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coding of such sources, samples are often quantized by a family of 
uniform quantizers possibly with a deadzone, and then entropy coded. For 
the Wyner-Ziv coding problem when correlated side-information is 
available at the decoder, the side-information can be modeled as obtained 
by additive Laplacian or Gaussian noise on the source. This paper deals 
with optimal choice of parameters for practical Wyner-Ziv coding in such 
scenarios, using the same quantizer family as in the regular codec to cover 
a range of rate-distortion trade-offs, given the variances of the source and 
additive noise. We propose and analyze a general encoding model that 
combines source coding and channel coding and show that at practical 
block lengths and code complexities, not pure channel coding but a hybrid 
combination of source coding and channel coding with right parameters 
provide optimal rate-distortion performance. Further, for the channel 
coded bit-planes we observe that only high-rate codes are useful. We also 
provide a framework for on-the-fly parameter choice based on non-
parametric representation of a set of seed functions, for use in scenarios 
where variances are estimated during encoding. A good understanding of 
the optimal parameter selection mechanism is essential for building 
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ABSTRACT 
A large number of practical coding scenarios deal with sources such as transform coefficients that can be well modeled as Laplacians. 
For regular coding of such sources, samples are often quantized by a family of uniform quantizers possibly with a deadzone, and then 
entropy coded. For the Wyner-Ziv coding problem when correlated side-information is available at the decoder, the side-information 
can be modeled as obtained by additive Laplacian or Gaussian noise on the source. This paper deals with optimal choice of 
parameters for practical Wyner-Ziv coding in such scenarios, using the same quantizer family as in the regular codec to cover a range 
of rate-distortion trade-offs, given the variances of the source and additive noise. We propose and analyze a general encoding model 
that combines source coding and channel coding and show that at practical block lengths and code complexities, not pure channel 
coding but a hybrid combination of source coding and channel coding with right parameters provide optimal rate-distortion 
performance. Further, for the channel coded bit-planes we observe that only high-rate codes are useful. We also provide a framework 
for on-the-fly parameter choice based on non-parametric representation of a set of seed functions, for use in scenarios where 
variances are estimated during encoding. A good understanding of the optimal parameter selection mechanism is essential for 
building practical distributed codecs. 

1. INTRODUCTION 
Inspired by the foundation laid by the Slepian-Wolfe [1] and Wyner-Ziv [2] theorems, in recent years immense attention has been 

devoted to practical source coding with side-information problems [3]-[10]. Most such work emphasizes using channel coding to 
convey a source, requiring the decoder to perform appropriate channel decoding based on correlated side-information. However, 
achieving virtually error-free transmission under practical code and complexity constraints always requires a non-trivial premium in the 
transmitted rate over the ideal channel coding rate given by the conditional entropy. Furthermore, in many realistic scenarios with finite 
block-lengths, the actual correlation statistics are non-stationary and can only be estimated with a large enough buffer for errors. This 
challenges the rationale for solely using channel codes for source coding with side-information problems. While in some prior work, a 
combination of source and channel coding has been used intuitively, this work addresses quantitatively the problem of finding the 
optimum balance between various feasible source and channel coding combinations under practical channel coding constraints, based 
on a realistic model for the source and correlation statistics. We assume a Laplacian source model since most transform coefficients are 
well-modeled as Laplacians. Further, the side-information available only at the decoder in a variety of applications can be well modeled 
by additive Generalized Gaussian noise on the source. In particular, if X denotes the source Laplacian random variable with variance 
σX

2, and Y is the side-information available only at the decoder, then Y = X + Z, where Z is either i.i.d. Gaussian or i.i.d. Laplacian with 
variance σZ

2 in our models. Note that the results of this work trivially generalizes to a related Y = ρX + Z model with 0 ≤ ρ ≤1, by 
replacing Y with Y/ρ, and σZ by σZ/ρ [15]. 

