)

invent

Towards Diversity of COTS Softwar e Applications:
Reducing Risks of Widespread Faultsand Attacks

Marco Casassa Mont, Adrian Baldwin, Y olanta Beres, Keith Harrison,
Martin Sadler, Simon Shiu

Trusted E Services Laboratory

HP Laboratories Bristol

HPL-2002-178

June 26", 2002+

E-mail: marco_casassa-mont@hp.com adrian_baldwin@hp.com yolanta beres@hp.com keith harrison@hp.com
martin_sadler@hp.com simon_shiu@hp.com

COTS Recent IT attacks demonstrated how vulnerable consumers and
applications, enterprises are when adopting commercial and widely deployed operating
diversity, systems, software applications and solutions.
faults,
attacks,
survivability,
security, trust Current approaches to diversity are mainly based on the development of
multiple versions of the same software, their parallel execution and the

usage of voting mechanisms. Because of the high cost, they are used
mainly for very critical and special cases.

Diversity in software applications is fundamental to increase chances of
survivahility to faults and attacks.

We introduce and discuss an aternative method to ensure diversity for
common, widespread software applications without requiring additional
computational resources. This method tekes advantage of the
componentisation of modern software solutions and enforces diversity at
the installation time, by a random selection and deployment of critical
software components. Randomisation criteria are adaptable to feedback
gathered from software installations and affect software components
lifecycle. We describe a few encouraging results obtained from
smulations.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2002



1. Introduction

In the lagt two decades, commercia software has gone through a process of consolidation
and homogenistion. The current commercid computing environment, both within  the
enterprise and home, is largely dominaied by a few software systems, at the operating
gygem (OS) levd (eg. Microsoft Windows, Linux, Unix, etc.), software development
levd (software frameworks such as Java and Microsoft .NET), application levd
(application suites such as Microsoft Office, etc) and Internet access level (such as
browser and web servers like those provided by Netscape, Microsoft, etc.)

On one hand this process has lowered the costs of products because of the economy of
scde and provided common platforms to smplify interactions. On the other hand there
has been an increesng number of widespread attacks exploiting vulnerabilities of
massively deployed software. Recently, code red [22], code blue and Nimda [23] worms
caused huge problems to corporations and individuds by exploiting smple software
vulnerabilities like the buffer overrun bug [8]. Large populations of users, employees and
business have been affected causing economica and socid problems.

Software bugs and vulnerabilities have such a dramatic impact because the large number
of identicd inddlations makes it easy to exploit these faults as attacks and hence the
absence of divergty increases the exposure of most systems on the Internet.

Unfortunatdy software bugs are inevitable in mog, if not dl, software sysems,
especidly with the current levels of complexity. The adverse effects of such bugs vary in
sveity but dl are generdly cgpable of causng faults and mafunctions and some can
leave the software system vulnerable to externd attacks. In view of the fact tha every
user's inddlaion of a specific software is identicd, each ingdlation will include the
sane bugs, and therefore vulnerabilities. As a result, large scde atacks on software
gysems ae successful because computer hackers are likdy to make the (correct)
assumption that mog, if not dl, of the targeted operating systems or software applications
are built in exactly the same way and, as such, have the same bugs and problems. Attacks
can be tailored to each system, but recent viruses such as code red have caused untargeted
gystems, such as Internet enabled printers, to crash even though they are not the intended
target. Smilarly, a mgor fault or mafunction caused by a bug in the software system will
affect dl usersin the same way.

Concern has been expressed in the agricultura indudtries as the genetic diversty of crops
is reduced to dlow particular pedticides to be used. This can have the effect of reducing
the resistance to particular diseases or where a disease drikes it can wipe out an entire
crop. Analogies can be drawn to the eco-sysem of computers on the Internet where
viruses evolve much quicker than sysems change, yet the large number of identica
gystems enables a virulent virus to soread very quickly thus causing sgnificant damage.
Thereforeit is believed that diversity is fundamentd to prevent faults and attacks.

Criticd and gspecid-purpose software and  agpplications (like the software systems
controlling nuclear power daions, arcraft and spacecraft, bank exchanges, etc.) are



desgned, implemented and deployed by keeping in mind the importance of ensuring
operationd survivahility and reiability. These requirements are usudly met by adopting
very expensve solutions based on replication and independent software and systems.

