

Authorization-Based Access Control for the Services Oriented
Architecture

Alan H. Karp
HP Laboratories Palo Alto
HPL-2006-3
January 3, 2006*

Services Oriented
Architecture, Web
Services, security,
access control

Several attempts at using the Services Oriented Architecture have failed
to achieve their goals of scalability, security, and manageability. These
systems, which base access decisions on the identity of the requester,
have been found to be inflexible, don’t scale well, and are difficult to use
and to upgrade. This paper shows that identity-based access control is a
key contributor to these failures and proposes another way to approach
the problem. Basing access control decisions on authorizations presented
explicitly by the requester leads to a more securable and more robust
architecture.

* Internal Accession Date Only
Published in the Fourth International Conference on Creating, Connecting, and Collaborating through Computing
(C5), 26-27 January 2006, Berkeley, CA, USA Approved for External Publication
© Copyright 2006 IEEE

Authorization-Based Access Control for the
Services Oriented Architecture

Alan H. Karp
Hewlett-Packard Laboratories

Alan.Karp@hp.com

Abstract

Several attempts at using the Services Oriented
Architecture have failed to achieve their goals of scal-
ability, security, and manageability. These systems,
which base access decisions on the identity of the re-
quester, have been found to be inflexible, don’t scale
well, and are difficult to use and to upgrade. This
paper shows that identity-based access control is a
key contributor to these failures and proposes another
way to approach the problem. Basing access control
decisions on authorizations presented explicitly by the
requester leads to a more securable and more robust
architecture.

1. Introduction
The Services Oriented Architecture (SOA) may

yet deliver on the promise of loosely coupled applica-
tion development that didn’t materialize from earlier
attempts, such as CORBA. The SOA is based on Web
Services standards - SOAP for invocation, WSDL for
interface definition, and UDDI for service discovery,
all of which use XML as the communication format.
These standards remove any dependence on machine
architecture and operating system, making composi-
tion of independently developed components far eas-
ier.

One of the things holding back the widespread
use of the SOA is the delay in reaching consensus on
how to secure the services. There are a number of
aspects of securing web services, such as encryption,
message integrity, authentication, authorization, etc.,
and there appears to be at least one standard for each
of them, XML DSIG, XACML, SAML, etc.

The relevant standard for a discussion of access
control is the Security Assertion Markup Language
(SAML) [1]. The goal of SAML is to provide a means
for exchanging security information across organiza-

tional boundaries, a requirement if the SOA is to reach
its full potential.

The SAML specification is quite general in the
kind of assertions that can be made, but most of the
examples are based on the user’s identity. For exam-
ple, the SAML Technical Overview [1] states,

At the heart of most SAML assertions is a
subject (a principal – an entity that can be
authenticated – within the context of a par-
ticular security domain) about which some-
thing is being asserted.

The Liberty Alliance, which is developing a
framework for distributed identity management, has
adopted SAML 2.0, another indication of the impor-
tance of identity assertions in SAML.

It is no surprise, then, that most implementations
based on the SOA tie access control decisions to the
identity of the requester. This approach is spelled out
in the introduction to the SAML specification [1],
which states,

For example, a typical assertion from an
identity provider might convey that ‘This
user is John Doe, he has an email address of
john.doe@company.com, and he was authen-
ticated into this system using a password
mechanism.’ A service provider could
choose to use this information, depending on
its access policies, to grant access to local re-
sources.

Left unspecified is how the service provider uses
the identity of the requester to make access control
decisions Typically, the service uses the identity to
look up the appropriate policy in some local database
and makes the access decision with that information.
So, it appears that the identity of the requester isn’t

the critical information; it is the authorization infor-
mation in the database that matters. If that is indeed
the case, why not just have the request convey the au-
thorization information instead of or in addition to the
requester’s identity? As shown in Section 6, passing
authorizations has a number of important advantages
over passing authentications.

The advantages of using authorizations are illus-
trated by the example scenario sketched in Section 2.
Sections 3 and 4 outline how identification based ac-
cess control (IBAC) can be applied to this scenario.
An implementation based on authorization based ac-
cess control (ABAC) is sketched in Sections 5 and 6.
Section 7 outlines some implementation options.