In any practical codec, X is quantized with a quantizer family ф to yield a quantization index random variable Q: Q = ф(X, QP), 
where QP parameterizes a family of quantizers that yield progressively coarse to fine quantization over a wide enough range. The 
simplest quantizer family is the uniform quantizer, given by )/(),( QPXroundQPXQ == φ . The uniform deadzone quantizer is 
actually more commonly used in practical codecs: 

 QPXXsignQPXQ /)(),( ×== φ                                                                                      (1) 
In general QP may be continuous, but practically it takes values from a discrete set QPΩ . While the results we present in this paper are 
for the uniform deadzone quantizer, the methodology applies to any family of quantizers yielding a range of rate-distortion trade-offs 
through a QP parameter. The quantized indices Q are typically truncated to a finite set 

},1,...,1,0,1,...,1,{ maxmaxmaxmax qqqqQ Q −−+−−=Ω∈ , where qmax is chosen large enough to make the overload probability 
negligible. Ideally qmax depends on QP and σX, but for simplicity we simply refer to the set of all available quantization bins as QΩ . 

In the source coding with side-information scenario under consideration in this work, we assume that the same quantizer family as 
in the regular codec, is used. The problem we address is then broadly stated as follows: Given a target upper-limit Dt on the overall 
expected distortion, and variances {σX

2, σz
2} for Laplacian X and Laplacian/Gaussian Z respectively, how should X be coded based on a 

given quantizer family. It may be convenient to specify Dt in terms of a target quantization parameter QPt assuming regular coding 
(with no side-information) based on the same quantizer family.  

2. GENERAL MODEL FOR SOURCE CODING WITH SIDE-INFORMATION 
Once X has been quantized to Q, in a regular source coder the quantization bins are just entropy coded. In the source coding with 

side-information scenario, cosets are computed based on Q to yield a coset index random variable C: C = ψ(Q, M), M being the coset 



modulus parameter, as follows: 
    )}/22(/{),(mod),( MMQMQuMQMQMQMQC zc −−+−=== ψ                                                  (2) 

u(k) is the discrete unit step function: u(k) = 0 for k < 0, and u(k) = 1 for k ≥ 0. Note that    }2/)1( ..., ,1 ,0 ,1 ..., ,2/)1({ −−−−=Ω∈ MMC C  
is zero-centered as a matter of convention. 

We next consider the case where C is further decomposed into S symbol planes {C0, C1, …, CS–1} where Ci, i=0,1,…,S–1 is the 
(i+1)th least significant symbol (i.e. C0 is the least significant symbol, CS−1 is the most significant symbol) associated with a finite li-ary 
alphabet. The symbols Ci can be obtained from Q directly, given the alphabet-size vector L={l0, l1, …, lS–1}: 

  1,...,1,0for  ,/  ),,(mod :     ;: 10 −==== + SilQQlQCComputeQQInitialize iiiiiczi                                              (3) 
Thus    }2/)1( ..., ,1 ,0 ,1 ..., ,2/)1({ −−−−=Ω∈ iiCi llC i  for 1,...,1,0 −= Si . The overall modulus M is given by 110 ... −= SlllM . Note 
there is an one-to-one mapping between the overall coset index C and the symbol planes {C0, C1, …, CS–1}, given by: 

)}(){...(...)}({)}({)}({)()...( 11210222101110000110 1 −−−− −++++++++=+ SSSS CulClllCulCllCulClCulCCulllC S         (4) 
where u(k) is the discrete unit step function with value 0 for negative k, and 1 for non-negative k. For simplicity, we use the notation 

)(QC L
ii ξ=  to denote the mapping from Q to the ith symbol plane, given the alphabet size vector L. 

If C or equivalently the corresponding symbol planes {C0, C1, …, CS–1} were transmitted losslessly to the decoder, the decoder 
would perform an optimal reconstruction of a sample X based on the corresponding side-information Y=y, and the transmitted coset 
modulus C=c, as follows: 
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where we have introduced the following definitions for convenience in the rest of the paper: 
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and the quantization bin q for quantization parameter QP is associated with interval [xl(q,QP),  xh(q,QP)]. A decoding example is 
shown in Figure 1. 

