
Interaction Modelling in Federated
Process-Centered Environments

Giacomo Piccinelli*
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-98-54
March, 1998

E-mail: giapicc@hplb.hpl.hp.com

PSEE, SDE,
workflow,
process
management,
distributed
systems

The evolution of distributed object architectures (mainly COM,
CORBA and Java) opens an unprecedented range of
possibilities in terms of automatic process management and
PCEs (process-centered environments) play a key role in the
software process re-engineering induced by these technologies.
The human factor is still the major component of the software
process but, as complexity and precision requirements
increase, its role is changing and so does the kind of support it
needs.
Process management is important within a single organization
but it becomes fundamental for projects spanning over distinct
organizations. Focusing on the interaction among distinct
distributed PCEs (heterogeneous federation), we present a
web-based process-oriented system for the definition and
enactment of federated processes. The distribution and multi-
organization problems are transparent to the process designer
that is provided with a CSP-like definition language. The
compiler and execution infrastructure exploit the
interconnection capability offered by the web in order to
support the cooperation among execution engines. The
interface between a local PCE and the related execution
engine depends on the characteristics of the PCE itself and the
autonomy requirements (constraints) of each organization:
some basic solutions are investigated.

*Contributions to this work came from F. Marcello and G. Zugliani (University of Pisa) and many
members of the Extended Enterprise Laboratory (Hewlett-Packard Laboratories, Bristol)
 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

2

1 Introduction

It is difficult improving what we can not measure but it is extremely difficult measuring
what we can not handle and process-based infrastructures offer a natural support for
managing problem complexity [20]. The definition of a process embeds the know-how of
an organization and the role of PCEs1 (process-centered environments) in modern
organizations is to manage such knowledge in order to turn it into procedural
effectiveness and productivity.
Although the human factor is still the most important element in the software process
[22], the evolution of new technologies [16,18] dramatically impacts on both the way in
which processes are designed and the role human beings have in these processes.
Software development tools become more specialized but, at the same time, there is a lot
of emphasis on the integration of different components into global environments [18] and
then into global processes [6,11,21]. Internet technology offers an unprecedented
interconnection capability [12] that distributed object architectures [14,16,18] exploit in
order to boost the creation of domain-focused and location-transparent environments
[4,19]. LAN-based Intranets and even isolated workstations offer a great potential in
terms of process-centered environments: the cooperation and coordination aspects
become crucial [1,2,3].
While in the past PCEs supported the work of big groups of people with a wide variety of
competencies, the personal-productivity tools now available allow small groups (even a
single person) to develop substantial parts of a project if adequately supported. The split
of the work tends to be based on vertical competencies more then on physic aggregation
and the notion of “environment” reflects the technologic shift: the problem is the extents
to what PCEs reflect this change. Specialization becomes instrumental for effectiveness
and the notion of a general purpose PCE evolves towards a more realistic vision in which
a common bedrock is preserved but domain-specific support is also offered to the users
[10]. In this scenario, a new layer of management (PCE) is needed in order to support
projects involving multiple competencies and the added value is in the process
coordination. We refer to this scenario as federation [3,5] and in this context we locate
our work. The benefits of the split between specific competencies and high-level process
management are mainly in terms of modularity and flexibility. The use of PCEs as
macro-resources allows a more compact view of the overall process and enables an easier
integration of components coming from different organizations (ex. for joint projects)
where privacy and autonomy are balanced by the need to achieve a common goal.
Focusing on the coordination and information exchange aspects, we present a system for
the definition and enactment of federated processes involving different organizations
and/or different parts of the same organization. After a brief overview of the more
popular distributed object architectures and their impact on PCEs, we present and discuss
the cooperation paradigm we enforce. The process-definition formalism is presented
together with some example of its application on well-known cases. The architecture of
the enactment infrastructure is described and we focus on its integration with local
environments.

1 We use the term PCE to indicate both the environment and the system that manages the definition and
enactment of a process in that environment. In case of ambiguity we will specify the distinction between
the two concepts.

