: There's more to Ajax than
XMLHttp", June 6 2006, IBM developerWorks,
https://www6.software.ibm.com/developerworks/educ
ation/x-ajaxtrans/x-ajaxtrans-ltr.pdf

[Huynh2007a] D. Huynh, “Exhibit”, MIT, 2007,
http://simile.mit.edu/exhibit/

[Huynh2007b] D. Huynh, “Exhibit For Authors”,
MIT, 2007,
http://simile.mit.edu/wiki/Exhibit/For_Authors

[Jacobs2004] I. Jacobs and N. Walsh, “Architecture
of the World Wide Web: Volume One”, W3C

 20

http://www.eswc2007.org/pdf/eswc07-auer.pdf
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/pub/LinkedDataTutorial/
http://corporate.britannica.com/britannica_nature_response.pdf
http://corporate.britannica.com/britannica_nature_response.pdf
http://gate.ac.uk/
http://gate.ac.uk/sale/ell2/ie/main.pdf
http://gate.ac.uk/sale/ell2/ie/main.pdf
http://dbpedia.org/
http://www.well.com/%7Edoctorow/metacrap.htm
http://www.economist.com/printedition/displaystory.cfm?story_id=9249171
http://www.economist.com/printedition/displaystory.cfm?story_id=9249171
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.nature.com/nature/journal/v438/n7070/full/438900a.html
http://www.nature.com/nature/journal/v438/n7070/full/438900a.html
http://linguistics.berkeley.edu/%7Ejcgood/bifocal/GentleMetadata.html
http://linguistics.berkeley.edu/%7Ejcgood/bifocal/GentleMetadata.html
http://labs.google.com/suggestfaq.html
http://www.greasespot.net/
http://www.intelligententerprise.com/showArticle.jhtml?articleID=59301538
http://www.intelligententerprise.com/showArticle.jhtml?articleID=59301538
http://citeseer.ist.psu.edu/grishman97information.html
http://citeseer.ist.psu.edu/grishman97information.html
https://www6.software.ibm.com/developerworks/education/x-ajaxtrans/x-ajaxtrans-ltr.pdf
https://www6.software.ibm.com/developerworks/education/x-ajaxtrans/x-ajaxtrans-ltr.pdf
http://simile.mit.edu/exhibit/
http://simile.mit.edu/wiki/Exhibit/For_Authors

Recommendation 15 December 2004,
http://www.w3.org/TR/webarch

[JavaRegex2007] “Java Class Pattern: A compiled
representation of a regular expression”,
JavaTM 2 Platform Standard Edition 5.0, Sun
Microsystems,
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex
/Pattern.html

[JDIL] “Java Data Integration in JSON”,
http://jdil.org/

[Jena] “Jena Semantic Web Framework”,
http://jena.sourceforge.net/

[JSON] “Javascript Object Notation”,
http://www.json.org/

[Kepley2005] J. Kepley, “AutoSuggest Sample”,
http://gadgetopia.com/autosuggest/

[Kuhlins2002] S. Kuhlins and R. Tredwell, “Toolkits
for Generating Wrappers”, Lectue Notes in Computer
Science, Volume 2591, NetObjectDays International
Conference, Pages 184-198, 2002,
http://www.old.netobjectdays.org/pdf/02/papers/node/
0188.pdf

[Lee2007] R. Lee, “Fresnel – Display Vocabulary for
RDF”, World Wide Web Consortium,
http://www.w3.org/2005/04/fresnel-info/

[LARQ] “LARQ (Lucene + ARQ) Free Text Indexing
for SPARQL”,
http://jena.sourceforge.net/ARQ/lucene-arq.html

[Manning2005] C. Manning, “Web Search and
Mining: Lecture 3, Information Extraction”, 2005,
Stanford University,
http://www.stanford.edu/class/cs276b/syllabus.html

[Manola2004] F. Manola and E. Miller, “RDF
Primer”, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-primer/

[McGuiness2004] D. McGuinness, F. van Harmelen,
“OWL Web Ontology Language Overview”, W3C
Recommendation 10 February 2004,
http://www.w3.org/TR/owl-features/

[MediaWiki] “MediaWiki”,
http://www.mediawiki.org/

[O'Reilly2007] T. O'Reilly, “Freebase will prove
addictive”, O'Reilly Radar, 8 March 2007,
http://radar.oreilly.com/archives/2007/03/freebase_wi
ll_p_1.html

[Prud'hommeaux2007] E. Prud'hommeaux and A.
Seaborne, “SPARQL Query Language for RDF”,
World Wide Web Consortium, 2007,
http://www.w3.org/TR/rdf-sparql-query/

