

Towards Diversity of COTS Software Applications:
Reducing Risks of Widespread Faults and Attacks

Marco Casassa Mont, Adrian Baldwin, Yolanta Beres, Keith Harrison,
Martin Sadler, Simon Shiu
Trusted E-Services Laboratory
HP Laboratories Bristol
HPL-2002-178
June 26th , 2002*

E-mail: marco_casassa-mont@hp.com, adrian_baldwin@hp.com, yolanta_beres@hp.com, keith_harrison@hp.com,
 martin_sadler@hp.com, simon_shiu@hp.com

COTS
applications,
diversity,
faults,
attacks,
survivability,
security, trust

Recent IT attacks demonstrated how vulnerable consumers and
enterprises are when adopting commercial and widely deployed operating
systems, software applications and solutions.

Diversity in software applications is fundamental to increase chances of
survivability to faults and attacks.

Current approaches to diversity are mainly based on the development of
multiple versions of the same software, their parallel execution and the
usage of voting mechanisms. Because of the high cost, they are used
mainly for very critical and special cases.

We introduce and discuss an alternative method to ensure diversity for
common, widespread software applications without requiring additional
computational resources. This method takes advantage of the
componentisation of modern software solutions and enforces diversity at
the installation time, by a random selection and deployment of critical
software components. Randomisation criteria are adaptable to feedback
gathered from software installations and affect software components'
lifecycle. We describe a few encouraging results obtained from
simulations.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

2

1. Introduction

In the last two decades, commercial software has gone through a process of consolidation
and homogenisation. The current commercial computing environment, both within the
enterprise and home, is largely dominated by a few software systems, at the operating
system (OS) level (e.g. Microsoft Windows, Linux, Unix, etc.), software development
level (software frameworks such as Java and Microsoft .NET), application level
(application suites such as Microsoft Office, etc.) and Internet access level (such as
browser and web servers like those provided by Netscape, Microsoft, etc.)

On one hand this process has lowered the costs of products because of the economy of
scale and provided common platforms to simplify interactions. On the other hand there
has been an increasing number of widespread attacks exploiting vulnerabilities of
massively deployed software. Recently, code red [22], code blue and Nimda [23] worms
caused huge problems to corporations and individuals by exploiting simple software
vulnerabilities like the buffer overrun bug [8]. Large populations of users, employees and
business have been affected causing economical and social problems.

Software bugs and vulnerabilities have such a dramatic impact because the large number
of identical installations makes it easy to exploit these faults as attacks and hence the
absence of diversity increases the exposure of most systems on the Internet.

Unfortunately software bugs are inevitable in most, if not all, software systems,
especially with the current levels of complexity. The adverse effects of such bugs vary in
severity but all are generally capable of causing faults and malfunctions and some can
leave the software system vulnerable to external attacks. In view of the fact that every
user’s installation of a specific software is identical, each installation will include the
same bugs, and therefore vulnerabilities. As a result, large scale attacks on software
systems are successful because computer hackers are likely to make the (correct)
assumption that most, if not all, of the targeted operating systems or software applications
are built in exactly the same way and, as such, have the same bugs and problems. Attacks
can be tailored to each system, but recent viruses such as code red have caused untargeted
systems, such as Internet enabled printers, to crash even though they are not the intended
target. Similarly, a major fault or malfunction caused by a bug in the software system will
affect all users in the same way.

Concern has been expressed in the agricultural industries as the genetic diversity of crops
is reduced to allow particular pesticides to be used. This can have the effect of reducing
the resistance to particular diseases or where a disease strikes it can wipe out an entire
crop. Analogies can be drawn to the eco-system of computers on the Internet where
viruses evolve much quicker than systems change, yet the large number of identical
systems enables a virulent virus to spread very quickly thus causing significant damage.
Therefore it is believed that diversity is fundamental to prevent faults and attacks.