2. Sample Scenario
While the SOA can be useful within a single or-

ganization, its real promise comes from the ability to
federate services provided by different organizations.
This federation exposes some of the problems that
arise from basing access control decisions on identi-
ties.

In order to illustrate these problems, we use the
simple scenario shown in Figure 1. Actual deploy-
ments will probably involve more complex arrange-
ments, but it is unlikely that an architecture that

makes it hard to deal with this simple case will be able
to deal with more realistic configurations.

While this example may appear contrived, it was
provided by a group at the US Navy to a team of con-
tractors as a test of their web services middleware.
These contractors concluded that they could not make
the example work, specifying identity management as
a key problem.

In this sample scenario, we have a user, Alice, in-
voking a service, which we’ll call A6, for the sixth
service of service provider A. That service uses ser-
vice B5; B5 uses A3 and B2; B2 uses C3 and C5; C5
uses D5. Alice only invokes service A6, which in-
vokes other services that may be unknown to Alice.
Indeed, Alice may not have the right to invoke these
other services herself. This kind of cross-domain ser-
vice composition is the source of the power of the
SOA.

For this discussion, we say that Domain 1 pro-
vides weather prediction services; services in Domain
2 access satellite images, and services in Domain 3
return topographic data. In order to be clear, we dis-
tinguish between Alice as the originator of the request
and the intermediaries that are senders of requests.

We assume that each domain has a single admin-
istrator. Thus, it is relatively easy for the owner of

Domain 1 Domain 2 Domain 3

A B C D

Alice

Figure 1. Sample scenario of cross domain service use.
The arrows show service invocations.

1

2

3

4

5

6

7

2

3

1

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Domain 2 to allow service B2 to use service C3. The
interesting problems arise when a principal in one
domain needs to use a service in another. Sections 3
and 5 contain descriptions of two approaches to solv-
ing this access control problem.

3. Identity-based Access Control
Let’s follow the advice quoted above from the

SAML specification and have the web services base
their access decisions on user authentication. Clearly,
service A6 bases its access decision on Alice’s iden-
tity, but what about services A3 and B2? There are
two options. Either they use Alice’s identity or that of
service B5. For the purposes of this discussion, we
assume that sender authentication is used except for
service D5, which requires originator authentication.

We need to populate the policy databases before
accepting requests. Some cases are relatively easy.
Each domain can start by entering rules for its princi-
pals. For example, the administrator for Domain 1
enters a rule stating that Alice may access service A6
if she used two-factor authentication to log in. The
administrator of Domain 2 states that service B5 may
use service B2 if the request comes from inside the
firewall.

These rules may be stored in a variety of ways. If
we use Access Control Lists (ACLs), each service has
an entry for each user who may access it. That entry
specifies what that user may do. In our example, the
policy database for Domain 1 has an entry for service
A6 listing Alice and stating that she may invoke the
service if she used two-factor authentication.

Next, we need to add the rules for cross domain
access. Domain 1 informs Domain 2 that service A6
needs to access service B5, and Domain 2 puts the
appropriate entry into its policy database. For exam-
ple, the rule might state that A6 can use B5 if A6 has
an X.509 certificate and is using AES 256-bit encryp-
tion. Likewise, Domain 2 informs Domain 1 that ser-
vice B5 needs to access service A3, and Domain 1
updates its policy database accordingly. Domains 2
and 3 do a similar exchange.

Alice needs to find the services she wants to use.
In the SOA, she discovers services registered in some
UDDI repository [2]. We ignore the fact that UDDI
doesn’t provide a means to restrict discovery and as-
sume that all three domains register their services in a
common repository. Such an approach is clearly un-
acceptable in a final architecture that requires tighter
control and better privacy guarantees. Something can
be layered on top of UDDI to meet these and other

requirements, such as rich query, that UDDI doesn’t
provide.

At this point, Alice looks up services related to
weather prediction in the UDDI repository and finds
service A6. The tModel ([2], Section 1.6.4) in that
entry points her to the WSDL specification and pro-
vides the SOAP invocation information. This specifi-
cation notes that providing a topographic service as a
parameter produces better results, so Alice searches
the UDDI repository and finds service D5.