3

2 Distributed Object Architectures

Object model is having a huge impact on the engineering of software systems. The
component paradigm enforced by object abstraction is fundamental for the
modularization of applications but its impact on software architecture goes beyond the
boundaries of a single application. Object models like COM (Component Object Model)
by Microsoft [18], the OMA (Object Management Architecture) by OMG (Object
Management Group) [14] and Java RMI (Remote Methods Invocation) [16] enforce two
major aspects of an application: strong modularization (components) and location
transparency.
Although location transparency is quite important for application components, the big
impact of distributed object technologies on process-centered environments depends on
the “automation” [18] features they introduce. The mechanisms may be slightly different
but the result is the same: applications may ask other applications to perform task and/or
to supply information. Moreover, meta-information is also available to one application in
order to understand dynamically how to interact with other applications in terms of the
services that can be requested and the type of data to exchange. Extra layers are built on
top of basic architectures (like OLE - object linking and embedding – for COM or
Common Facilities in the OMA [15]) and the image an application offer of itself is more
solution-oriented than technology-oriented. The execution (enactment) of a process is
supported by a specific application (process engine) and the possibility to actually
interact with the environment (other applications) allows not involving human beings in
mechanic operations leaving them free to concentrate in the creative aspects of the
process.
In terms of the actual infrastructure we build to support the federation process, we focus
on Java: RMI basic services are then a natural choice. CORBA (OMA basic layer) and
OLE interaction is investigated and the actual situations in which integration is needed
are presented and discussed.

3 Cooperation Model

The purpose of a cooperation process is to organize resources and know-how of different
organizations2 in order to reach a common achievement. We use the term federation to
indicate both the set of entities involved in the process and the process itself [3,5]. The
term federation may suggest geographical distribution and/or low degree of homogeneity
among the members but these elements are not essential. The peculiar aspect of a
federation is the fact that a pool of independent and autonomous organizations agrees on
a common process and the members share part of their resources and expertise in order to
enact such a process. Despite the commitment to the common goal and the need to
exchange data and services, autonomy and secrecy are fundamental issues for the
members of a federation and any infrastructure that targets federative process support has
to deal with these requirements.

2We refer to a generic interpretation of the term organization indicating an autonomous and independent
entity [5,10].

4

We propose a solution based on the paradigm of a common workspace. Every
organization is associated with a part of this space called workspace component (Fig.1)
representing its interface to the federation and the union of the workspace components
represents the federation workspace (Fig.2).
The main elements of the workspace component (W) are the task space, the object space
and the message space. The names give an indication on the kind of information we
expect to find in each part of a W but we need to think in terms of federation workspace
and federated process in order to understand the dynamics of the system.

In its object space, an organization puts the data it needs to share with its partners and it
can retrieve data produced by its partners and relevant for the tasks it has to perform in
the in the context of a specific federated process. Data are moved, replicated or deleted
from the object space depending on the definition the federated process and following
specific rules automatically enforced by the federation infrastructure. Each operation
allowed by the process definition language has a specific semantics in terms of the effects
on the federation workspace and this semantics cannot be modified by the organizations.
An organization has immediate access only to the data in the object space of its W and
these are the only data exposed to the federated process: autonomy of the organizations is
preserved. Each organization shares all and only the data it agreed to release and under
the circumstances defined in the federated process. At the same time each organization
receives all and only the data it is entitled (requested) to work on.
The content and the dynamics of the message space follow the schema of the object space
but the intended meaning of a message is different from the meaning of a piece of data.
While data (objects) are the result of an activity or row material to work on (“artifact” or
“work item” in the common workflow terminology [10]), messages represent information
on the state of either the system or the process. They are intended to be mainly a
reference for the decisions concerning the flow of control during the enactment of a
process. As for the data in the object space, each organization has a view of the federation
state tightly dependent on the role it plays in the execution of the federated process. It
gives all and only the information on its internal state it agreed on during the definition of
the process and the same happens for the information is receives on other members of the
federation.
While objects and messages represents static assets for an organization, the dynamic
aspects of the federated process are modeled posting explicit task requests into the W task
space of the federation members. The tasks an organization is requested to perform are
related to atomic operations like the execution of an activity or the manipulation (insert,
withdraw, process) of data and messages in the associated W. Multiple tasks may be
submitted to an organization at the same time and the intended execution model enforces
both truly concurrent and non-deterministic sequential paradigms. All the tasks indicated
in the W can be executed either in parallel or in any order the organization prefers and