Critical and special-purpose software and applications (like the software systems
controlling nuclear power stations, aircraft and spacecraft, bank exchanges, etc.) are

3

designed, implemented and deployed by keeping in mind the importance of ensuring
operational survivability and reliability. These requirements are usually met by adopting
very expensive solutions based on replication and independent software and systems.

Unfortunately, the approaches used for critical software are not suitable for common and
widespread operating systems, software and applications mainly because of the involved
costs, the implications in term of economy of scale, the need for additional computational
resources and the peculiarity of the targeted market.

Despite this, we believe that diversity can also be achieved for common and popular
software applications in respect of their cost effectiveness and constraints on required
computational resources.

In this paper we briefly describe some current techniques and mechanisms used to ensure
diversity in software applications. We then introduce and discuss an alternative approach
to software diversity aiming at the reduction of widespread software attacks and faults.
This approach takes advantage of the componentisation of modern software solutions and
enforces diversity at the installation time by randomly selecting and deploying critical
software components.

2. Software Diversity: Background and Requirements

The problem of dealing with faults and attacks for information, software and systems has
been widely analysed and researched in the past.

Software diversity is a key element to achieve protection [1] against both natural
phenomena (including random failures, physical damages and corrupted information) and
human actions (including design faults, interaction faults, malicious logic, intrusions and
physical attacks).

2.1 Related Work

N-version software diversity has been analysed and proposed [2], [18], [19] as a means of
dealing with uncertainties of design faults. The basic concept is that having N
independently developed versions of the software minimises the likelihood of coincident
failures and vulnerabilities. The system is then built from these (three or more) separate
software versions with a decision algorithm, for example a majority vote, determining the
overall result.

Diversity can be enforced not only at the software design level but also at the functional
level [9]. Functional diversity is a way of forcing multiple design teams to be
"intellectually diverse" in their solutions to the design problem.

The N-version technique has mainly been adopted for critical and special-purpose cases,
like software for flight control computers [3], [4], and design of nuclear reactor
protection systems [5], [15] because of the high costs involved.

4

The main objective of most of the work done on diversity is to achieve a higher reliability
of software applications [16]. Whether diversity is a convenient means for delivering
high reliability has been subject of debates and discussions [17].

Recently, diversity has also been investigated from the perspective of populations and
ecosystems of software systems. Relevant research has been done on survivable systems,
i.e. systems characterised by the ability to provide essential services even in the presence
of intrusions and faults and recover full services in a timely manner [6]. Specifically, [7]
describes systematic techniques to improve resistance to intrusions and attacks by
diversification of system software, thereby increasing the cost and difficulty of
identifying vulnerabilities. The approach is based on stochastic diversification and it is
achieved by transforming a program into several versions each with additional logical
complexities that obscures the behaviour whilst maintaining correct function and
performance.

2.2 Requirements

The core problem addressed by this paper is enforcing diversity for widespread
commercial of the shelf software (COTS) in order to reduce the risks of large-scale
attacks and other failures.

We target large and homogeneous populations of commercial software installations,
commonly used for day-by-day business and consumer tasks. Examples of these
populations include enterprises (large number of employees’ PCs having the same
software install-base), Internet communities of people and organisations sharing similar
interests.

In this context, the problem of making a specific software installation survivable to a
fault or an attack is secondary to the problem of minimizing the effects as an attack
spreads and maximizing the number of working systems within the population.

The impact of an attack or a fault on commercial software on a single installation is
usually minimal especially when common security policies (like periodic data backup,
virus checking, etc.) are put in practice. On the contrary, it is the transmission of attacks
over a larger population, in a short period of time, that creates the serious economical and
social damage; for example, it can cause the interruption of network and e-mail
communication, leading to the interruption of business processes. A further issue is the
clean up costs where considerable effort from technicians is required to stop viruses and
worms from spreading by applying patches and recovering from compromises.