Alice then invokes service A6 with a reference to
D5 as a parameter via a SOAP request that includes a
SAML assertion provided by Domain 1. Service A6
checks the Domain 1 policy engine to determine if it
should honor the request. If the document received
from the policy engine asserts that access is allowed,
service A6 starts processing. As part of its processing,
service A6 invokes service B5, submitting its own
SAML assertion. Alice’s assertion must be carried
along even though B5 won’t use it because service D5
requires the originator’s authentication.

4. Problems with IBAC
While using identification to make access deci-

sions seems straightforward, there are a number of
problems with doing access control this way. In this
section we look at why the Navy consultants had so
much trouble.

4.1. Trust relationships
In our example, Domain 2’s trust relationship is

with Domain 1, the signer of the SAML assertions,
not Alice, the user of Domain 2’s services. In particu-
lar, Domain 2 has no way to enforce restrictions on
principals in Domain 1. If Domain 1 wants to state
that strong authentication was used when it wasn’t,
there’s nothing Domain 2 can do to detect this fact.
Moreover, there’s nothing to stop Domain 1 from cre-
ating fictitious identities. The only thing preventing
such violations is the trust relationship between the
two domains.

Even when the parties obey the trust relation-
ship’s requirements, there is the problem of propagat-
ing such information through intermediaries. Service
D5 requires originator authentication, but its domain
has no trust relationship with Domain 1. In this case,
Domain 2 must attach its own SAML assertion to
Domain 1’s request and forward it to Domain 3. Do-
main 3 makes an entry in its policy database relying
on the assertion from Domain 2. Domain 1’s asser-
tions are worthless to Domain 3.

Since Domain 3 has no trust relationship with
Domain 1, it can do no better than merely copying the
information provided by Domain 1. So, Domain 3’s
policy database has an entry stating that Alice in Do-
main 1 may use service D5 if the request has the ap-
propriate SAML assertion signed by Domain 2. Do-
main 3 may choose to attach other conditions, such
that Alice use two-factor authentication. At the end of
this exchange, Domain 3’s policy database has an en-
try for Alice, even though Domain 3 has no trust rela-
tionship with either Alice or her domain.

4.2. Changing personnel
Consider what must be done when Alice changes

jobs within Domain 1, and Bob takes over her old du-
ties. Domain 1 can’t just revoke Alice’s identity cer-
tificates; she still needs them to carry out her new du-
ties. Instead, the policy databases must be updated.
Not only must the Domain 1 administrator update all
its ACLs, the administrator must inform the other
domains of the change, and they must update their
databases accordingly. Complicating the matter is the
lack of a direct relationship between Domains 1 and 3.
These problems are magnified if Domain 1 reorgan-
izes, since many changes are likely to be needed. The
overhead can be substantial if changes are frequent, so
substantial that something “better than a straight
ACL” ([3], page 57) is recommended.

4.3. Role explosion
Operating systems use group permissions to re-

duce the overhead incurred when people change jobs,
and Role-based Access Control (RBAC) is the recom-
mended approach for the SOA. These approaches do
help reduce the overhead, but the responsibilities of
groups and roles are not completely static.

There is often less than perfect alignment between
job duties and roles, particularly when crossing do-
main boundaries. For example, Domain 1 may have a
role “Weather predictor” which is known to need ac-
cess to topographic data. Domain 3 may have a role
that needs access to topographic data that it calls
“Driving Directions” and a role that does not require
topographic data that it calls “Weather predictor”.
These inconsistencies lead to an explosion in the num-
ber of roles needed to correctly map roles to authoriza-
tions.

4.4. Information leakage
Another problem with identity-based access con-

trol is the information leakage inherent in this ap-
proach. Domain 3 is given organizational information

about Domain 1. For example, Domain 3 knows that
Domain 1 has a user Alice and that Alice has certain
properties. While some of these properties are rele-
vant to Alice’s use of services in Domain 3, others are
not. In addition, Domain 3 must be informed when
Alice’s permissions change and told that Bob in Do-
main 1 is to be given those permissions.

4.5. Delegation and revocation
Even if Alice doesn’t change jobs, there may be

times when she needs to delegate some of her authori-
ties. For example, if Alice is sick when a weather
prediction is needed, she’d like to assign a subordinate
to do the task. She must ask the Domain 1 adminis-
trator to update the policy database to allow Bob to
invoke service A6 and inform Domain 3 to add an
entry to service D5’s entry for Bob. Bob won’t be able
to take over from Alice until the databases have been
updated, and Bob will have that authority until the
entries are removed. This requirement of consistency
across databases severely limits the scalability of this
approach.