Task Space

Objects Space Message
Space

Fig.1: W orkspace com ponent

5

when a task has been accomplished, the organization can mark it as finished. There may
be no visible effect on the workspace caused by the execution of a task and in this case
the trust relationship that characterizes a federation is fundamental. The flow (control)
logic within the overall process is transparent to the federation members during the
enactment phase, unless explicitly provided.

Fig .2: Federation workspace

The purpose of a federation infrastructure is to manage the federation workspace in a way
that, at any time, each organization knows exactly what to do and has available the
resources it needs. The peculiar aspects of the cooperation model we propose are the
presence of a single management entity (encapsulated in the enactment infrastructure)
and a structured common working space.
The management entity (ME) is independent from any single organization but it
cooperates with each member of the federation in order both to support the work of the
single member and to make sure each member does what it agreed to do in the process
definition phase. The management entity is trusted by all the components of the
federation and manages the entire federation workspace (FW) but it cannot interfere with
the internal PCE of any organization: autonomy is preserved. These choices are reflected
in the actual implementation of the federation infrastructure but an organization is
allowed to partially relax these constraints using proxy wrappers for its workspace
component (W).

Organisation A

Organisation B

Organisation C
Organisation D

Organisation C

Federation

6

3 Process Definition Language

The basic operations in a cooperative process are related to the exchange of artifacts, the
exchange of synchronization (control) information and the execution of activities related
to internal tasks or supporting the work of other members of the federation. The value
added by a process-based organization depends on the fact that atomic components may
be organized into complex activities (under the control of automatic systems) and the
organic execution of many basic steps produces global high-value results. The aspects of
a process related to the complexity of the single step need to be considered on a case-by-
case base therefore we keep our system open to different options.

Push (OrgA, OrgB, Obj)

Pull (OrgA, OrgB, Obj)

Message (OrgA, OrgB, Msg)

Service (OrgA, OrgB, Srv, Obj)

Task (OrgX, Act)

Tab.1: Basic Operations

In Tab.1 we present the basic operations that our PSL (process specification language)
provides for the definition of the federated process while in Tab.2 we list the composition
operators. The influence on the formalism coming from languages like Hoare’s CSP [9]
and Milner’s CCS [13] is quite strong but we explicitly target the peculiarities of a
federated process instead of working with generic distributed processes.
The actual semantic of the entire language has been formalized following an approach
(operational style) similar to the C-FAM (concurrent functional abstract machine) used
for FACILE [7] but we prefer to give a more direct description of the meaning of the
various elements in the formalism. The point of view taken during the design of a process
is the one of an impartial coordinator that looks at the members of the federation as
resources to organize in order to achieve a specific result. An organization may supply
(push) data to other organizations and send them control information (messages) as well
as asking (pull) for data. An organization may be asked to perform a specific task related
to an aspect of the process it is immediately responsible for but, in order to support the
central role of cooperation in the federation, it may also be asked to help one of its

7

partners (service). The general semantic for a “service” implies that (1) an organization A
receives some data from the organization B, (2) A processes the data and then (3) it sends
back the result to B.