The coset C in general may be transmitted using a combination of source and channel coding. In particular, some of the symbol 
planes {C0, C1, …, CS–1} are source coded while the rest are channel coded. For channel coded symbol planes, we assume that the 
planes be only binary, i.e. li=2, because of the vast resources available in binary channel codes. However, extension to non-binary 
channel codes is straight-forward in principle. The symbol planes may be transmitted in any order, but the encoding parameters must 
be matched to that, and the decoding order must be the same as the encoding order [10]. Specifically, each channel coded bit-plane is 
be encoded at a rate equivalent to the conditional entropy of the bit-plane given Y and previously transmitted symbol-planes, and 
correspondingly decoded using a soft-input decoder driven by conditional probabilities of the bits given Y and previously decoded 
symbol planes. Likewise each source coded symbol plane needs to be encoded and decoded conditioned on the previously transmitted 
symbol-planes. 

Now observe that since the lower significant symbols are less correlated with the side-information Y, there would be little gain in 
using channel coding for them. Also, if one or more channel coded symbol planes were transmitted prior to a source coded plane, then 
decoding errors could lead to a catastrophic loss of synchronization in the bit-stream during source decoding based on an incorrect 
context. Based on these considerations, we propose a model for coding where the least significant symbol C0 is an m-ary source coded 
plane, while the remaining more significant symbol planes C1, C2., …, CS−1 are channel coded bit-planes. Thus, M=2S−1m and the 
alphabet-size vector L={m, 2, 2, …, 2}, with l0=m, and li=2 for i=1,2,…,S−1. The S symbol planes are coded in order from C0 to CS−1. 
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Figure 1. Optimum reconstruction based on coset index and side-information 



Figure 2 illustrates the model, the parameters to be selected and how they are used for encoding. Given a target quantization parameter 
for regular coding QPt, and the source and correlation statistics σX and σZ, optimum parameter choice for Wyner-Ziv coding essentially 
involves obtaining: the optimum quantization parameter QP, the number of symbol planes S ≥ 1, the alphabet-size of the source coded 
least significant plane m ≥ 1, and the rates for the S−1 channel coded bit-planes r1, r2, …, rS−1. There is an additional input parameter 
gamma to be explained in the next section.  

Note that the above model is considerably generic, and covers all special cases of interest. For instance, S=1 corresponds to using 
only memoryless source coding (and no channel coding) used in [9], and may be preferred in many cases because of their simplicity. 
The case m=1, corresponds to not using any source coding bits since the least significant symbol plane is trivial. So m=1 and S>1 
corresponds to only using channel coding. The case m=1, S=1 corresponds to the zero-rate coding case when the samples are not coded 
at all, but optimal reconstruction based on Y can still be conducted at the decoder. Finally, m=∞ corresponds to the case when no coset 
computation is conducted on the quantized samples, and also S must be 1 in this case. 

3. SEED FUNCTIONS AND NON-PARAMETRIC REPRESENTATION 
In order to select the optimum parameters, we assume the availability of the following seed functions for a given distribution shape 

(Laplacian or Gaussian) of the noise Z in the Y=X+Z model: (1) Unit-variance Coset Distortion function dYC(QP, M, σZ), providing the 
expected distortion incurred after optimum side-information based reconstruction of a unit-variance (σX=1) Laplacian source, coded 
with quantization parameter QP and coset modulus M, given the noise std. deviation σZ; (2) Unit-variance Coset Conditional Entropy 
function hYC(QP, M, σZ), providing the conditional entropy of the coset indices given the side-information;  (3) Unit-variance Coset 
Entropy function hC(QP, M), providing the entropy of the coset indices; and (4) Regular Distortion function dQ(QP), providing the 
expected distortion incurred by optimum reconstruction without side-information of a unit-variance Laplacian source quantized with 
parameter QP. The last one is needed only if distortion matching is required.  

Note that corresponding functions for arbitrary source standard deviation σX − namely DYC(QP, M, σZ, σX), HYC(QP, M, σZ, σX),  
HC(QP, M, σX),  and DQ(Q, σX) − can be derived from the unit-variance functions as follows:  
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Therefore it is enough to represent only the unit-variance forms helping to reduce the dimensionality by 1. In this section, we will 
derive expressions for these functions, based on which a non-parametric representation can be readily obtained. In the next section, we 
will use these function representations for optimal parameter selection.  