The basic requirements for diversity in common commercial software can be summarised
as:

• Provide mechanisms to avoid faults and attacks that quickly propagate over a
large population of installations;

• Preserve the relatively low costs of COTS (due to the economy of scale);

5

• Avoid the need for extra computational resources.

Special-purpose solutions traditionally used in the N-version approach do not fulfil those
requirement and they represent an over-engineered approach to the specific problems
addressed in this paper. It is also not really clear if commercial software developers are
willing to embrace diversity techniques based on obfuscation of the deployed code [7].

Next section describes an alternative approach based on existing mechanisms for the
design and development of software systems. This approach introduces an element of
diversity at the deployment time, without requiring any modification of the deployed
code or additional computational resources.

3. Proposed Approach

The approach proposed in this paper exploits the componentisation and object-oriented
aspects of modern software: current operating systems, software applications and
solutions are built from software components, each of them implementing specific well
defined functionality.

Software engineering techniques dealing with software life-cycle management have been
around for years and are commonly used during software development projects. For
example, tools for software modelling, based on UML [10] or similar techniques, provide
mechanism to model, design, refine, implement, test, deploy and maintain complex
software systems and applications.

Specifically complex software applications can be analysed from structural and
behavioural aspects, different views can be provided at different levels of abstraction,
ranging from high level classes and objects (and their relationships) to the physical
software components that are going to be deployed.

During software design and development, designers and engineers should also go through
risk management activities, which include: identify critical software components, their
vulnerabilities to potential attacks and faults, and mitigate the involved risks. The
methodology for identifying critical components would be different from traditional
critical system tasks. It may be that the complex algorithms at the heart of the system are
considered critical and therefore must be well engineered. It should also be recognized
that the most vulnerable components are also highly critical – this suggests that external-
facing components should be considered critical. It is software bugs in these external-
facing components that often become subject to attacks such as buffer overflow attacks
providing viruses and hackers with a way into the system.

The critical components are not necessarily those directly developed as part of an
application. As application development frameworks become more advanced and include
many more base libraries (such as Java and Microsoft’s .Net) bugs in these underlying
libraries could negate the advantages of diversity. Diversity could be introduced at the
level of these frameworks as well as, or instead of, at the application layer.

6

 The proposed model makes use of multiple implementations of critical components.
Because of the separation of concerns between the design and the implementation phases,
modern software development tools allow the development of multiple implementations
of the same software component, in a way that is compliant with defined interfaces. We
relax the constraint of having multiple implementations of the whole software
applications (as mandated by most of the N-version techniques) as we concentrate the
effort only on critical components.

3.1 Model

A commercial software application is generally supplied by a software provider as a
package on some form of storage medium, including its components and installation
software which, when run on the customer’s computing environment, installs the various
components for future use. The individual components included in each package are
generally identical to components on other packages provided to other customers.
Usually the result is that all the software installations are substantially identical. The user
may install different options and various patches and service packs bringing a degree of
diversity; however, many corporate systems will have a software repository where the
company standard is issued with standard options and patches.

In our model, we introduce an element of diversity at the installation time by modifying
the installation process. Multiple implementations of critical components are available in
the installation package. For each critical component a software installer randomly selects
and installs one of the available implementations. Figure 1 shows the model of a system
implementing this approach:

Installation
Script

Software
Components

Multiple
Available
Implementations

Installation
Package

Installation
Engine

Random-selector
Module

A B C

A: A.1, A.2
B: B.1
C: C.1, C.2, C.3

Software
Installer

Installed
software A.2 B.1 C.3 A.1 B.1 C.2

Installation 1 Installation 2

Installation
Knowledge
base

Persistent
Configuration
File

Software

Figure 1: Model

7

Software is distributed by means of an installation package which include three basic
parts:

• A software components bag;
• An installation script;
• A software installer.

The software components bag contains the components used to form the software
application. Software components might include COM components, EJB components,
.dll libraries, .exe executable files, configuration files, etc. For each critical component
multiple implementations are available. For example, in Figure 1, components A and C
are critical. Two implementations are available for component A and three
implementations are available for component C.