Unfortunately, the approaches used for critical software are not suitable for common and
widespread operating systems, software and applications mainly because of the involved
codts, the implications in term of economy of scale, the need r additiond computationa
resources and the peculiarity of the targeted market.

Despite this, we believe that diversty can adso be achieved for common and popular
software applications in respect of their cost effectiveness and congraints on required
computationa resources.

In this paper we briefly describe some current techniques and mechanisms used to ensure
diverdty in software gpplications. We then introduce and discuss an dternative gpproach
to software diversty aming a the reduction of widespread software attacks and faullts.
This gpproach takes advantage of the componentisation of modern software solutions and
enforces diverdty a the inddlaion time by randomly sdecting and deploying criticd
software components.

2. Software Diversity: Background and Requirements

The problem of deding with faults and attacks for information, software and systems has
been widely andysed and researched in the past.

Software diverdty is a key dement to achieve protection [1] againg both naturd
phenomena (including random failures, physica damages and corrupted informeation) and
human actions (incduding desgn faults, interaction faults, maicious logic, intrusons and
physica attacks).

2.1 Related Work

N-verson software diversity has been analysed and proposed [2], [18], [19] as a means of
deding with uncertainties of dedgn faults  The basc concept is tha having N
independently developed versons of the software minimises the likeihood of coincident
falures and vulnerabilities. The system is then built from these (three or more) separate
software verdons with a decison dgorithm, for example a mgority vote, determining the
overd| result.

Divergty can be enforced not only a the software desgn levd but dso a the functiord
level [9]. Functiond diversty is a way of forcng multiple desgn teams to be
"intellectualy diversg" in their solutions to the design problem.

The N-verdgon technique has mainly been adopted for criticd and specid-purpose cases,
like software for flight control computers [3], [4], and design of nuclear reactor
protection systems [5], [15] because of the high cogts involved.



The main objective of mogt of the work done on diversty is to achieve a higher rdiability
of software applications [16]. Whether diverdty is a convenient means for ddivering
high reliability has been subject of debates and discussions[17].

Recently, diverdty has dso been investigated from the perspective of populations and
ecosystems of software systems. Relevant research has been done on survivable systems,
i.e. sysems characterised by the ability to provide essentid services even in the presence
of intrusons and faults and recover full services in a timdy manner [6]. Specificaly, [7]
describes systematic techniques to improve resstance to intrusons and attacks by
diverdfication of sygem oftware, thereby increesng the cogt and difficulty of
identifying vulnerabilities The gpproach is based on dochadtic diversfication and it is
achieved by trandforming a program into severa versons esch with additiona logica
complexities that obscures the behaviour whils maintaining correct  function and
performance.

2.2 Requirements

The core problem addressed by this paper is enforcing diversty for widespread
commercid of the shef software (COTS) in order to reduce the risks of large-scae
attacks and other failures.

We target large and homogeneous populations of commercia software ingalations,
commonly used for day-by-day busness and consumer tasks. Examples of these
populations include enterprises (large number of employees PCs having the same
software inddl-base), Internet communities of people and organisdtions sharing Smilar
interests.

In this context, the problem of meking a specific software inddlaion survivable to a
fault or an atack is secondary to the problem of minimizing the effects as an attack
soreads and maximizing the number of working systems within the populetion.

The impact of an attack or a fault on commercid software on a sngle inddlation is
usudly minima especidly when common security policies (like periodic data backup,
virus checking, etc.) are put in practice. On the contrary, it is the transmisson of attacks
over a larger population, in a short period of time, that creates the serious economica and
socid damage, for example, it can cause the interruption of network and e-mal
communication, leading to the interruption of business processes. A further issue is the
clean up costs where consderable effort from technicians is required to stop viruses and
worms from spreading by applying patches and recovering from compromises.

The basic requirements for diversty in common commercid software can be summarised
&
Provide mechaniams to avoid faults and atacks that quickly propagate over a
large population of ingdlations,
Preserve the relaively low cogts of COTS (due to the economy of scae);



Avoid the need for extra computationa resources.