3.1. Coset Distortion Function 
Assuming the minimum mean-squared-error reconstruction function in Eq. 5, the expected distortion DYC given side information y 

and coset index c is given by: 
222 ),(ˆ),/(),/)],(ˆ([),/( cyXcCyYXEcCyYcyXXEcCyYDE YCYCYC −=====−===                             (8) 

using ),/(),(ˆ cCyYXEcyXYC === . Marginalizing over y and c yields the overall expected distortion )( YCDE = DYC(QP, M, σZ, 
σX): 
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where )/(/ yYcCp YC ==  is the conditional probability mass function of C given Y. Noting that: 
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we can write: 
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Then we can rewrite Eq. 11 as: 
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Certain boundary conditions are appropriate to consider. When M→∞, we have the case where the quantization index Q is 
transmitted noise free in entirety. In this case, the optimal reconstruction is conducted within the given quantization bin. This 
reconstruction function ),(ˆ qyX YQ , for Y = y and Q = q, is given by: 
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Using this reconstruction, the expected Distortion with noise-free quantization bins (denoted DYQ) is given by: 
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Note that this is also the distortion incurred when ideal Slepian Wolfe coding is used to transmit the quantization indices Q noise-free. 
When M = 1 and/or QP→∞, it corresponds to the zero-rate case where no information is transmitted. The optimum reconstruction 

function )(ˆ yXY , given side-information Y=y, is then given by: 
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The corresponding expected zero-rate distortion, denoted DY, is given by: 
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Finally, when QP→0, no useful information is conveyed by the coset index C, and the distortion is the same is that for the zero-rate 
case in Eq. 18. The case QP→0 and M→∞, is a degenerate case.                              

3.2. Coset Conditional Entropy function 
The coset conditional entropy function is the conditional entropy H(C/Y) of the coset C = {C0, C1, …, CS–1} given side-information 

Y. 
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When M→∞, this function reduces to the conditional entropy H(Q/Y), which is also the ideal Slepian-Wolfe rate: 
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When M = 1 and/or QP→∞, it is the zero-rate case, and so: 
0),,1,(),,,( ==∞ XZYCXZYC QPHMH σσσσ                                                                                   (21) 

When QP→0, no useful information is conveyed by the coset index C, but because each coset index is equi-probable, we have: 
MMH XZYC 2log),,,0( =σσ                                                                                               (22) 

The case QP→0 and M→∞, is a singularity. 

3.3. Coset Entropy function 
The coset entropy function is simply the entropy H(C) of the coset C = {C0, C1, …, CS–1}: 
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where we defined: xdxfxxm
x

X
ii

X
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)()()( . When M→∞, the entropy function converges to the entropy H(Q): 
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QP→0 is a singularity. 

3.4. Regular Distortion function 
When regular coding is used, the quantization indices Q are just source coded, and no side-information Y is assumed to be available 

at the decoder. This reconstruction function )(ˆ qX Q is then given by: 
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while the expected distortion is given by: 
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3.5. Non-parametric representation 
When X is Laplacian, and Z is Laplacian or Gaussian, closed-form expressions for the functions: ),()0(

/ yxm YX , ),()1(
/ yxm YX , )()1( xmX , 

)()0( xmX  and fY(y), can be readily obtained. For the Gaussian case, the erf() function is required, but a polynomial approximation 
provided in Numerical Recipes [11] may be used to evaluate it in closed form. The values of the seed functions at a set of given points 
can be readily computed by evaluating the expressions and boundary conditions above in conjunction with 1-dimensional numerical 
integration and summation.  

We adopted a non-parametric function representation approach, where the above functions are computed over an appropriate 
sampling grid and stored. In order to reduce the dimensionality of the function representation, unit variance samples (σX=1) are 
computed. Evaluation of the functions at an arbitrary point involves interpolating from the unit-variance grid and normalizing 
appropriately. For the sampled points, the values are evaluated based on the chosen Laplacian-Laplacian or Laplacian-Gaussian model. 