The installation script contains the necessary information to successfully install the
software application, including the list of all the available components, the installation
sequence and dependency constraints.

The software installer is the core part of the installation package. It contains three
modules:

• Installation Engine;
• Random-selector module;
• Installation knowledge base.

The installation engine is in charge of interpreting the installation script and installing the
software application. This engine interacts with a random-selector module each time a
critical component (having multiple implementations) has to be installed.

The random-selector module is driven by a random-function that, given a critical
software component, randomly selects one of the component implementations at random.
This function can be constrained by information contained in the installation knowledge
base.

The installation knowledge base is a local database containing contextual installation
information. This information might include the status of other installations and the
evolution of a particular installation over its lifetime (including changes due to patches,
upgrades or maintenance). It may also include known bad combinations where
components have known faults when installed on particular OS versions.

In particular contexts, like enterprises and large organizations, a variant of our model can
be used to install a particular software system on a number of computers. In this situation,
the selection of critical software components to be installed may depend upon which
implementations of components have previously been installed on other computers. The
information necessary for making such decisions is stored in the installation knowledge

8

base. This can ensure that there is sufficient diversity in a computing environment; for
example, a server farm thereby ensuring a degree of resilience.

Each installed software application has a proper identity defined by the sequence of the
installed components. This sequence is a sort of e-DNA. The installer stores this
sequence in a local persistent configuration file along with a copy of the installation
knowledge base.

Another variant of the model uses an installation mechanism provided by a centralized
installation service, for example within an enterprise. This approach facilitates the
collection and management of configuration information associated to each installation
for future software maintenance or upgrades.

After the installation process, for security reasons, the software installer makes sure that
implementations of critical components that have not been installed are deleted from the
platform where the software is installed.

3.2 Properties

The proposed model introduces an element of diversity into the software at installation
time without the constraints of the traditional N-version software. It is not as expensive or
impractical as the N-Version approach as it does not require several distinct full
implementations of the same software and their parallel executions. However, it protects
a population of systems rather than any particular system and as such does not provide a
solution for safety critical systems.

Not all the components need to have multiple implementations. At the end of the
installation phase, a copy of the software application is installed as usual but with a
potential unique combination of software components. Every installation of the same
software application is potentially different but its functionalities, interfaces and expected
behaviour are the same. The degree of diversity directly depends on the number of
critical components, the number of available implementations and the selection criteria in
the random function.

This approach does not prevent a specific installation of an operating system or software
application from being subject to fault or being attacked: it is likely that components will
still have software bugs and vulnerabilities. Nevertheless, it reduces the risk of massive
propagation of faults and attacks to large population thanks to the intrinsic diversity of
each installation. With this approach it is also less likely that two or more installations of
the same software will crash due to the same fault, at the same time, when executing
similar operations.

Hacking techniques taking advantage of bugs in specific component (or due to the
combination of specific components) may gain information from a specific installation
but the chances of this being applicable to other systems (using different components) is
very much reduced.

9

4. Experiments

The discussion so far has claimed that adding diversity into a population of systems
increases its robustness, particularly when attacked by viruses that take advantage of
common bugs. A simulation of the spread of a virus has been carried out to demonstrate
some of the properties that increased diversity would achieve.

The simulator created a number of virtual machines, each with its own IP address, and a
list of components, along with implementations (versions) of each component. A virus
with a propagation mechanism similar to code red [22] was then simulated where the
virus infects by using a bug in a particular version of a component. Once a machine is
infected the virus tries to spread to other machines by generating IP addresses at random
according to the current machines sub-mask; thus the probability of picking local
machines is high but there is a sufficient chance of IP addresses outside of the local
network to ensure a world wide spread. The virus then pings the other IP addresses and
attempts to infect those it finds using the same bug. Each infection tries to infect 200
other machines and then remains dormant – in the case of code red a security hole
allowing access to all files remained in place.