This example illustrates another problem with
IBAC, the misalignment of incentives. There are a
couple of cases of interest. Say that Domain 1 is at
risk if Bob continues to use service D5 after Alice re-
turns to work, but Domain 3 is not. There is no incen-
tive for Domain 3 to remove Bob’s identity from its
ACL promptly if at all. If Domain 3 is at risk, but
Domain 1 is not, then Domain 1 has no incentive to
inform Domain 3. This discussion of incentives
hasn’t even noted that all such requests are passed by
Domain 2, which is likely to have no incentive at all to
make sure the revocation happens.

4.6. System evolution
Another problem involves upgrades to the system.

Since Domain 1 issues SAML certificates that Domain
3 must process, any upgrade must be done simultane-
ously. Backward compatibility isn’t too hard; Domain
3 can start using SAML 3.0 formats while still accept-
ing SAML 2.0 assertions. However, Domain 1 can’t
update to the newer format until Domain 3 is able to
parse it. Since many dependences go in both direc-
tions, coordinated upgrade is required, a serious prob-
lem in an operational system. Also, parties wishing to
join the system may have to completely redo their in-
ternal processing, a serious barrier to entry.

4.7. Ambient authorities
Yet another problem is that every program in-

vokes services by presenting SAML assertions of a

principal’s identity. We say that the granted authori-
ties are ambient because they are taken out of the prin-
cipal’s environment. Ambient authorities make a con-
fused deputy attack [4] possible.

Note that in our example service B2 invokes ser-
vices C3 and C5. Let’s say that C5 accesses the satel-
lite images and C3 records the accesses for audit pur-
poses. Alice would like to compromise the audit trail.
Let’s further assume that the API she uses has her
specify the service to produce the output, C5, and the
service to receive the output, B5. In normal operation,
service B5 uses its permissions to invoke C5 and to
modify the audit by invoking C3. However, if Alice
specifies C3 to receive the output, service B5 will use
its permissions to write image data over the audit trail.
Granted, there are ways to prevent such attacks, but
they complicate the system, and it’s difficult to find all
the places they can occur.

Ambient authorities lead to other problems. If the
program has an error, or if the program has been sub-
verted by a virus, it can carry out any action that the
domain administrators have granted Alice in their
policy databases. There is no way for Alice to start a
program with the authority to do just weather predic-
tion. Requests from that program to invoke other ser-
vices will succeed as long as Alice has been granted
permission.

This example illustrates a far larger problem, one
closely related to that of viruses. One of the motiva-
tions behind SAML is Single Sign On (SSO), a means
of avoiding the need to sign on multiple times with a
variety of passwords. An unfortunate side effect of the
way SAML is used for SSO is an amplification of the
damage that can be done by malicious or erroneous
code running in a login session. Without SSO, a virus
running in a program can abuse any privileges of the
logged in user, but only on that machine. With SSO,

the resources at risk extend to any service in any Do-
main that has granted access to the user.

4.8. Distributed Identity management
Note that we haven’t raised the difficult issue of

distributed identity management. Alice most likely has
a distinguished name (DN), which has components
listing her domain, organization within that domain,
etc. Such names unnecessarily expose organizational
information. Worse, they require updates to all the
policy databases whenever a DN changes, either be-
cause of a job change or an internal reorganization.
There is a well-known vulnerability in Active Direc-
tory Servers [5] that is closely related to delays in up-
dating such designations. A new domain entering the
system may have to reassign the DN’s of its members
to avoid conflicts with those in the system it is joining.

4.9. Summary
Using identity-based access control results in a

system that is hard to manage, hard to evolve, and is
susceptible to erroneous programs and viruses. Some
problems, such as confused deputy attacks, might be
preventable by extraordinary care in design and cod-
ing. Others, such as the difficulty of managing the
policy databases in a very large system, are inherent in
the approach.

5. Authorization-Based Access Control
Let’s step back and see how IBAC works. With

identity-based access control Alice makes a request of
service A6 and includes proof of her identity. The
service submits this information to the policy engine,
which determines the authorizations and reports back
to the service. The service bases its access decision on
this authorization, not Alice’s identity.