Note that these samples need to be evaluated only once, but the resultant non-parametric representation can be used for any coding 
application with the same statistical model and the quantizer family. Figure 3 shows the functions that are represented for the uniform 
deadzone quantizer family for the Laplacian-Laplacian model. For more convenient representation of boundary conditions and better 
interpolation performance, the axes and the functions are modified by exponentiation as shown. 

4. OPTIMUM PARAMETER CHOICE IN A RATE-DISTORTION SENSE 
For a given set of parameters {QP, S, m} in our coding model, the expected distortion D is given by: DCY(QP, 2S–1m, σZ, σX)= 

(σX)2dCY(QP/σX, 2S–1m, σZ/σX),  assuming noise-free decoding of the channel coded bit-planes. In practice however, since there is 
always a small probability of decoding error, this is really a lower bound for the expected distortion.  

The expected rate R = RSC + RCC where RSC is the rate for the source coded least significant symbol plane and RCC is the sum of rates 
for all channel coded bit-planes. The expected source coding rate RSC is given by:  

RSC = HC(QP, m, σX) = hC(QP/σX, m)                                                                                  (27) 
The ideal channel coding rate hi for the ith bit-plane Ci, i=1,2,…,S–1, is the conditional entropy: H(Ci/ C0, C1, …, Ci–1, Y), when 

coded and decoded in the least to most significant order. Since H(Ci/ C0, C1, …, Ci–1, Y) = H(C0, C1, …, Ci–1, Ci /Y) – H(C0, C1, …, Ci–1 
/Y), the ideal rate hi = hYC(QP/σX, 2im, σZ/σX) – hYC(QP/σX, 2i–1m, σZ/σX).  Next, we define a function λ(h) > h which provides the 
practical channel coding rate after considering any premium in the channel coding rate one needs to pay over the ideal in order to 
achieve virtually error-free transmission in practice. The practical channel coding rate ri for Ci is then ri = λ(hi). The total channel coding 
rate RCC is the sum of the rates ri for all channel coded bit-planes: 
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We assume a rate-adaptive model for the channel coder, where the bit-planes can be coded at any arbitrary rate as determined by the 
parameter choice mechanism. Sometimes, the codes for a range of rates may be derived from a common code family. Examples 
include variable punctured codes derived from a mother lower rate code, the recently proposed LDPC accumulate code, and so on. 
Alternatively, there can be multiple codes each covering a non-overlapping range of rates. The λ(h) function then depends on the 
particular code used at a particular rate range, its efficiency at the operating rate, as well as factors such as block length. Because it can 

 

 
Figure 3. Non-parametric representation of unit-variance seed functions for the Laplacian–Laplacian model 



be quite involved to characterize this function accurately, we assume λ(h) = (1+γ)h in this work, where γ is a constant. However, this 
simplifying assumption can still be very useful and provide a good understanding of the parameter selection mechanism.  

Now that we know how to obtain the distortion and rate for each {QP, S, m} combination, we can describe how the parameter 
selection mechanism for the general Wyner-Ziv problem would ideally work to optimize the triple {QP, S, m}. Typically, QP is 
restricted to lie within a finite set QPΩ  If QP is allowed to be continuous then QPΩ  could have arbitrarily fine granularity but for the 
purpose of this work, we assume QPΩ  to be discrete, S can have values in {1,2,… Smax} from practicality considerations, and m can 
take values in {1, 2,….mmax, ∞}. At higher values of m there is typically little or no difference in rate-distortion performance, and as 
such it is better to shut off coset computation and channel coding entirely after mmax. For each allowable {QP, S, m} combination, the 
R-D point is obtained from the seed functions. From these points, only the Pareto Optimal subset of points can be regarded as ‘good’ 
points for coding. For these set of points, there is no other feasible point that yields a lower rate for a lower distortion. For a given target 
QPt, the target distortion Dt is obtained by evaluating  Dt = DQ(QPt, σX), and the point from the Pareto Optimal set that yields the least 
rate with distortion not larger than Dt is chosen. Once the optimal {QP, S, m} has been obtained, the channel coding rates can also be 
readily read off.  