Figure 2: Experiment 1 – Increasing the diversity of components where a virus attacks a
single version

The first experiment simulated 6000 systems on a sub-net. A number of simulations were
run with increasing diversity, from 1 to 6 versions, in the component targeted by the
virus. Figure 2 shows the variation in the rate of infection over time. Two factors are
worth noting: firstly since only one version of the component is being infected the final
number of infections is inversely proportional to the number of components‘
implementations; secondly the rate of infection is slowed as it becomes harder to find
susceptible systems. It is also worth noting that some diversity can be very valuable but
as the diversity increases the rate of slowdown in infection rates decreases and as such
there are clearly diminishing returns.

10

Figure 3: Experiment 2 - The effects of diversity when all components are vulnerable to
separate viruses.

The second experiment was carried out on the same set of systems but looked at the
effect of having viruses attacking all versions of the components. Separate viruses were
created to attack a component with 1, 2 and 3 implementations. Figure 3 shows the
infection rates over time. The infection rates do saturate although increasing the number
of components implementations does delay the rate of infection and it also delays the
peak in network traffic due to the virus by a corresponding amount. This delay in
infection rate is due to the reduction in the probability of finding a vulnerable system and
hence will be inversely proportional to the number of implementations of a component.
This gives system administrators a larger window in which to clean up machines and
install the necessary bug fixes.

These experiments show that there is a clear advantage to increasing diversity of standard
components to help in managing attacks. It is clear from the results that both the number
of infected systems and the speed of infection are inversely proportional to the level of
diversity. It is worth noting that a composite virus such a Nimda [23] that infects via
many software bugs will increase the infection rate. It is clear that a small amount of
diversity in many standard components will bring considerable gains but after that the
returns will diminish.

5. Discussion

The feasibility of the proposed model has to be validated against real-world scenarios.
Section 6 describes our plans for tests and further experiments while this section
discusses general software engineering and operational aspects relevant to the model.

11

The proposed model does require the development of multiple versions of software but it
restricts this requirement to critical components. Even if it relaxes the constraints
introduced by the classic N-version approach, particular attention has still to be paid
during two critical phases:

• Risk analysis for potential vulnerability and subsequent identification of critical
components;

• Software testing phase.

If the risk analysis phase is not properly executed, the misjudgement of which
components are critical could seriously compromise the effectiveness of the diversity
introduced at installation time. On the other hand, an extended usage of this technique (by
including components that potentially are not critical) might increase the overall
complexity of writing and maintaining the software and the associated costs.

The software-testing phase must include white and black box testing activities for each
implementation of a software component. Modern software engineering and development
tools provide mechanisms to define interfaces and behavioural specifications for software
components. Multiple implementations of each software component should be tested
against those specifications.

Testing all the possible combinations of the software components can be extremely
expensive. On one hand the fact of having a large set of possible combinations of
software components is the strength of this approach. On the other hand it introduces
complexity. The testing phase of the complete software application can still be done on
an empirical base, by testing a reasonable set of installations of the software, generated in
a random way. By doing so, particular faulty combinations of software component
implementations can be detected in advance and avoided during the installation of the
software (by storing this information in the installation knowledge base of the installation
package).

Gathering knowledge from software installations is extremely important for software
producers, not only during the testing phase but also during the whole software lifecycle
(maintenance, upgrades, etc.). It is important for a software producer to collect
information about bugs and undesired behaviours from the population of software
installations in order to correct faults and avoid the occurrence of faulty combinations of
components in future installations. This task is simplified by the fact that each software
installation has an identity (its e-DNA) describing the particular combination of deployed
components.

The information collected by monitoring for problems and issues related to deployed
components can ultimately be used to make decisions about the destiny and evolution of
specific components (modify, extend, abandon, etc.) or combinations of components. In
large enterprises and organisations the task of monitoring large population of software
installations can be delegated to traditional IT support centres, who can then interact with
software providers.