Specid-purpose solutions traditiondly used in the N-verson approach do not fulfil those
requirement and they represent an over-engineered approach to the gspecific problems
addressed in this paper. It is dso not redly clear if commercia software developers are
willing to embrace diversty techniques based on obfuscation of the deployed code [7].

Next section describes an dternative goproach based on existing mechanisms for the
desgn and deveopment of software sysems. This gpproach introduces an dement of
diversty a the deployment time, without requiring any modification of the deployed
code or additional computationa resources.

3. Proposed Approach

The approach proposed in this paper exploits the componentisation and object-oriented
aspects of modern software: current operating systems, software applications and
solutions are built from software components, each of them implementing specific well
defined functiondlity.

Software engineering techniques deding with software life-cycle management have been
aound for years and are commonly used during software development projects. For
example, tools for software modelling, based on UML [10] or smilar techniques, provide
mechanism to modd, desgn, refine, implement, test, deploy and mantan complex
software systems and applications.

Specificdly complex software gpplications can be andysed from dructurd  and
behaviourd aspects, different views can be provided a different levels of abstraction,
ranging from high leve cdasses and objects (and their reationships) to the physca
software components that are going to be deployed.

During software design and development, designers and engineers should aso go through
rnsk management activities, which include identify criticd software components, ther
vulnerabilities to potentia attacks and faults, and mitigate the involved risks The
methodology for identifying criticd components would be different from traditiond
critical system tasks. It may be that the complex agorithms at the heart of the syssem are
conddered criticd and therefore must be wel engineered. It should aso be recognized
that the most vulnerable components are dso highly critical — this suggests that externd-
facing components should be congdered criticd. It is software bugs in these externd-
facing components that often become subject to attacks such as buffer overflow attacks
providing viruses and hackers with away into the system.

The criticd components are not necessarily those directly developed as pat of an
goplication. As gpplication development frameworks become more advanced and include
many more base libraries (such as Java and Microsoft's .Net) bugs in these underlying
libraries could negate the advantages of diversty. Diversty could be introduced a the
leve of these frameworks aswell as, or instead of, a the gpplication layer.

5



The proposed modd makes use of multiple implementations of criticd components.
Because of the separation of concerns between the design and the implementation phases,
modern software development tools dlow the development of multiple implementations
of the same software component, in a way that is compliant with defined interfaces. We
rdax the condrant of having multiple implementations of the whole software
goplications (as mandated by most of the N-verson techniques) as we concentrate the
effort only on critica components.

3.1 Model

A commercid software application is generdly supplied by a software provider as a
package on some form of storage medium, including its components and indalation
software which, when run on the customer’'s computing environment, inddls the various
components for future use. The individud components included in each package ae
generdly identical to components on other packages provided to other customers.
Usudly the reault is that dl the software indalations are subgantidly identica. The user
may indal different options and various patches and service packs bringing a degree of
diversty; however, many corporate sysems will have a software repostory where the
company standard isissued with standard options and patches.

In our modd, we introduce an eement of diverdty a the inddlation time by modifying
the ingdlation process Multiple implementations of criticdl components are avalable in
the ingdlation package. For each criticad component a software ingaler randomly selects
and indgdls one of the available implementations. Figure 1 shows the modd of a system
implementing this approach:

Software
Multiple //- - AIALA2
Avalable ; B:B1
Implementations—— ; C:c1,c2cC3
Software ' ’7 .
Com A B ' C Installation
ponents : ]
Script Installation
/ Package
Software
Installer

Installfgtion 1 Inw
A
Installed

software | 55 B1 C3

Figurel: Mode



Software is digributed by means of an inddlation packege which include three basc
parts:

A software components bag;
An ingdlation script;
A software ingdler.

The software components bag contains the components used to form the software
goplication. Software components might include COM components, EJB components,
dil libraries, .exe executable files, configuration files, etc. For each criticd component
multiple implementations are avalable. For example, in Figure 1, components A and C
ae citicad. Two implementations ae available for component A and three
implementations are available for component C.

The ingtallation script contains the necessary information to successfully ingdl the
software gpplication, induding the lig of dl the avalable components, the indalation
sequence and dependency constraints.

The software installer is the core pat of the inddlation package. It contains three
modules.