A somewhat better strategy to use is to seek the convex hull, which is a subset of the Pareto Optimal set. The mechanism to 
generate the convex hull is outlined in [9][10]. Since the convex hull has fewer points joined by linear segments, the coding strategy for 
an intermediate point at a given Dt is to pseudo-randomly select between two nearest codes (convex hull vertices) with appropriate 
probabilities. In other words, the samples are partitioned into two separate smaller sequences at appropriate proportion, and each is 
coded with a different set of parameters. This strategy would yield a Rate-distortion point that is exactly on the convex hull. 

Figure 4(a) illustrates the parameter choice mechanism in terms of the RD characteristics for the Laplacian-Laplacian model. Figure 
4(b) shows how the convex hull changes with Smax. As seen, there is little or no gain in increasing the number of symbols beyond a few. 
Table 1 presents a table generated showing the mapping from QPt to the optimal parameters assuming partitioned codes on the convex 
hull. Note that codes with QP = ∞, S = 0, m = 1 correspond to the zero-rate code case. Thus at lower qualities, we quickly reach 
the situation where the optimal coding is simply not to send anything at all (zero-rate coding), but just reconstruct using the side-
information. The rates rij in the table correspond to additional bits that need to be sent besides the side-information Y. In 
conventional channel coding terms, the code rate is then 1/(1+ rij). If a systematic channel code with this rate 1/(1+ rij) is used, 
only the parity bits are transmitted. As seen from the table, we see that only high rate codes (small rij) are useful, especially for 
the higher bit-planes. Since high rate codes are also more likely to be numerically unstable, in many practical scenarios it may be 
sufficient to use at most a single channel coded bit-plane (i.e. Smax=2). 

Table 1. Mapping from QPt to optimal WZ parameters for the Laplacian-Laplacian model with σX=1, σZ=0.5, γ=0.5, Smax=3, 
ΩQP={0.1,0.2,…,2.9,3.0}, mmax=32. The first code {QP1, S1, m1, r11, r21} is chosen with probability α, while the second code {QP2, S2, m2, r12, 
r22} is chosen with probability (1− α). rij is the channel coding rate for the symbol plane Ci in the jth code.  

QPt QP1 S1 m1 r11 r21 QP2 S2 m2 r12 r22 α 
0.1 0.1 3 22 0.0898 0.0014 0.1 3 23 0.0750 0.0009 0.1805 
0.2 0.3 3 5 0.2503 0.0165 0.2 3 8 0.2285 0.0125 0.0151 
0.3 0.4 3 4 0.2002 0.0104 0.3 3 5 0.2503 0.0165 0.1248 
0.4 0.5 3 3 0.2274 0.0143 0.4 3 4 0.2002 0.0104 0.3854 

     
                      (a) Pareto Optimal Set and Convex Hull                        (b) Convex Hulls for varying number of symbol planes 

Figure 4. R-D Characteristics for Laplacian σX=1, Laplacian σZ=0.5, γ=0.5, ΩQP={0.1,0.2,…,2.9,3.0} 



0.5 0.6 3 2 0.3602 0.0431 0.5 3 3 0.2274 0.0143 0.7443 
0.6 0.8 3 2 0.1818 0.0087 0.7 3 2 0.2578 0.0194 0.5528 
0.7 1.3 3 1 0.3224 0.0296 0.9 3 2 0.1271 0.0039 0.2074 
0.8 1.3 3 1 0.3224 0.0296 0.9 3 2 0.1271 0.0039 0.9260 
0.9 1.8 3 1 0.1591 0.0048 1.7 3 1 0.1835 0.0069 0.4643 
1.0 ∞ 0 1 0 0 3.0 3 1 0.0287 0.0001 0.0874 
1.1 ∞ 0 1 0 0 ∞ 0 1 0 0 1.0000 
… ∞ 0 1 0 0 ∞ 0 1 0 0 1.0000 

In a practical codec, normalized tables (i.e. σX=1) of the above form may be pre-computed and stored for a range of values of σZ in 
small increments. Furthermore the granularity of the normalized QP and QPt values must be sufficiently fine. Then for a given QPt, σX 
and σZ, one can look up the closest entry corresponding to QPt/σX, in the normalized table that is closest to σZ /σX, and then scale all the QP 
values read from the entry by σX. The closet allowable QP to this scaled value may then be used for actual coding.  

