() packaro

A New Model-Based Automated
Diagnosis Algorithm

Along Lin

Internet Business Management Department
HP Laboratories Bristol

HPL-98-26

February, 1998

E-mail: alin@hplb.hpl.hp.com

model-based, The explosive growth of the Internet and the
knowledge-based, World Wide Web has made the management
diagnosis, tasks such as configuration, monitoring, diagnosis
management and and recovery much more complicated. An
automation automated management system is highly needed

to alleviate those tasks of system managers.
Some tools use Case-Based Reasoning and Rule-
Based Reasoning to do the fault diagnoses.
However, they have difficulties in solving
problems requiring deep level knowledge.
Although some Model-Based diagnostic systems
have been developed, they are mainly used to
tackle problems in other domains. In this paper, a
new model-based automated diagnosis algorithm
is proposed.

Internal Accession Date Only

) Copyright Hewlett-Packard Company 1998

A New Model-Based Automated Diagnosis Algorithm
Along Lin

Extended Enterprise Laboratory
Internet Business Management Department
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
Bristol BS12 6QZ, U.K.
Tel: +44 0117 9229413 Fax: +44 0117 9229250
Email: alin@hplb.hplL.hp.com

Abstract

The explosive growth of the Internet and the World Wide Web has made
the management tasks such as configuration, monitoring, diagnosis and
recovery much more complicated. An automated management system is
highly needed to alleviate those tasks of system managers. Some tools use
Case-Based Reasoning and Rule-Based Reasoning to do the fault diagnoses.
However, they have difficulties in solving problems requiring deep level
knowledge. Although some Model-Based diagnostic systems have been
developed, they are mainly used to tackle problems in other domains. In
this paper, a new model-based automated diagnosis algorithm is proposed.

Keywords: Model-Based, Knowledge-Based, Diagnosis, Management and
Automation. :

1 Introduction

The explosive growth of the Internet and the widespread acceptance of the World Wide
Web have made the network and system management much more complex. Some tools
are highly needed to alleviate fundamentally the management tasks such as configuration,
monitoring, diagnosis and repairing problems. An automated management system plays a
very important role in providing customers with services of high quality over networks.

Model-Based Reasoning has been widely accepted as the principal diagnostic technique
in several domains [3-7]. However, only little emphasis has been put on its application
to network and system management domain. With Model-Based approach, it is assumed
that the structure of a system and its correct behaviour have been well understood and the
basic principles about how its components behave and their causalities have been given
in the models of the diagnosed system. We can use that knowledge to diagnose the faults
ina component by comparing its observations with the predictions about its intended
behaviours based on its correct models. Because it can diagnose the faults which have not
been pre-determined, it has been considered asa more promising technique than other
knowledge-based methods such as Rule-Based or Case-Based systems. A Model-Based
diagnostic system consists of a fault detection mechanism and a diagnostic engine. Some
autonomous systems can also include a recovery mechanism. In Model-Based approach,
all what we need to do is to write all of the models of domain components which describe
their normal behaviours and relationships to other components.

FLIPPER is a prototype of automated management system of several networked systems
which include devices like workstations, UNIX, Netware servers, PC’s, printers, routers.
It is based on MBR technology and developed by Hewlett- Packard Laboratories, Bristol,
U.K. Models in FLIPPER define the types of objects in a managed domain, express the
relationships among objects, describe methods linking objects to the real world to access
the information about the managed components, which describe how an object operates.
In FLIPPER, while an inference engine is used to prove goals, faults are diagnosed by an
diagnostic engine, providing only the information which contributes to those faults in a
managed system. In the following, we present a managed system’s life cycle first. Then, a
new Model Based diagnostic algorithm MBDA for our future prototype is proposed in
detail in section 3. Finally, some conclusions are given in section 4.