Ingdlation Engine;
Random:-selector module;
Ingtalation knowledge base.

The installation engine is in chage of interpreting the ingalation script and ingdling the
software gpplication. This engine interacts with a random-selector module esch time a
critica component (having multiple implementations) has to be ingtaled.

The random-selector module is driven by a random-function that, given a criticd
software component, randomly selects one of the component implementations a random.
This function can be condrained by information contained in the inddlation knowledge
base.

The installation knowledge base is a locd database containing contextud ingdlation
information. This information might incdlude the datus of other inddlaions and the
evolution of a paticular inddlation over its lifetime (including changes due to paiches,
upgrades or maintenance). It may dso incdlude known bad combinations where
components have known faults when installed on particular OS versons.

In particular contexts, like enterprises and large organizations, a variant of our modd can
be used to indal a particular software system on a number of computers. In this Stuation,
the sdection of criticadl software components to be ingtalled may depend upon which
implementations of components have previoudy been indaled on other computers. The
information necessary for making such decisions is dored in the inddlation knowledge



base. This can enaure that there is suffident diversty in a computing environment; for
example, aserver farm thereby ensuring a degree of resilience.

Each inddled software application has a proper identity defined by the sequence of the
ingtdled components. This sequence is a sort of eDNA. The inddler dores this
sequence in a local persistent configuration file dong with a copy of the inddlation
knowledge base.

Another variant of the modd uses an inddlaion mechanism provided by a centrdized
indalation service, for example within an enterprise. This gpproach facilitates the
collection and management of configuration information associated to each inddlation
for future software maintenance or upgrades.

After the ingalation process, for security reasons, the software indtdler makes sure that
implementations of criticd components that have not been inddled are ddeted from the
platform where the software is instaled.

3.2 Properties

The proposed modd introduces an dement of divergty into the software a indalation
time without the condraints of the traditiond N-verson software. It is not as expensive or
impracticd as the N-Verson gpproach as it does not require severd diginct full
implementations of the same software and their paralel executions. However, it protects
a population of systems rather than any particular sysem and as such does not provide a
solution for safety critical systems.

Not al the components need to have multiple implementations. At the end of the
ingdlation phase, a copy of the software application is inddled as usuad but with a
potentid unique combination of software components. Every inddlation of the same
software application is potentidly different but its functiondities, interfaces and expected
behaviour are the same. The degree of diversty directly depends on the number of
critical components, the number of avalable implementations and the sdection criteria in
the random function.

This agpproach does not prevent a specific indalation of an operating sysem or software
goplication from being subject to fault or being atacked: it is likely that components will
dill have software bugs and vulnerabilities. Nevertheess, it reduces the risk of massve
propagation of faults and attacks to large population thanks to the intrindc diversty of
esch ingalaion. With this gpproach it is a0 less likdy that two or more inddlations of
the same software will crash due to the same fault, & the same time, when executing
smilar operations.

Hacking techniques taking advantage of bugs in specific component (or due to the
combination of specific components) may gain information from a specific inddlation
but the chances of this being gpplicable to other systems (using different components) is
very much reduced.



4. Experiments

The discusson 0 far has clamed that adding diversty into a population of systems
increases its robustness, particularly when attacked by viruses that teke advantage of
common bugs. A smulation of the spread of a virus has been carried out to demondrate
some of the properties that increased diversity would achieve.

The smulator created a number of virtua machines, each with its own IP address, and a
lig of components, dong with implementations (versons) of each component. A virus
with a propagation mechanism smilar to code red [22] was then smulated where the
virus infects by using a bug in a paticular verson of a component. Once a machine is
infected the virus tries to spread to other machines by generating IP addresses at random
according to the current machines sub-mask; thus the probability of picking loca
machines is high but there is a sufficent chance of IP addresses outsde of the locd
network to ensure a world wide spread. The virus then pings the other IP addresses and
attempts to infect those it finds usng the same bug. Each infection tries to infect 200
other machines and then remans dormant — in the case of code red a security hole
dlowing accessto dl filesremained in place.