Figure 5 shows how the R-D characteristics change with variance of Z for both the Laplacian and Gaussian models for Z. Note that 
even for very high values of σZ, the Wyner-Ziv coder does significantly better than regular coding. 

The seed functions can also be used to obtain the optimal parameters for the simpler Slepian-Wolfe problem, where QP is fixed 
and only {S, m} are to be selected. The following strategy is used for this search: For each S in {1, 2, …, Smax}, search m in increasing 
order until the conditional entropy of the coded part ),,2,(

1
XZ

S
YC mQPH σσ

− comes very close to the ideal Slepian-Wolfe rate 
),,,( XZYC QPH σσ∞ for the given QP. Specifically, for each S, find the smallest m such that: 

εσσσσ <−∞ − ),,2,(),,,( 1 XZSYCXZYC mQPHQPH                                                                 (29) 
for a sufficiently small ε. Compute the total rate RSC + RCC for this {S, m} combination. Finally pick the combination that yields the least 
rate over the set of S values. Note that while there is some redundancy in the search for m for the different S values, eliminating such 
redundancies is a trivial extension of the above algorithm. 

A fast parameter choice algorithm for the Wyner-Ziv problem can now be conceived of based on decomposing the search into two 
smaller steps, the first for finding the right QP based on a given QPt, and the second for finding the best m and S combination using the 
Slepian-Wolfe search above. This algorithm is more appropriate when fast parameter selection is desired during encoding based on on-
the-fly estimates for σX and σZ. For a given QPt, the distortion is computed using the regular distortion function to yield the target 
distortion Dt. Thereafter, we find QP such that the coset distortion function computed for M=∞ matches Dt. In other words we solve 
for QP such that: 

tXtQXZYC DQPDQPD ==∞ ),(),,,( σσσ                                                                           (30) 
The solution can be readily obtained by a search over QP. Then we find the best M for that QP using the mechanism previously 
outlined. Figure 6 provides the R-D characteristics for fast vs. optimal search. As we see, in most cases, the fast method yields points 
close to the convex hulls. 

5. PRACTICAL CODING RESULTS 
The proposed framework was implemented in the following practical setting. An adaptive arithmetic coder was used as the source 

coder for the least significant plane. For the channel coded more significant bit-planes, a set of systematic repeat-accumulate (RA) 
codes [12][13] was used, where only the parity bits are transmitted. The advantage of using these codes is primarily in the flexibility of 
selecting arbitrary rates between 0 and 1, while still maintaining performance competitive with Turbo or LDPC codes. Furthermore, 

  
(a) Laplacian Z                                                                         (b) Gaussian Z 

Figure 5. R-D Characteristics for unit variance Laplacian X with Laplacian or Gaussian Z with varying variance σZ, compared to 
regular coding 



encoding is extremely simple, which makes it an attractive choice in many low encoding complexity applications. In particular, we use 
Irregular Repeat Accumulate codes (IRA) where the grouping factor and the repetition profiles were optimized and stored based on the 
technique in [14] for the BIAWGNC case for a variety of rates.  Even though the channel here is different we hope that by matching 
the conditional entropy to the code rate, we would get performance close to the optimal. For a given desired rate obtained by the 
parameter selection process, the degree distributions corresponding to the closest rate in the pre-computed tables is used, but the 
grouping factor is tweaked to yield the exact desired rate.  A soft decoder is used, where decoding for the channel coded bit-planes is 
conducted progressively from C1 through CS–1. For decoding the ith symbol plane Ci  – the soft probabilities: P(Ci / Y, C0, C1,…, Ci–1) is 
computed for the systematic bits, and provided as input to a soft decoder. There is no uncertainty in the parity bits since they are 
transmitted noise-free.  
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We found that the difference between the theoretical source coding rate and the practical source coding rate with the arithmetic 

coder was minimal. On the other hand, γ = 0.5 or more was required on an average to get good channel coding performance (low bit-
error rate) with our IRA based channel coder. As a result, we used this value in the parameter selection process using our simplified 
λ(h) = (1+ γ)h model. However, we also observed that the performance degrades for parity rates < 0.1 (i.e. high rate codes). So ideally, 
the optimization process should have used a λ(h) function where γ(h) = λ(h)/h − 1 is not constant, but increases at lower rates. While 
we expect optimized irregular LDPC codes to perform better, it is unlikely that for a practical block length of up to a few thousand bits, 
and very low parity bit rates, the parameter γ can be reduced to lower than 0.25 even for the best of channel codes.  