That being the case, we can make a small change

IBAC ABAC

Client Service

Policy
Engine

Client Service

Policy
Engine

Figure 2. Comparison of identity-based (IBAC) and authorization-based (ABAC) access control.

to the procedure. We’ll have Alice present her iden-
tity to the policy engine and get back the set of au-
thorizations that represent what she is allowed to do.
She then makes the request of service A6 and includes
the rights she’d like to exercise. Service A6 need only
verify that the authorization for this service hasn’t
been forged. We call this approach Authorization
Based Access Control (ABAC).

All we’ve done is move two lines on the architec-
ture diagram in Figure 2. Instead of Alice providing
her identity to the service and the service receiving the
authorization from the policy engine, Alice presents
her identity to the policy engine, receives her authori-
zations, and presents the appropriate ones to the ser-
vice when making a request. As we’ll see below, this
small change results in a far more manageable, evolv-
able, and secure system.

As with identity-based access control, we start by
populating the policy database. Domain 2 makes ser-
vice B5 available to users in Domain 1 by giving Do-
main 1 an authorization and a description of the pol-
icy to be enforced, such as two-factor authentication.
The agreement between Domains 1 and 2 specifies
that Domain 1 will only give this authorization to
principals who satisfy the terms of the policy.

This approach sounds like Domain 2 is giving up
too much control by having Domain 1 enforce the pol-
icy. As we saw earlier, this loss is illusory. Even with
identity-based access control, Domain 1 is actually in
control. If Domain 2’s policy is for two-factor authen-
tication, Domain 1 can always sign a SAML assertion
to that effect whether it’s true or not. Since there is no
way for Domain 2 to detect such violations, nothing is
gained by insisting that Domain 2 enforce the policy
on Domain 1’s principals.

Domains 1 makes service A3 available to Domain
2 in a like manner, while Domains 2 and 3 make a
similar exchange. If Domain 3’s policy for service D5
is that it can be passed on, then Domain 2 will make
the authorization to use the service available to Do-
main 1 in the same way it did its own services.

We now have a situation where each domain has
a database of all the services available to its principals
with a set of authorizations and their corresponding
policies. That means that there’s no point in search-
ing other domains’ UDDI repositories. If the informa-
tion exchanged includes UDDI registry information,
each domain gets a level of control not provided by
UDDI itself by simply restricting access to its reposi-
tory to principals in its domain. If more control is
desired, this model can be extended to organizations
within each domain.

Once the services are registered in each domain’s
policy database, the policy engine sets up the authori-
zation lists. While identity-based access control has a
list of users associated with each service, authoriza-
tion-based access control has a list of authorizations
for each principal. The policies specifying which us-
ers get which rights can be expressed using a policy
language such as KeyNote [6].

When Alice logs in, she is handed the base set of
authorizations she needs to do her job, one of which
may be the authorization to search Domain 1’s UDDI
repository. She presents this authorization along with
her search request and finds the weather forecasting
service A6. The tModel in that service entry specifies
that she’ll get better results if she has authorization to
get topographic data. Alice then searches for topog-
raphic data services and finds service D5.

If Alice doesn’t already have the authorizations to
use A6 and D5, she next sends a request to her policy
engine. If she meets the requirements, the policy en-
gine returns the proper authorizations to her. Alice
can now invoke the weather forecasting service A6,
specifying the authorization to use D5 as a parameter.

6. Advantages of ABAC
Authorization-based access control doesn’t have

the problems inherent in identity-based access control.
Since each domain only has information about its own
principals, there are no problems of distributed iden-
tity management. When Alice changes jobs and Bob
takes over her duties, Domain 1 simply changes the
authorizations that Alice and Bob can get. If neces-
sary, it can revoke those that are no longer appropri-
ate. No other domain needs to be involved or even
informed of the changes. Since no other domain is
involved, there is no information leakage about organ-
izational structure from one domain to another.

Easy delegation is another advantage of authori-
zation-based access control. If Alice is sick when a
weather prediction is necessary, she can send Bob the
authorizations needed to do the work. Alice can also
revoke that authorization when she returns to work.
There’s no need to inform anyone, not even Domain 1.