000

6000 1 — 1 wersion
5000 + — 2 wersions
4000 - 3 versions
3000 4 4 wersions
2000 1 — DWersions
1000 4 _”//,///’—_'_ — B versions

0 T T T T . . . . .
1 201 401 B01 801

Figure 2: Experiment 1 — Increasing the diversity of components where a virus attacks a
sngleverson

The first experiment smulated 6000 sysems on a sub-net. A number of smulaions were
run with increesng diversty, from 1 to 6 versons, in the component targeted by the
virus. Figure 2 shows the varidion in the rate of infection over time. Two factors are
worth noting: firdly snce only one verson of the component is being infected the final
number of infections is inversdy proportiond to the number of components
implementations; secondly the rate of infection is dowed as it becomes harder to find
susceptible systems. It is dso worth noting that some diversty can be very vaduable but
as the divergty increases the rate of dowdown in infection rates decreases and as such
there are clearly diminishing returns.



/000

BO00
s000 ffr — 1 Component

J Components

4000 [ 2 Companents

30aon f
2000 [
1000

/

|:I 1 I I 1 I I 1
1 101 201 301 401 501 &O1 701

Figure 3: Experiment 2 - The effects of diversity when al components are vulnerable to
Separate viruses.

The second experiment was carried out on the same set of systems but looked at the
effect of having viruses atacking al versgons of the components. Separate viruses were
created to attack a component with 1, 2 and 3 implementations. Figure 3 shows the
infection rates over time. The infection rates do saturaie dthough increasng the number
of components implementations does ddlay the rate of infection and it dso ddays the
pesk in network traffic due to the virus by a corresponding amount. This delay in
infection rate is due to the reduction in the probability of finding a vulnerable sysem and
hence will be inversdy proportiona to the number of implementations of a component.
This gives sysem adminidrators a larger window in which to dean up machines and
ingdl the necessary bug fixes.

These experiments show that there is a clear advantage to increesng diversty of standard
components to help in managing attacks. It is clear from the results that both the number
of infected syssems and the speed of infection are inversdy proportiond to the leve of
diversty. It is worth noting that a composte virus such a Nimda [23] that infects via
many software bugs will incresse the infection rate. It is clear that a smdl amount of
diversty in many dandard components will bring consderable gains but after that the
returnswill diminish.

5. Discussion
The feashility of the proposed modd has to be vdidated againgt red-world scenarios.

Section 6 describes our plans for tests and further experiments while this section
discusses genera software engineering and operationd aspects reevant to the modd.

10



The proposed modd does require the development of multiple versons of software but it
redricts this requirement to criticd components. Even if it relaxes the condrants
introduced by the classc N-verson approach, particular atention has ill to be pad
during two critical phases.

Risk andyss for potentid vulnerability and subsequent identification of critical
components,
Software testing phase.

If the risk anadyss phase is not properly executed, the migudgement of which
components are criticd could serioudy compromise the effectiveness of the diversty
introduced a ingdlation time. On the other hand, an extended usage of this technique (by
induding components that potentidly ae not criticd) might increese the overdl
complexity of writing and maintaining the software and the associated costs.

The software-testing phase must include white and black box testing activities for each
implementation of a software component. Modern software engineering and development
tools provide mechanisms to define interfaces and behaviourd specifications for software
components. Multiple implementations of each software component should be tested
againgt those specifications.

Teding dl the possble combinations of the software components can be extremey
expensgve. On one hand the fact of having a large set of possble combinations of
software components is the drength of this gpproach. On the other hand it introduces
complexity. The testing phase of the complete software application can ill be done on
an empirica base, by testing a reasonable st of inddlations of the software, generated in
a random way. By doing 0, paticular faulty combinations of software component
implementations can be detected in advance and avoided during the ingdlation of the
software (by doring this information in the ingdlation knowledge base of the inddlation

package).

Gathering knowledge from software inddlaions is extremdy important for software
producers, not only during the testing phase but aso during the whole software lifecycle
(maintenance, upgrades, etc.). It is important for a software producer to collect
information about bugs and undesred behaviours from the population of software
ingalations in order to correct faults and avoid the occurrence of faulty combinations of
components in future ingdlations. This task is amplified by the fact that each software
inddlation has an identity (its eDNA) describing the particular combination of deployed
components.