12

Definitely, the software installer module plays a key role in ensuring a correct installation
of software components and the enforcement of particular installation policies. It is a
trusted module. The overall installation package must be properly secured to guarantee its
integrity and trustworthiness (by digitally signing its code and potentially obfuscating its
modules). If centralised within an enterprise or organization, the software installation
service plays the role of a trust service [11] and it must be accountable during software
installation, information gathering and maintenance management.

The proposed approach to software diversity is potentially suitable not only for traditional
software producers but also for open source software. In both cases it is important that
component interfaces and expected behaviours are clearly defined and specified at design
time. Specifically, the open-source initiative can take advantage of the willingness of lots
of participants to contribute to the development of software solutions: multiple
implementations of software components can be made available in software packages and
installed using our approach.

6. Current and Future Work

In addition to the experiments made by simulations, we are also investigating the
feasibility and effectiveness of our model by means of practical experiments involving
widely distributed software applications. Our tests will include experiments with software
applications that provide long-term storage of digital documents [20] and distributed
software agents that support storage and replication of data [21].

We are planning to re-develop these applications by providing at least two different
implementations for each critical component and create multiple populations by
deploying such applications, including one where applications are deployed in a classic
way, without diversity. Experiments are going to help us to better understand the effects
of the random aggregation of components at the deployment time, measure the efficacy
of the random selection module and understand the feasibility of adaptation mechanisms.
We are also going to observe and measure for real the effects of attacks (exploiting
vulnerabilities introduced by software bugs) on populations created by using our diversity
approach and compare them against a population deployed in a conventional way.

In terms of future work, we are planning to investigate the feasibility of our approach for
advanced e-commerce scenarios, whereby multiple implementation of core e-services
(like electronic payment services, billing services, booking services, etc.) are available to
consumers and enterprises (for example by using UDDI servers [12]) and are composed
on-the-fly [13], [14] to obtain added-value e-services. In such a context the composition
of web services will happen by randomly selecting and aggregating core web services
with equivalent functionalities and compliant with user’s requirements (contractual
clauses, specifications, QoS policies, etc.)

13

7. Conclusion

Today it is of primary importance to deal with lack of diversity in widely deployed
commercial software as faults and attacks quickly spread across large population of
identical installations creating enormous economical costs.

Current approaches to diversity, based on multiple versions of the same software,
potentially running in parallel on different computational resources, are too expensive
and are mainly used in critical and special-purpose cases.

This paper introduces an alternative approach to diversity which takes advantage of the
componentisation of modern commercial software. Critical software components are
identified during the risk assessment phase and multiple (functionally equivalent)
implementations are developed. These multiple implementations of components are
distributed within software installation packages. At the installation time, an installation
module randomly selects and installs an implementation of each critical component, in
respect of potential pre-defined constraints and policies.

The proposed system can take account of problems encountered in a large population of
installations of the same software application. Components might evolve during their
lifetime. Criteria for randomly selecting software components can adapt dynamically so
that problematic combinations of components are avoided and specific faulty components
are modified or banned.

Software developers need to clearly specify software component interfaces, their
behaviour and identify critical components by assessing their vulnerabilities and the
involved risks.

Our experiments based on simulations show that there is a clear advantage to increasing
diversity of standard components to help in managing attacks. It is clear from the results
that both the number of infected systems and the speed of infection are inversely
proportional to the level of diversity. The feasibility and efficacy of the proposed model
has to be verified in real-world scenarios.