While delegating this way sounds like a security
vulnerability, it isn’t. Consider the threats. If Alice is
trustworthy, she will only give her authorizations to
someone she trusts not to abuse them. If Alice is not
trustworthy, she can abuse her privileges. She can
also take orders from Bob, making the requests he
would make if he had the authorizations and sending
the results of those requests to him. Alice can always
be held responsible for any actions taken with authori-

zations granted to her. If an authorization is needed to
communicate with another principal, then Domain 1
can control Alice’s delegations by controlling the
communications authorizations it grants to her.

Another advantage of ABAC is that system up-
grades are far simpler. Users only authenticate to
their domains, so changes to the authentication
mechanism can be local. Also, the format of an au-
thorization is needed only by the service that it refer-
ences. In our example, the authorization to use D5
can be represented as a SAML 3.0 authorization even
though Domain 1 is still using SAML 2.0. In fact,
Domain 3 can use a completely different representa-
tion, one that doesn’t use digital certificates at all.
New organizations can join the system with little ef-
fect on their internal processes.

Note that each request need carry only the au-
thorizations that Alice designates. If her program has
an error or has been infected by a virus, the software
can only abuse the authorities Alice provided, not all
of her authorities as with identity-based access control.
Thus, the virus problem, which would be exacerbated
by SAML-style SSO, is mitigated.

Alice isn’t the only beneficiary. Services don’t
need code to prevent confused deputy attacks. As be-
fore, we’ll assume that service B2 invokes C5 to get
satellite data and C3 to update audit information.
There is no way for Alice to specify that C3 is to re-
ceive the output because she can only designate a ser-
vice if she has an authorization to it. Service B5 will
only use Alice’s authorizations when producing output
for her.

Authority-based access control leads to systems
that are more scalable, because each domain is only
responsible for its own principals, is more evolvable,
because a service is the only one that needs to interpret
the contents of the authorizations, is more private,
because organizational information doesn’t leak be-
tween domains, is more manageable, because of easy
delegation, and is more secure, because fewer attacks
are possible.

Audit trails and non-repudiation are important
components of the system. Fortunately, they aren’t
lost when doing access control with authorizations.
The signatures and encryption keys needed to protect
the requests from tampering and prying provide suffi-
cient information. If that proves inadequate, there is
little problem requiring that authentication accompany
the requests. Just don’t use it to make access deci-
sions.

7. Implementation options
It’s important to know exactly what an authoriza-

tion is before implementing an architecture based on
ABAC. Fundamentally, an authorization is unforge-
able proof that a particular request should be honored.
In particular, the access decision does not depend on
the identity of the requester.

Care is needed in designating the resource.
Proper enforcement of the Principle of Least Authority
requires that the designation be as specific as possible.
Designating a file is better than designating a set of
files. Even better is designating a particular operation
on a file, such as read or write but not both.

It’s also important that the designation not be sub-
ject to the stale name problem. Say that the authoriza-
tion designates a file by name, and that file is deleted.
If that name is reused some time later, then the old
authorization may be applied incorrectly to the new
resource.

The oldest form of computerized authorization is
a capability [7]. So, if you’re starting from scratch,
you might want to use a capability secure language,
such as E [8]. If your code base is in Java, you could
use e-speak [9], which uses SPKI [10] certificates as
capabilities. Web based applications might be able to
use the web-calculus [11], which merges the REST
model of computation [12] with capability security.

Sometimes, you’re more constrained. You may be
using legacy interfaces that require non-capability
arguments, such as strings. You may also be forced to
use specific standards. For example, the US Depart-
ment of Defense is implementing its Global Informa-
tion Grid (GIG) architecture [13] using SOA and has
mandated a long list of standards, including SAML.
Since changing mandated standards is extremely diffi-
cult, it’s important to use them if at all possible. The
current implementations of the GIG use only SAML
identification and attribute fields. However, nothing
in the specification says that you can’t use the authori-
zation fields of SAML [1]. You won’t get the full
benefits that come from other implementation options,
but you won’t have the problems associated with
IBAC, either.