The information collected by monitoring for problems and issues reated to deployed
components can ultimately be used to make decisons about the destiny and evolution of
gpecific components (modify, extend, abandon, etc.) or combinations of components. In
large enterprises and organisations the task of monitoring large population of software
ingdlations can be delegated to traditiona IT support centres, who can then interact with
software providers.

11



Definitdly, the software inddler module plays a key role in ensuring a correct ingdlaion
of software components and the enforcement of particular ingdlation policies. It is a
trusted module. The overdl inddlation package must be properly secured to guarantee its
integrity and trustworthiness (by digitaly dgning its code and potentidly obfusceting its
modules). If centrdised within an enterprise or organizetion, the software inddlation
sarvice plays the role of a trust service [11] and it must be accountable during software
ingalation, information gathering and mai ntenance management.

The proposed gpproach to software diversity is potentidly suitable not only for traditiona
software producers but also for open source software. In both cases it is important that
component interfaces and expected behaviours are clearly defined and specified at design
time. Specificdly, the open-source initiative can take advantage of the willingness of lots
of participants to contribute to the devdopment of software solutions multiple
implementations of software components can be made available in software packages and
ingtalled using our gpproach.

6. Current and Future Work

In addition to the experiments made by dmulations, we ae dso invedtigaing the
feaghility and effectiveness of our modd by means of practical experiments involving
widdy didributed software gpplications. Our tests will include experiments with software
goplications that provide long-term gorage of digitd documents [20] and distributed
software agents that support storage and replication of data [21].

We ae planning to re-develop these applications by providing a least two different
implementations for each criticd component and creste multiple populations by
deploying such gpplications, including one where applications are deployed in a classc
way, without diversity. Experiments are going to help us to better understand the effects
of the random aggregation of components a the deployment time, measure the efficacy
of the random sdection module and understand the feasbility of adaptation mechanisms.
We are dso going to observe and messure for red the effects of attacks (exploiting
vulnerahilities introduced by software bugs) on populaions created by using our diversity
gpproach and compare them againgt a population deployed in a conventiona way.

In terms of future work, we are planning to investigete the feashbility of our approach for
advanced e-commerce scenarios, whereby multiple implementation of core e-services
(like eectronic payment services, hilling services, booking services, eic.) are avalable to
consumers and enterprises (for example by usng UDDI servers [12]) and are composed
on-the-fly [13], [14] to obtain added-vadue e-services. In such a context the compostion
of web services will happen by randomly sdecting and aggregating core web services
with equivdent functiondities and compliant with user's requirements (contractud
clauses, specifications, QoS palicies, c.)

12



7. Conclusion

Today it is of primary importance to ded with lack of diversty in widey deployed
commercial software as faults and attacks quickly spread across large population of
identica ingtalations creating enormous economica cogts.

Current gpproaches to diverdty, based on multiple versons of the same software,
potentidly running in pardld on different computationad resources, are too expensve
and are mainly used in critica and specia- purpose cases.

This paper introduces an dternative approach to diverdty which takes advantage of the
componentisation of modern commercia software.  Critical  software  components are
identified during the risk assessment phese and multiple  (functiondly  equivaent)
implementations are developed. These multiple implementations of components ae
digributed within software inddlaion packages. At the inddlation time, an inddlation
module randomly sdects and inddls an implementation of each criticd component, in
respect of potentia pre-defined congtraints and palicies.

The proposed system can take account of problems encountered in a large population of
ingdlations of the same software gpplication. Components might evolve during their
lifetime. Criteria for randomly sdecting software components can adapt dynamicdly o
that problematic combinations of components are avoided and specific faulty components
are modified or banned.

Software developers need to clearly specify software component interfaces, their
behaviour and identify criticd components by assessng ther vulnerabiliies and the
involved risks.

Our experiments based on smulations show that there is a clear advantage to increasing
diversty of sandard components to help in managing attacks. It is clear from the results
that both the number of infected sysems and the speed of infection are inversdy
proportiona to the level of diversty. The feashility and efficacy of the proposed moded
has to be verified in red-world scenarios.

