ﬂp HEWLETT

PACKARD

A Hybrid Approach to Fault Diagnosis
in Network and System Management

Along Lin

Internet Business Management Department
HP Laboratories Bristol

HPL-98-20

February, 1998

E-mail: alin@hplb.hpl.hp.com

diagnosis, In this paper, several Artificial Intelligence (Al)
model-based techniques such as Rule-Based Reasoning (RBR),
reasoning, Bayesian Networks (BNs), Neural Networks (NNs),
logic programming Case-Based Reasoning (CBR), Qualitative Reasoning

(QR), and Model-Based Reasoning (MBR) are
described. Then an automated management system
prototype is presented. Finally, a hybrid approach to
automated network and system management is
proposed. However, we focus on fault diagnosis.

Internal Accession Date Only

© Copyright Hewlett-Packard Company 1998

A Hybrid Approach to Fault Diagnosis in Network and System Management

Along Lin

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
Bristol BS12 6QZ, U.K.
Email:alin@hplb.hpl.hp.com

Abstract

In this paper, several Artificial Intelligence (AI)
techniques such as Rule-Based Reasoning (RBR),
Bayesian Networks (BNs), Neural Networks (NNs),
Case-Based Reasoning (CBR), Qualitative Reasoning
(QR), and Model-Based Reasoning (MBR) are described.
Then an automated management system prototype is
presented. Finally, a hybrid approach to automated
network and system management is proposed. However,
we focus on fault diagnosis.

Keywords: diagnosis, model-based reasoning, logic
programming.

Introduction

Because fault diagnosis requires much expertise and is
knowledge intensive, it has been one of the key research
topics of Al and Expert Systems (ESs) since 1960s.
Although there have been various kinds of diagnostic
systems, most of them were mainly designed for medical
diagnosis, electronic circuit analysis and nuclear power
station maintenance (Reiter 1987, Weber 1993). Only a
little progress has been made on the fault diagnosis of
networked systems and applications. The management of
systems and networks is getting increasingly complex and
crucial with the explosive growth of the Internet and the
worldwide acceptance of the Web.

Traditional fault diagnostic techniques such as RBR
and BN are not flexible enough to deal with the dynamic
evolving of a diagnosed system. The complete diagnostic
knowledge about a system must be acquired and fully
represented in advance, which has proven to be hard and
sometimes even impossible if people have not got enough
experience on the diagnosed system. Particularly, much of
the diagnostic knowledge has to be modified in case of the
changes to managed components or the connections among
them. Even though NN and CBR systems are capable of
learning from examples or new cases, they still lack of
flexibility and extensibility as most RBR and BN systems
do. This difficulty stems from the fact that thos. systems
diagnose faults based on people’s experiences rather than

the basic principles about how the components in the
diagnosed system behave and their causalities.

Model-Based fault diagnosis seems to be more
promising than other Al approaches (Chen and Srihari
1989, Davis 1984, de Kleer 1991, de Kleer, Mackworth,
and Reiter 1992, de Kleer and Williams 1987, Hofmann
1993). It is based on the models of a diagnosed system,
which describe the structure of the system and its
behaviors. The faults in a managed component are
diagnosed by comparing its observations with the
predictions about its intended behavior. However,
reasoning from first principles is inherently inefficient and
obtaining models may be either very difficult or too
complicated. Therefore, a hybrid fault diagnosis approach
is required.

In the following, several Al techniques are described
first. In section 3, we present a goal-driven model-based
automated management system prototype. A hybrid
approach to automated network and system management is
proposed in section 4. Finally, some conclusions are given.

Knowledge-Based Fault Diagnosis
Approaches

Rule-Based Reasoning

Rule-Based Expert Systems (RBESs) have been rather
successful in a variety of fields since the early 1960s. A
RBES includes an inference engine (IE) and a rule-base
(RB), in which the diagnostic knowledge from domain
experts has been coded in advance. It works by chaining
the rules in its RB given a query goal. Some RBESs have
additional modules for explanation and knowledge
acquisition. The success of RBES is due to the separation
of RB from IE, thus increasing its flexibility significantly.
However, this approach has several serious drawbacks for
its application to network and system management. Firstly,
all of the relationships between failure symptoms and
underlying faults must be pre-determined completely and
correctly. Secondly, eliciting diagnostic knowledge from
experts is hard. Thirdly, if managed components or the
connections among them change, its RB has to be

modified dramatically. Finally, it may become increasingly
slow with the expanding of RB.