To test the performance, a Laplacian source X with a given variance σX was generated; followed by adding a Laplacian noise Z with 
a given variance σZ to it, in order to obtain the side information Y. The parameter selection process was then invoked to obtain the 
optimal coding parameters, and the source X is then coded using them. The coded data is decoded based on the side-information Y. In 
the results we present, we assumed Smax = 2 in order to allow a maximum of one channel coded bit-plane. The block size was chosen as 
6336 bits.  

Figure 7 presents the practical coding results with arithmetic and IRA coders compared against both the theoretical Pareto Optimal 
set of points optimized for Laplacian X (σX = 1), Gaussian Z (σZ = 1), and γ = 0.5. The parameter choice mechanism used is one where 
the nearest Pareto Optimal point is chosen for a given target QPt. Also shown is the RD characteristics for ideal Slepian Wolfe coding 
followed by optimal reconstruction. Figure 7(a) shows the results for Smax = 1, where a single source coded symbol plane is used. Figure 
7(b) shows the results for Smax = 2, where one channel coded symbol plane is used. We observe that the distortions in the practical 
coding points in Figure 7(b) are slightly worse than that of the corresponding Pareto Optimal points because of a few uncorrected 
errors. But generally, this case yields better RD performance than pure source coding. In both cases we also show the results when 
there is a channel mismatch, so that the actual noise Z has variance 0.6 rather than the designed 0.5. This is where the pure source 
coding strategy is a clear winner. The channel coding strategy yields a large number of channel decoding errors, degrading the 
performance substantially.  

Based on the above results we conclude that in applications where there is a large margin of error in the channel correlation 
estimation, the pure source coding strategy is actually quite reasonable. Alternatively, we could design for a value of γ larger than what 
just the inefficiency in channel coding performance would need, but that would automatically put more bits on the source coding part. 

 
Figure 6. Fast versus Optimal parameter selection 



We have actually used the pure source coding strategy in applications [9][15], where the inaccuracy of correlation estimation is deemed 
too large. 

6. APPENDIX 
We provide expressions for Laplacian X and for two particular cases for Z, Gaussian and Laplacian, for use in generation of the 

non-parametric representation of the seed functions, computation of the optimal reconstruction functions, as well as computation of the 
channel soft conditional probabilities for channel decoding.  

6.1. Expressions for Laplacian X Gaussian noise Z 
We first specialize for the case of Laplacian X and Gaussian Z, i.e.: 
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In the following, we assume:  
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Further defining: 

)
2

2()(   ),
2

2()(
2

2

2

1
ZX

ZX

ZX

ZX xerfxγxerfxγ
σσ

σσ
σσ

σσ +
=

−
=                                                                        (35) 

and using Y=X+Z, we have: 
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Given fX/Y(x, y), the moments can now be computed:  

    
                          (a) Smax=1 (No channel coding) case                                 (b) Smax=2 (1 channel coded bit-plane) case 

Figure 7. Practical coding results for Laplacian X (σX=1), Gaussian Z (σZ=1) compared against theoretical and ideal, for the 
cases: (a) when no channel coding is used (b) a single channel coded bit-plane is used along with source coding. Also shown are 
coding results when there is a channel estimation mismatch. 
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A special case used for the optimal reconstruction and distortion functions in the zero-rate case is when x→∞. In this case,  
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6.2. Expressions for Laplacian X Laplacian noise Z 
We next specialize for the case of Laplacian X and Laplacian Z, i.e.: 
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Defining: 
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Eq. 34 still applies for )()0( xmX  and )()1( xmX . Further, using Y=X+Z, we have 
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The partial moments can now be calculated as follows: 
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Also note: 
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