2 The Life Cycle of a Managed System

Systems must be configured or installed correctly by using some tools before it can work.
Then, the system will be in a consistent state. Unfortunately, during its run-time, there are
some events occurred, causing the system to enter some incorrect states. An automated
management system is needed to alleviate system administrator’s task of maintaining the
system in a correct state more efficiently. Reactive and proactive management are two
major types of system management. The reactive one manages a system by fixing faults
after they are diagnosed, whereas the proactive management tries to preventa system
from being in a faulty state by monitoring and reconfiguring a system. Both approaches
need a mechanism to detect a fault or some tendency to reach the thresholds set for some
parameters in advance. In Fig. 1, So, Sw, St represents the initial state, working state
and fault state of the managed system, respectively. The state transitions from Soto Sw
and from St to Sw are accomplished by configuring the managed system initially and by
repairing the diagnosed faults, respectively. Therefore, fault diagnosis is a crucial task in
the reactive system management. Obviously, it is the recovery that closes the loop and
makes it possible to maintain automatically a system in a consistent and desired state.

St
w
(a) Reactively managed system (b) Proactively managed system
which has fault states in its state space. ~ which has no fault states.

Fig. 1. The two main types of life cycles of a managed system

In FLIPPER, system administrators use goals to express their management intentions.
A goal represents the relationship among several managed objects. There are two special

types of goals. Monitored goals are always watched and used to trigger diagnostic engine
or generate an event to signal some state change in the system to a system administrator.
Therefore, the fault-detection mechanism can be accomplished based on monitored goals.
Resident goals need to be maintained true, which involves monitoring and fixing. As a
resident goal becomes false, a sequence of executable primitive actions will be produced
automatically by a planner. After executing them, the system will be in a consistent state
in which the failed resident goal becomes true. Those primitive actions are described as
precondition/post-condition pairs in a declarative way. Thus, FLIPPER is also called a
goal-directed model-based prototype of automated network and system management.

3 A New Model Based Diagnostic Algorithm MBDA

The rules in the models could be expressed by Guarded Horn Clauses. For an accurate
diagnosis, some semantic information is provided in the domain object models. A rule
Riis expressed as: Hi IF Gi| Bi, where Hi , Gi, and Bi are the head, guard and body of
Ri , respectively. Facts are the special rules whose bodies are empty. The sub-goals in Bi
can be divided into two categories: diagnosable goals and non-diagnosable goals. Model
writers are responsible for attaching the semantic tag “diagnosable” to the rules which
they think are meaningful to the teal diagnoses. A goal is diagnosable if one of the rules
defining it is diagnosable. Furthermore, a rule is also diagnosable if its body contains a
diagnosable goal. Evidently, a guarding goal Gi must not contain any diagnosable goals.
For a fault diagnosis, G does not contribute to any faults in a system, itis just used to
commit to some rule R. Although backtracking is allowed within G, B is deterministic.

In order to describe MBDA more concisely, we introduce following notations:

NT : Nodes — {and, or, leaf}, where Nodes is the set of all nodes in a search tree;

T : Goals — {true, false, unknown, ignored}, where Goals is the set of all goals, and
true, false, unknown, ignored are possible goal attributes. If a goal G has been proved
true/false, T(G) becomes true/false; Otherwise, T(G) remains unknown as a default. If
T(G)= ignored, G will not be interested in any more by the underlying reasoning éngine.
CP(N) is the choice point of the goal represented by node NV, pointing to /V's candidate
rules. If CP(N) becomes NULL, N has been fully expanded. Moreover, PN(N) denotes
the parent of node N. For a root node N, PN(N) is NULL. Nodes in a search tree
correspond to goals. MBDA consists of algorithms 3.1~3.5 detailed below.