Bayesian Networks

A BN consists of nodes representing uncertain assertions
and directed arcs representing cause and effect
dependencies among the nodes. It reasons from effects to
causes. The arcs are expressed by a probability distribution
for each effect node, based on the probabilities of its cause
nodes. Due to the ability to handle uncertainty and its
special knowledge representation, a BN is especially
useful in the fields in which people have incomplete
knowledge (Charniak 1991). Furthermore, it can provide
some guidance in diagnosis by calculating nodes
probabilities, which is helpful for choosing a most likely
fault candidate when integrated with MBR. However, its
shortcomings are very similar to those with RBESs.

Neural Networks

NNs have found many applications in the fields of
diagnosis, image processing, classification, and pattern
recognition. A feed-forward NN is very suitable for fault
diagnosis and event correlation because of its ability to
recognize given patterns efficiently, approximate any
functions given enough neurons, and learn from
input/output pairs by adjusting its connection weights
automatically without the deep understanding of a domain.
More importantly, as with a BN, an NN can handle
incomplete, ambiguous, and imperfect data. A problem
with this approach is that an NN must be trained by large
amounts of example data consisting of input/output pairs
in advance, which may be unavailable in some domains.
Its another disadvantage is that it is unable to explain why
a specific solution is given.

Case-Based Reasoning

CBR has been proven very successful in a few of domains.

A CBR system uses a library of previous cases with known

solutions to obtain the most appropriate solution to present

problem, which usually involves in case retrieval,

adaptation, evaluation, and learning. In order to retrieve

cases efficiently, it is crucial to decide what the key

attributes of a case are and on which attributes the cases

should be indexed. It has the following advantages over

ESs and BNs (Aamodt & Olaza 1994, Barletta 1991,

Kolodner 1993, Slade 1991, Voss 1997, Watson & Marir

1994).

e It can solve problems within partially understood
domains.

e It can reason by analogy efficiently.

e It can learn from new cases.

e ltrequires little maintenance.

e ltis easier to build a case library than a RB/BN.

e Its knowledge representation is less restrictive,
e It allows faster knowledge acquisition.
e [t can evaluate a proposed solution.

The drawbacks of a CBR system are that it is unable to
provide a solution to the given problem if there are no
matches for the current situation in its case library. As with
NNs, CBR systems are also opaque, unable to provide
deep-level explanations for the proposed solutions. When
the cases are unavailable, it will be time-consuming to
build a case library.

Model-Based Reasoning

MBR reasons from the normal behavior of a system of
which the structure is known. A Model-Based diagnostic
system consists of two parts, the fault detection mechanism
and the diagnostic engine. Because MBR can diagnose the
faults which never occurred before, it is a more promising
fault diagnosis technique than any of the approaches
described above. There are several modeling techniques, of
which device-centered models are the most commonly
used modeling techniques.

Production-rules. A system is modeled by a set of rules
representing causal relationships, based on first principles.
The rules model the behavior of the system by using the
inputs as antecedents in them and then firing the
appropriate rules to change the values for the state
variables in the system.

Device-centered models. It is assumed that a component
is the smallest replaceable device which can fail. Each
component is described in terms of its behavior and
relationship to other components and modeled as an
independent object whose functionality is determined by
the methods in the object.

Qualitative reasoning. This technique allows to model a
system in a more abstract way. In the case of network and
system management, it is hard to model the behavior of a
system quantitatively. The modeled system is described by
a set of physical parameters and qualitative differential
equations (QDEs) describing how the parameters relate to
each other. The qualitative state of a parameter consists of
a pair of values representing its ordinal relations with its
landmark values, which mark the borders of operating
regions, and its changing direction (de Kleer & Brown
1984, Forbus 1981, 1984, Kuipers 1986, 1993).

In MBR, it is assumed that the structure of a system and
its normal behavior are well understood and the basic
principles about how its components behave and their
causalities have been captured in the models, based on
which we diagnose the faults in a component by
comparing its observations with the predictions about its
intended behaviors. However, reasoning from the actual
structure and the normal behavior of a system is inherently

inefficient whereas the methods based on heuristics or
experiences are quite effective.