8. References

[1] A. Avizienis – Design Diversity and the Immune System paradigm:

Cornerstones for Information System Survivability – ISW2000 – 2000

[2] A. Avizienis, L. Chen – On the implementation of N-version Programming for
Software fault Tolerance during Execution – COMPSAC 1977, Chicago – Nov
1977

[3] Y.C. Yeh - Dependability of the 777 primary flight control system. –

Dependable Computing for Critical Applications 5, pages 3-17 – IEEE
Computer Society Press - 1998

14

[4] D. Briere, P. Traverse – Airbus A320/A330/A340 electrical flight controls: a

family of fault-tolerant systems – Digest of FTCS-23, pages 616-623, - June
1993

[5] P. G. Bishop, D. G. Esp, M. Barnes, P. Humphreys, G. Dahll, J. Lahti - PODS -

A Project on Diverse Software – IEEE Trans. Software Engineering, Vol SE-12,
No. 9 - 1986

[6] R.J. Ellison, D. Fisher, R.C. Linger, H.F. Lipson, T. Longstaff, N.R. Mead –

Survivable network Systems: An Emerging Discipline – Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Technical Report
CMU/SEI-97-032 - 1997

[7] R.C.Linger - Systematic Generation of Stochastic Diversity as an Intrusion

Barrier in Survivable Systems Software - Carnegie Mellon University,
Pittsburgh, PA – 2001

[8] A.K. Ghosh, T. O’Connor – Analyzing Programs for Vulnerability to Buffer

Overrun Attacks - Proceedings of the 21st National Information Systems
Security Conference, Crystal City, VA - October 5-8, 1998

[9] B. Littlewood, P. Popov, L. Strigini, - Design Diversity: an Update from

Research on Reliability Modelling, Proc. Safety-Critical Systems Symposium
Bristol, UK – 2001

[10] G. Booch, J. Rumbaugh, I. Joacobson – The Unified Modelling Language User

Guide – Addison Wesley - 1999

[11] A.Baldwin, Y.Beres, M. Casassa Mont, S. Shiu – Trust Services: Reducing Risk

in E-Commerce, ICECR-4 - 2001

[12] B. McKee, D. Ehnebuske, D. Rogers – UDDI Version 2.0 Specification - June

2001

[13] F. Casati, S. Ilnicki, L.J. Jin, and M.C. Shan - An Open, Flexible, and

Configurable System for Service Composition - In Proceedings of the Second
International Workshop on Advance Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2000), pages 125-132, Milpitas, California -
2000

[14] G. Piccinelli, L. Mokrushin - Dynamic e-service composition in DySCo - IEEE

DDMA – 2001

15

[15] A.E. Condor, G.J Hinton – Fault tolerant and fail-safe design of CANDU
computerised shutdown systems – IAEA Specialist Meeting on Microprocessors
important to the Safety of Nuclear Power Pants, London – 1988

[16] G. Dahll, J. Lahti – An investigation of methods for production and verification

of highly reliable software – Proceeding SAFECOMP’79 – 1979

[17] L. Hatton – N-Version Design Versus one Good Version – IEEE Software, 14,

pages 71-76 – 1997

[18] J.C. Knight, N.G. Leverson, L.D.S Jean – A Large Scale Experiment in N-

Version Programming – Proceedings 15th International Symposium on Fault
Tolerant Computing (FTCS-15), pages 135-139 – 1985

[19] M.R. Lyu, Y. He -Improving the N-Version Programming Process Through the

Evolution of a Design Paradigm - IEEE Trans. on Reliability, Sp. Issue on Fault
tolerant Software, vol. 42, no. 2, pages179-189 - 1993

[20] A. Baldwin, M. Casassa Mont, S. Shiu, A. Norman - PAST Service Permanent

Active Storage Service: Survivability - HPL-2001-203 – [HP Restricted] - 2001

[21] M. Casassa Mont, L. Tomasi - A Distributed System, Adaptive to Trust

Assessment, based on Peer-to-Peer Evidence Replication and Storage -
FTDCS’01 – 2001

[22] CAIDA – CAIDA Analysis of Code Red, Code-Red Worms: A Global Threat -

http://www.caida.org/analysis/security/code-red/ - 2001

[23] SANS Institute – Nimda Worm/Virus Report, Final – source incidents.org -

http://www.incidents.org/react/nimda.pdf - October 2001