[Soderland1999] S. Soderland, “Learning Information
Extraction Rules for Semi-structured and Free Text”,
Machine Learning, Volume 34, Number 1-3, pages
233-272, 1999,
http://citeseer.ist.psu.edu/soderland99learning.html

[Sun2007] “Java Reflection”, Sun Microsystems,
2007
http://java.sun.com/javase/6/docs/technotes/guides/ref
lection/

[Tablan2003] V. Tablan, “CS3421 Natural Language
Engineering: Information Extraction”, 2003,
University of Manchester,
http://www.cs.man.ac.uk/~mary/CS3421lectures/node
19.html

[Turmo2006] J. Turmo, A. Ageno, N. Catala,
“Adaptive Information Extraction”, ACM Computing
Surveys, Volume 38, Number 2, Article 4, 2006,
http://doi.acm.org/10.1145/1132956.1132957/

[WikiNamespaces] “Wikipedia Namespaces”,
http://en.wikipedia.org/wiki/Wikipedia:Namespace

[Wikipedia2007] “Wikipedia”, 2007,
http://en.wikipedia.org/wiki/Main_Page

[XSD2004] P. V. Biron, “XML Schema Part 2:
Datatypes Second Edition”, World Wide Web
Consortium, October 2004,
http://www.w3.org/TR/xmlschema-2/

 21

http://www.w3.org/TR/webarch
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://jdil.org/
http://jena.sourceforge.net/
http://www.json.org/
http://gadgetopia.com/autosuggest/
http://www.old.netobjectdays.org/pdf/02/papers/node/0188.pdf
http://www.old.netobjectdays.org/pdf/02/papers/node/0188.pdf
http://www.w3.org/2005/04/fresnel-info/
http://jena.sourceforge.net/ARQ/lucene-arq.html
http://www.stanford.edu/class/cs276b/syllabus.html
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.mediawiki.org/
http://radar.oreilly.com/archives/2007/03/freebase_will_p_1.html
http://radar.oreilly.com/archives/2007/03/freebase_will_p_1.html
http://www.w3.org/TR/rdf-sparql-query/
http://citeseer.ist.psu.edu/soderland99learning.html
http://java.sun.com/javase/6/docs/technotes/guides/reflection/
http://java.sun.com/javase/6/docs/technotes/guides/reflection/
http://www.cs.man.ac.uk/%7Emary/CS3421lectures/node19.html
http://www.cs.man.ac.uk/%7Emary/CS3421lectures/node19.html
http://doi.acm.org/10.1145/1132956.1132957/
http://en.wikipedia.org/wiki/Wikipedia:Namespace
http://en.wikipedia.org/wiki/Main_Page
http://www.w3.org/TR/xmlschema-2/

	1 Introduction
	1.1 Context
	1.2 Phase 1: Domain specific prototype
	1.3 Phase 2: Generic Approaches
	1.4 Structure of Report
	2 Phase One: Domain Specific Prototype
	2.1 Wikipedia
	2.2 Structured Data in Wikipedia
	2.2.1 WikiText
	2.2.2 Templates
	2.2.3 Extracting Structured Data
	2.2.4 Limitations of Wikipedia Structured Data

	2.3 Retrieving Articles from Wikipedia
	2.4 Unstructured Data in Wikipedia
	2.4.1 List Lookup extraction
	2.4.2 Fillers
	2.4.3 Spatial / Proximity Analysis
	2.4.4 Extensibility

	2.5 Output to RDF
	2.6 Viewing with Exhibit
	
	

	3 Phase One: Conclusions and Further Work
	3.1 Conclusions
	3.2 Further Work
	3.2.1 Increasing Use of Structured Data in Wikipedia
	3.2.2 Encouraging Common data formats in Wikipedia
	3.2.3 Automating Recent Changes using RSS Feeds
	3.2.4 Framework for Extraction of Unstructured Data in WikiText

	4 Phase Two: Generic Approaches
	4.1 Generic data and schema extraction
	4.1.1 Describing RDF vocabularies
	4.1.2 Assigning URIs
	4.1.3 Redirects
	4.1.4 Data Extraction
	4.1.5 Lists
	4.1.6 Data types

	4.2 User Interface
	4.2.1 Suggest

	5 Phase Two: Conclusions and Further Work
	5.1 Relationship to DBPedia
	5.2 Further Work
	5.2.1 Better Presentation of Forms
	5.2.2 Merging Namespaces
	5.2.3 Determining data types

	6 Conclusions
	7 Bibliography

	hpl-2007-182.pdf
	Extracting and Re-using Structured Data from Wikis
	Digital Media Systems Laboratory
	Bristol
	
	HPL-2007-182