An Automated Management System Prototype

Object-Oriented Logic Programming (OOLP)

Logic Programming (LP), a well-known knowledge-based

programming paradigm, has found a wide range of

industrial applications of Artificial Intelligence and

Expert Systems since the early 1970s. LP has the

following advantages:

e It is declarative. A problem can be solved by
describing what has been known about it.

e It also provides a procedural reading so that it can
solve problems.

e It is based on First Order Logic (FOL), which
provides a solid theoretical foundation.

e It supports backtracking, thus being capable of solving
non-deterministic problems. .

e It is an assignment-free programming language,
making it much easier to debug a program.

e Itis very suitable for software prototyping.

e It supports incremental development and refinement
of software.

e It supports goal-directed reasoning and meta-level
reasoning.

e It supports recursive programming, infinite, recursive
data structure and automatic garbage collection and
memory allocation.

e All of its data structures can be uniformly expressed
as structures.

On the other hand, Object-Oriented Methodology
(OOM) offers an innovative software development
model, which 1is crucial to large-scale software
development and supports encapsulation and inheritance,
making it possible to achieve greater productivity than
would otherwise have been possible. OOLP, resulted from
the application of OOM to LP, has several advantages.
First, methods have the ability of reasoning about the
attributes of modeled objects. Secondly, methods are
declarative and able to backtrack. Thirdly, it provides a
mechanism for keeping information as private as possible.
Fourth, it supports the software reuse, enabled by
inheritance.

An Automated Management System Prototype

FLIPPER is a goal-driven model-based prototype
automated management system, which manages devices
like workstations, UNIX, Netware servers, PC’s,
printers, routers. It adopts OOLP as its knowledge
representation language, which supports type definition
and an inheritance mechanism that allows the methods
in a super object type to be overridden by those in

subtypes. It uses the Linear resolution on Definite clauses
with Selection function and Negation by Failure (SLDNF)
as its inference system. The architecture of an automated
management system is described in Figure 1.

There are two special types of goals. Monitored goals
are always watched and used to trigger an event to
signal some system state change to other applications,
agents or managers, thus event filtering, event correlation
and fault-detection can further be accomplished based on
monitored goals. Resident goals need to be maintained
true, which involves monitoring and fixing. As a resident
goal becomes false, a sequence of executable primitive
actions will be produced automatically by a planner.
After executing them, the system will be in a consistent
state in which the failed goal is true.

Agents

Messages

Agent Interface
Inference Engine
Diagnostic Engine

Planner
Model Compiler
and De-compiler

Query Result: Primitive
& Events Actions

Networks and
Systems

Management

Goals —
Domain '
Models

Figure 1: An Architecture of goal-driven model
based automated management system

A model defines the object types in a managed domain,
each of which is described in terms of its attributes and
behaviors. The attributes represent its current state. Object
behaviors are defined by the methods consisting of query
rules, access methods and primitive actions. A relationship
among several managed objects can be defined by a set
of rules which have the same relation signature. Each rule
is expressed by a Typed Guarded Horn Clause (TGHC).
Access methods link to the real world to obtain or check
the information about managed components. The mapping
of an access method to its external function is achieved by
a particular Dynamic Linking Library (DLL). Although
there is a difference in the way they are defined, query
rules and access methods are dealt with uniformly by the
underlying inference engine. Primitive actions are used to

change the states of the managed objects. There has been
seven predefined core types: Character, CoreRoot,
Integer, Real, String, Set and List, where CoreRoot is the
super type of all core types. Users can have new core types
by defining their external functions for hashing, printing
and equality checking. They can also add several methods
for those user-defined core types by providing an external
access module. In addition to this, users can define their
own object types.