Algorithm 3.1 Expand(V, DE)

1 Let next = NULL; If (NT(N) == or) {R = CP(N); go to 7;}

2 CP(N) =NULL,;

3 If N is an access method, call its corresponding procedure to get the attributes of the
managed objects in the real world. If it fails, return(Propagate(N, false, DE)),
Otherwise, return(Propagate(N, true, DE));

4 If there are no rules defined for V, return(Propagate(V, false, DE));

5LetRi, ..., Rn be the n (n > 1) rules defined for a goal corresponding to NV, these rules
are linked together. Let R be the head of the linked list, expand = false; go to 7,

6 R = R—> NEXT;

If (R ==NULL) {If (expand # true) return(Propagate(N, false, DE)); return(next);}

7 Let H, G, B are the head, guard and body of R, respectively. If there is no such mgu 0
that Ne0 = He0, go to 6; Otherwise, if G is empty, go to 9;

8 If Prove(G #0) returns false, go to 6;

9 Let expand = true; If (NT(N) = leaf) NT(N) = or;

10 Construct a node C, PN(C) = N, 0 is attached to C;

11 If (B is empty) {if (next == NULL) next = Propagate(C, true, DE); } Otherwise,
Assume the sub-goals in Bare b, ... , bm, construct leaf nodes #1, ... , tm consisting
of the goal bre6, ... , bme0, respectively.

For j=1,..., m, T(tj) = unknown; NT(tj) = leaf; PN(t) = C, If (j < m) RB(tj) = tj+1,
NT(C) = and; T(C) = unknown; If (next == NULL) next = t1,
12 goto 6.

In algorithm 3.1, Prove is the inference engine, which has the backtracking mechanism.
For the sake of efficiency, we can expand NNV by only one rule at a time, rather than by all
of its children, which can be achieved by changing step 12 to 12’:

12’ If (R—> NEXT = NULL) CP(N) = R— NEXT. Return(next),
Actually, for any fully bound goal, only one of the rules defining it can be committed. In
that case, after committing to a rule, the choice point of a goal is NULL.

Algorithm 3.2 Propagate(G, value, DE)
NT(G) = leaf, T(G) = value;
Let N = PN(G) and assume N has n children N1, Nz, ... , Nn;
I(N) = unknown; E= T(G);
If (NT(N) == or && E # true) || (NT(N) == and && E == true)) go to 7;
T(N) =E. If (DE == diagnose) and G is non-diagnosable, let T(N) = T(G) = ignored,
IgnoreChildren(V); go to 9;
If (NT(N) == or && CP(N) # NULL) return N,
If (T(N1) = T(N2) = ... =T(Nn) = T(G)) {T(N) = T(G); goto9;}
If (NT(N) == and || DE # diagnose) go to 9,
I(N) = ignored; For j=1,..., n,if (T(Nj)) = false) T(N) = false;
9 If (PN(N) = NULL) return N;
If (T(N) == unknown) {If (NT(N) == or) return NV, return(RB(N));}
10 Let G=N, goto 2.

0NNt W

Algorithm 3.3 IgnoreChildren(V)
1 If (NT(N) == leaf) { if (T(N) == unknown) T(N) = ignored, return;}
2 Assume N has n children N1, N2, ... , Na; For j=1 ,..., n, IgnoreChildren(N)); return;

Both the diagnostic tree and the explanation tree of a goal G can be constructed from its
search tree. The produced tree is denoted by DT(G).

Algorithm 3.4 Construct(G)

1 If (T(G) = ignored) return NULL;

2 G is in DT(G); If (NT(G) = leaf) return G,

3 Let Gi (i=1, ..., n) be n children of G and E = T(G). If (NT(G) = or) E = ~E,

4 If E is false, there must be some Gj (1< <n) such that T(Gj)== T(G), DT(G;) belongs
to DT(G); Otherwise, fori=1, ... , n, if (Construct(Gi) # NULL) DT(G:) is in DT(G);

5 Return DT(G).

The diagnostic tree of a failed goal G is returned by Diagnose(G):
Algorithm 3.5 Diagnose(G)
1 Construct a leaf node N, corresponding to the failed goal G

Let T(N) = unknown; PN(N) = NULL; NT(N) = leaf,
2 While (T(N) = unknown) N = Expand(N, diagnose);
3 Return Construct(G).