8. References

[1] A. Aviziens — Dedgn Divasty and the Immune Sysem paadigm:
Cornerstonesfor Information System Survivability — | SW2000 — 2000

[2] A. Avizienis L. Chen — On the implementation of N-verson Programming for
Software fault Tolerance during Execution — COMPSAC 1977, Chicago — Nov
1977

[3] Y.C. Yeh - Dependability of the 777 primay flight control sysem. —

Dependable Computing for Criticd Applications 5, pages 3-17 — IEEE
Computer Society Press- 1998

13



[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

D. Briere, P. Traverse — Airbus A320/A330/A340 dectricd flight controls a
family of fault-tolerant sysems — Digest of FTCS-23, pages 616-623, - June
1993

P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahll, J. Lahti - PODS -
A Project on Diverse Software — IEEE Trans. Software Engineering, Vol SE-12,
No. 9 - 1986

RJ. Ellison, D. Fisher, R.C. Linger, H.F. Lipson, T. Longdaff, N.R. Mead —
Survivable network Systems An Emerging Discipline — Software Engineering
Indtitute, Carnegie Meélon Universty, HRttsburgh, PA, Technica Report
CMUY/SEI-97-032 - 1997

R.C.Linger - Sysemdic Generdtion of Stochastic Diversty as an Intruson
Barier in Survivable Sysems Software - Canegie Mdlon Universty,
Fittsburgh, PA — 2001

AK. Ghosh, T. O'Connor — Andyzing Programs for Vulnerability to Buffer
Overrun  Attacks - Proceedings of the 21st National Information Systems
Security Conference, Crysta City, VA - October 5-8, 1998

B. Littlewood, P. Popov, L. Strigini, - Dedgn Diversty: an Updae from
Ressarch on Rdiability Modeling, Proc. Safety-Criticd Systems Symposum
Bristol, UK — 2001

G. Booch, J. Rumbaugh, I. Joacobson — The Unified Moddling Language User
Guide— Addison Wedey - 1999

A.Badwin, Y.Beres, M. Casassa Mont, S. Shiu — Trust Services Reducing Risk
in ECommerce, ICECR-4 - 2001

B. McKee, D. Ehnebuske, D. Rogers — UDDI Verson 2.0 Specification - June
2001

F. Casati, S. llnicki, LJ. Jn, and M.C. Shan - An Open, Hexible, and
Configurable Sysem for Service Compostion - In Proceedings of the Second
Internationd Workshop on Advance Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2000), pages 125-132, Milpitas, Cdifornia -
2000

G. Fcandli, L. Mokrushin - Dynamic eservice composition in DySCo - IEEE
DDMA — 2001

14



[19]

A.E. Condor, GJ Hinton — Fault tolerant and fail-safe design of CANDU
computerised shutdown systems — IAEA Specidist Meeting on Microprocessors
important to the Safety of Nuclear Power Pants, London — 1988

[16] G. Dahll, J Lahti — An investigation of methods for production and verification

[17]

[18]

[19]

[20]

[21]

[22]

[23]

of highly religble software — Proceeding SAFECOMP 79 — 1979

L. Hatton — N-Verdon Dedgn Versus one Good Verson — IEEE Software, 14,
pages 71-76 — 1997

JC. Knight, N.G. Leverson, L.D.S Jean — A Lage Scde Experiment in N-
Verson Programming — Proceedings 15" Internationd Symposum on Fault
Tolerant Computing (FTCS-15), pages 135-139 — 1985

M.R. Lyu, Y. He -Improving the N-Verson Programming Process Through the
Evolution of a Desgn Paradigm - |IEEE Trans on Rdiability, Sp. Issue on Fault
tolerant Software, vol. 42, no. 2, pages179-189 - 1993

A. Badwin, M. Casassa Mont, S. Shiu, A. Norman - PAST Service Permanent
Active Storage Service: Survivability - HPL-2001-203 — [HP Restricted] - 2001

M. Casassa Mont, L. Tomes - A Didributed System, Adaptive to Trust
Assessment, based on Peer-to-Peer Evidence Replication and Storage -
FTDCS 01 — 2001

CAIDA — CAIDA Anadyss of Code Red, Code-Red Worms: A Globd Threst -
http://mwww.caida.org/anays §/'security/code-red/ - 2001

SANS Ingditute — Nimda Worm/Virus Report, Find — source incidentsorg -
http:/Awww.incidents.org/react/nimdapdf - October 2001

15