Each FLIPPER agent manages its local environment
autonomously based on its management goals and the
models of managed components. It can accomplish various
kinds of management tasks, such as configuration,
performance monitoring, event filtering, event correlation,
fault diagnosis, fault repairing and so on. With the help of
Inter-Agent Protocol (IAP), an agent can exchange
information with other agents, thus achieving the
scalability easily. Because the intelligence of a FLIPPER
agent comes from the input models, which can be
transmitted across networks, we can manage a System
remotely and securely by adding a layer-of security
management on top of it, which usually involves in
authentication, authorization, and encryption/decryption.
To keep the transmitted data as little as possible, the

Expert Systems

Filtered Events
Events

A 4
Neural Network

Rule Base

Correlated &
Filtered Events y ¢

Case-Based Reasoning
Rule-Based Reasoning
(Qualitative)Model-Based
Reasoning
Bayesian Network

A
A o T
Diagnosis g:,’ug
Cases £ 5 Models
Y & Query /
Case 2
Library g Network
& S s&
. Systems

Configuring GoalsT Primitive Actions

Figure 2: An architecture for automated
network and system management.

models can be compiled before they are transmitted, in
which case either a de-compiler or a virtual machine must
be provided.

Fault Correction

For the time being, we fix the diagnosed faults by
executing some pre-written scripts, which is inflexible and
time consuming to develop them for all the possible
situations. In the case of policy-driven management,
because the policies for each component in a managed
system must be enforced, those hard-coded scripts will
have to be modified when there are some changes to the
policies, thus resulting in enormous amount of work. To
repair faults automatically, a planner will be utilized to
generate a sequence of primitive actions, which execute
some commands to manipulate the managed objects in
the real world or to reflect some changes to its dynamic
store. Each action describes a precondition, which must
be true before it can be invoked, and a post-condition,
which will be true after it is executed. Its syntax is defined
as follows:
<action> ::=<relation>‘PRE’<pre>‘POST’ <post>‘.’
<goal> :=<relation>|'~’<goal>|<goal>{‘&’<goal>} *|

<goal>{‘|’<goal>}*
<non-code>::=<varl>‘#’<var2>{‘&’<var|>‘#’<var2>}*
<pre> i=<goal>[‘&’<noncode>]|Vxe T ("<pre>‘)’
<effect> ::=<relation>|‘~’<relation>|

<effect>{ & <effect>}*
<post> n=<effect>|<goal>‘—’<effect>|

Vxe T (’<post>‘)’|<post>{‘&’<post>}*
In <post>, <goal> refers to the world before the action is
executed while <effect> refers to the world after
execution. Furthermore, Vxe¢ Q(x) can be expressed as:

[Set #] forAll [Type x] goal Q(x)

For example, [Set staff] forAll [Employee e] goal ([e]
authorisedToPrintOn [Printer p]). VxefQ(x) is replaced
by its universal base Q(c/)&...&Q(cs) if T = {cl,..., cs},
providing the world is static and making the Closed
World Assumption (CWA). In addition, the variables in
goals are implicitly existentially quantified. It is
assumed that the initial state contains no variables and all
the variables in the effects of an action must appear in its
preconditions.

A Hybrid Approach to Fault Diagnosis

Due to the diverse nature of the tasks in network and
system management such as configuration, performance
monitoring, fault diagnosis, and repairing, it is impossible
to perform all of them with one technique. A hybrid Al
approach to automated network and system management is
shown in Figure 2, where planning is used to configure a
system and to rectify the diagnosed faults. Even though a

hybrid method can be utilized for each of those tasks, we
focus only on fault diagnosis here.

The diagnosis is driven by data instead of goals. The
RB in RBR consists of two parts, one describes the most
commonly occurring symptom/fault associations, the other
one contains meta-rules, giving the control knowledge
about when and how to use different diagnostic strategies.
After receiving the filtered and correlated events, the
diagnostic system works as follows. It first uses RBR to
diagnose the underlying faults based on the first part of its
RB. If this fails, it uses the meta-knowledge described in
RB to provide some clues for choosing CBR system or
MBR system to identify the faults. If the CBR system is
chosen and the result is not satisfactory because there are
no cases resembling the current situation in the case library
or the proposed solution is bad, it will then try MBR
system to diagnose the faults. The MBR system uses BNs
to choose the components for testing based on their
probabilities after it has obtained the suspect set from the
fault detection process. During the candidate elimination,
MBR may use QR to reason about the normal and fault
behaviors of some components of which quantitative
models are difficult to acquire or too complicated to
describe. Thus, in this hybrid approach, the behaviors of
managed components, of which quantitative models are
difficult to acquire, are described qualitatively. After the
faults have been diagnosed, the solution will be evaluated,
and then stored as a new case together with its solution
steps and the current contextual information.