Thus, the diagnosis of the failed goal G consists of all the leaf nodes in Diagnose(G). If
there are multiple faults in a system, after repairing the diagnosed fault by executing the
sequence of primitive actions produced by a planner, we can diagnose others similarly.
MBDA is a goal-directed model-based diagnostic algorithm and can be easily proved to
be sound.

4 Conclusions

Fault diagnosis is a very important issue in an automated management system. Model
Based approach appears to be a more promising technique than other knowledge-based
methods such as Rule-Based and Case-Based solutions because of its ability of solving
the problems which have not been pre-determined. Faults in a system can be diagnosed

automatically based on the models, which describe the normal behavior of the system.
However, because Model-Based approach reasons from the actual structure and behavior
of a system, it is not efficient for-some simple fault diagnosis which happened frequently
in the past and have typical symptom/fault associations. Furthermore, obtaining domain
models may be either difficult or too complicated sometimes, whereas some faults can
be diagnosed based on the past experience, which can be easily captured in a rule base or
case library. A possible solution is a hybrid approach which integrates all of those
methods. For the faults in some components which are not well known or too complex

to model, they can be diagnosed efficiently by a set of heuristic diagnostic rules or by
accessing the case library to adapt the previous solutions to similar cases to the current

ones. For the faults which could not be predicted or exhaustively enumerated in advance

we have to use the model-based approach to do the diagnosis.

Further researches include:

- develop an efficient planner which can generate a sequence of primitive actions
automatically to do the recovery of the diagnosed faults and configurations,

- integrate fault detection, diagnosis and recovery mechanisms into a single system,

- add the security mechanism to FLIPPER so that it can manage systems remotely,

- generate the component models automatically from its descriptions used to design
and development by using CAD/CAM technologies.

References

[1] A. Baldwin, C. Bartolini, G.D. Vitantonio, K. Eshghi, A Novel Algorithm for
Fault Diagnosis in Internet-based Services, Workshop on OVUA, 1997.

[217.S. Chen and S.N. Srihari, Candidate Ordering and Elimination in Model-Based
Fault Diagnosis, In Proc. Of the 11" [JCAL, 1363-1368, 1989.

[3] R. Davis, Diagnostic reasoning based on structure and behaviour, Artificial
Intelligence, Vol. 24, No. 1, 347-410, 1984.

[4] M.O. Hofmann, Model-Based Diagnosis Directed by Heuristic Search, The Ninth

Conference on Artificial Intelligence for Applications, 197-203, March,1993.

[517J. de Kleer, Focusing on Probable Diagnoses, In Proc. 9" National Conf. On
Artificial Intelligence, 842-848, July 1991.

[6] J.de Kleer, A K. Mackworth, R. Reiter, Characterizing Diagnosis and Systems,
Artificial Intelligence, Vol. 56, 197-222, 1992.

[7]J.de Kleer and B.C. Williams, Diagnosing multiple faults, Artificial Intelligence,
Vol. 32, No. 1, 97-130, April 1987.

[8] B.J.,, Kuipers, Qualitative Simulation, Artificial Intelligence, Vol. 29, 289-338, 1986.

[9] M.K. Reiter, K.P. Birman and R. van Renesse, A Security Architecture for Fault
Tolerant Systems, ACM Trans. on Computer Systems, Vol.12, No.4, 340-371, 1994.

[10] R. Reiter, A Theory of Diagnosis From First Principles, Artificial Intelligence, Vol.
32 No. 1, 57-96, 1987.

[11] T. Sakao, Y. Umeda, T. Té)miyama and Y. Shimomura, Model-Based Automatic
Generation of Sequence-Control Programs from Design Information, /EEE Expert,
54-61, 1997.

[12] W. Hamscher, L. Console and J. de Kleer, (Eds.) Readings in Model-Based
Diagnosis, Morgan Kaufmann, San Mateo, CA, May 1992.