8. Conclusions
Large scale distributed systems are inherently dif-

ferent from stand-alone computers. There is little rea-
son to think that designs for the latter are applicable to
the former. Yet that’s what identity-based access con-
trol does. It takes an access model from one realm
and tries to make it work in the other. Authorization-
based access control, which has advantages even on

stand-alone computers, is a better match to the re-
quirements of distributed systems that span adminis-
trative domains.

Other distributed systems, particularly those that
cross administrative boundaries can also benefit from
switching from IBAC to ABAC. Administering a
GRID [14] node involves creating and deleting ac-
counts for users in many organizations. Adopting
ABAC can avoid the problems associated with distrib-
uted identity management by allowing delegation of
blocks of authorities.

One of the main complaints of Principal Investi-
gators on PlanetLab [15] is the difficulty in delegating
subsets of their authorities to their graduate students.
Solutions to this problem that are being used for the
1,000 or so machines in PlanetLab today will not be
practical as its size increases. ABAC, by decoupling
the policy decisions into manageable chunks, avoids
the scalability issues inherent in IBAC.

The SOA is quite different from the familiar sys-
tems that use identity-based access control. The SOA
crosses administrative domains; it has far more users
and separate components; it is far more dynamic in
the rate and number of things that change; and no one
party is in charge of managing updates. If the SOA is
to achieve its goals, it is critical to reduce the coupling
between domains to the greatest possible extent. Iden-
tification-based access control (IBAC) results in a
tightly coupled system, one that requires distributed
identity management, results in information leakage
between domains, and makes delegation and upgrade
difficult. Authorization-based access control (ABAC)
avoids these problems while reducing the vulnerability
of the system to viruses and confused deputy attacks.

Acknowledgements: Marc Wilson helped me work
through the sample scenario with the Navy consultants
and encouraged me to write the white paper that led to
this paper. Discussions with Tyler Close, Bill Frantz,
Norm Hardy, Mark Miller, Chip Morningstar, Marc
Stiegler, Brian Warner, and Ka-Ping Yee helped clar-
ify the ideas presented here. Ka-Ping Yee’s detailed
comments helped improve the presentation.

9. References
[1] OASIS, “Security Assertion Markup Language

(SAML) 2.0 Technical Overview”, Working Draft
05, 10 May 2005, http://www.oasis-
open.org/committees/download.php/12549/sstc-
saml-tech-overview-2%5B1%5D.0-draft-05.pdf

[2] OASIS, “UDDI Version 3.0.2, UDDI Spec Tech-
nical Committee Draft, Dated 20041019”,

http://www.oasis-open.org/committees/uddi-
spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

[3] Open Group, CDSA Explained, An indispensable
guide to Common Data Security Architecture,
The Open Group, (2001)

[4] Hardy, N., “The Confused Deputy”, Operating
Systems Reviews, 22, #4, (1988). Also at
http://www.cap-
lore.com/CapTheory/ConfusedDeputy.html

[5] CERT, http://www.kb.cert.org/vuls/id/960267
[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A.

Keromytis. "The Role of Trust Management in
Distributed Systems Security." Chapter in Secure
Internet Programming: Security Issues for Mobile
and Distributed Objects, (Vitek and Jensen, eds.)
Springer-Verlag, 1999. Also at
http://www.crypto.com/papers/trustmgt.pdf

[7] J. B. Dennis and E. C. Van Horn, “Programming
Semantics for Multiprogrammed Computations”
Comm. ACM, 9(3):143-155, (1966)

[8] M. Miller, http://erights.org
[9] A. H. Karp, "E-speak E-xplained", CACM, vol.

46. #7, pp. 113-118, July (2003) , Also
http://www.hpl.hp.com/personal/Alan_Karp/espea
k/

[10]C. Ellison, http://www.ietf.org/rfc/rfc2692.txt
(1999)

[11]T. Close, “web-calculus: Powerful Web Services
through Composition”, (2003)
http://www.waterken.com/dev/Web/REST/

[12]R. Fielding; "Architectural Styles and the Design
of Network-based Software Architectures";
Doctoral dissertation, University of California, Ir-
vine; (2000).

[13]R. E. Levin, “The Global Information Grid and
Challenges Facing Its Implementation”, GAO-04-
858, (2004). Also at
http://www.gao.gov/new.items/d04858.pdf

[14]Grid, http://www.grid.org/home.htm
[15]PlanetLab, http://www.planet-lab.org/