Conclusions

Model-Based approach to fault diagnosis has been
recognized as more appropriate than other knowledge-
based methods such as RBR, BNs, NNs, CBR since it can
precisely diagnose the faults never known before.
However, obtaining complete and correct models could be
either difficult or too complicated in the field of network
and system management. In those cases, we can diagnose
faults based on the typical symptom/fault associations,

described in a rule base, BN, NN or case library. The

hybrid approach we proposed utilizes various kinds of
knowledge, including both quantitative and qualitative
knowledge and even heuristics, to overcome the
drawbacks of a pure model-based approach. Even though it
is time-consuming to acquire different kinds of knowledge
for a hybrid approach, it provides more flexibility and
capability of diagnosing the faults in network and system
management.

References

Aamodt, A. & Plaza, E. 1994. Case-Based Reasoning;:
Foundational Issues, Methodological Variations, and
System Approaches. A/ Communications 7(1):39-59.

Barletta, R. 1991. An Introduction to Case-Based
Reasoning. A/ EXPERT 6(8).

Charniak, E. 1991. Bayesian networks without tears. A4/
Magazine 12:50-63.

Chen, J.S. & Srihari, S.N. 1989. Candidate Ordering and
Elimination in Model-Based Fault Diagnosis. In Proc. of
the 11" IJCAI, 1363-1368.

Cunningham, P. & Smyth B. 1994. A Comparison of
Model-Based And Incremental Case-Based Approaches To
Electronic Fault Diagnosis. In Case-Based Reasoning
Workshop, Twelfth National Conference on Artificial
Intelligence.

Cunningham, P. & Brady, M. 1987. Qualitative Reasoning
In Electronic Fault Diagnosis. In Proc. of the 10™ LJCAI,
443-445.

Davis, R. 1984. Diagnostic reasoning based on structure
and behaviour. Artificial Intelligence 24(1): 347-410.

de Kleer, J. 1986. An assumption-based TMS. Artificial
Intelligence 28(2):127-162.

de Kleer, J. 1991. Focusing on Probable Diagnoses. In
Proc. 9" National Conf. On Artificial Intelligence, 842-
848.

de Kleer, J.,, Mackworth, A.K. & Reiter, R. 1992.
Characterizing Diagnosis and Systems. Artificial
Intelligence 56:197-222.

de Kleer, J. & Williams, B.C. 1987. Diagnosing multiple
faults. Artificial Intelligence 32(1):97-130.

de Kleer, J. & Brown, J. 1984. A qualitative physics based
on confluences. Artificial Intelligence 24:7-83.

Forbus, K. 1981. Qualitative reasoning about physical
processes. In Proc. of the 7" IJCAL

Forbus, K. 1984. Qualitative process theory, Artificial
Intelligence 24(3):85-168.

Gebhardt, F. 1997. Survey on structure-based case
retrieval. The Knowledge Engineering Review 12(1):41-58.

Hofmann, M.O. 1993. Model-Based Diagnosis Directed
by Heuristic Search. The Ninth Conference on Artificial
Intelligence for Applications, 197-203.

Kolodner, J. L. 1993. Case-Based Reasoning, San Mateo,
CA: Morgan Kaufman.

Kuipers, B.J. 1986. Qualitative Simulation. Artificial
Intelligence 29:289-338.

Kuipers, B.J. 1993. Qualitative simulation: then and now.
Artificial Intelligence 59:133-140.

Reiter, R. 1987. A Theory of Diagnosis From First
Principles. Artificial Intelligence 32(1):57-96.

Slade, S. 1991. Case-Based Reasoning: A Research
Paradigm. A] Magazine 12(1):42-55.

Voss, A. 1997. Case reusing systems-survey, framework
and guidelines. The Knowledge Engineering Review
12(1):59-89.

Watson, I. & Marir, F. 1994. Case-based reasoning: a
review. The Knowledge Engineering Review 9: 327-354.

Weber, G. 1993. ELM: Case-based diagnosis of program
code in a knowledge-based help system. In proc. of the /*
European Workshop on Case-Based Reasoning, Posters
and Presentations.

Zeleznikow, J., Hunter, D. & Vossos, G. 1993. Integrating
rule-based and case-based reasoning with information
retrieval: the IKBALS project. In Proc. of the I*
European Workshop on Case-Based Reasoning, 341-346.