P1 ; P2 Sequential Composition

< P1 & … & Pn > Parallel Composition

(expr) [P1 + … + Pn] Choice Operator

Tab. 2: Composition Operators

Concerning the definition of complex processes out of the basic operations, the balance is
between expressiveness and complexity. In order to preserve expressiveness without
being redundant and we focused on the three operators listed in Tab. 2 plus the possibility
to have procedures. Pi are generic processes and nil represents a null process.
All the definitions are recursive but we notice that they do not introduce loops. The
sequential operator “;” indicates that all the tasks in the process P1 need to be completed
before starting any task indicated in P2: the overall process ends when P2 ends. The
parallel composition operator allows multiple execution threads within the process and
the resulting process ends when all Pi processes are completed. The purpose of the choice
operator is to choose one and only one process among the Pi depending on the state of the
federation. An expression is evaluated and we expect an integer result k in the range
[1,n]: only Pk is executed and when it ends, the overall process ends. If the condition is
not specified the choice is random. The scope of the conditional expression is the entire
federation workspace but only simple operations (like test of presence) are supported in
the present version of the system.
Procedures (Tab.3) are introduced mainly for modularization purposes but they also offer
the possibility to specify recursive process definitions (thus loops). The set of typed
variables {Vi} may be empty and P is a generic process definition in which the variables
may occur (free or bounded). The procedure acts as a scope binder and the execution
semantics may be given in terms of the classic rewriting rule:

Label (Val1,..,ValN)


P {Var1/Val1}…{VarN/ValN}

We assume standard rules for variable instantiation but we require that, when a procedure
call is evaluated, values of the correct type are provided for all the variables. The types
we allow for variables are: org (organization), msg (message), obj (object), act
(activity/task) and srv (service). All the procedure definitions became part of a single
execution environment and they may be accessed at every point in the process: the
environment is flat and at the moment we don’t support nested definitions. There is the
possibility to define collections of procedures (libraries) and the process designer may
reuse these definitions during the specification of any process. We enforce a “late”

8

evaluation policy concerning procedure-call evaluation and it is therefore possible to
have simple as well as mutual recursion in the definitions.
Procedure mechanisms allow the definition of module skeletons focused on specific
aspects of the cooperation process. The designer may concentrate on some aspects of the
federation once and then reuse the solutions in different places within the same process or
for the definition of new processes. Procedure libraries become precious assets as they
actually collect know-how on process management. Moreover, compositional features
offered by the language allow a continuous knowledge evolution in terms modeling
complex behaviors (for example ACID transaction schemas [17]) building on top of
existing components.

Label(Var1:T1,..,VarN:Tn) { P } Procedure definition

Label(Val1,..,ValN) Procedure call

Tab. 3: Procedures

As an example of a very simple but very reusable procedure, we present a possible
definition for the basic interaction model used in the PSEE Oz: the summit [5]. The first
step in a summit is to arrange for all the participants to be ready to start, then a
cooperative activity takes place and the final step is to provide indications to the
participants on what to do after the core activity is finished.

Fig.3: Library procedures

OpenSummitWith(X:org, Y:org, Z:org){

 Task(X, “summit initialisation”);
 < message(X, Y, “begin summit”);
 Task(Y,“start”);
 message(Y, X, “1-ready”)
&
 message(X, Z, “begin summit”);
 Task(Z,“start”);
 message(Z, X, “2-ready”)
>
}

CentralizedProcessing(X:org, Y:org, A:act, O:obj){

pull(X, Y, obj);
message(X, Y, “thanks”);
Task(X ,act)
}

CloseSummitWIth(X:org, Y:org, Z:org, res:obj){

 < pull(X, Y, res);
 message(X, Y, “ 1end summit”)
&
 pull(X, Y, res);
 message(X, Z, “2 end summit”)
>
}

9

Let us suppose to have in our library the three procedures represented in (Fig. 3) and that
the core activity of the summit is to make organization A processing tables coming from
the organizations B – C, and then to share with them the result. We can define the overall
summit process as:

MySummitWith (Member1:org, Member2: org, Task:act){

 <OpenSummit (A, Member1, Member2) & Task(A, start_operation)>;
 <
 CentralizedProcesing (A, Member1, Task, table1)
 &
 CentralizedProcesing (A, Member2, Task, table1)
 >;
 Task(A, join_table_processing_results);

 CloseSummit (A, Member1, Member2, result);
}

The actual execution of the process may be triggered by a call like:

MySummitWith(B, C, FindMax)

Although we may not plan to reuse the peculiar structure of this process, we can wrap it
into a procedure definition in order to split into manageable modules a more complex
definition.

 4 Federation Infrastructure

Main components of the support infrastructure for the implementation of a federated
process are the compiler, the enactment engine(s) and the interface wrappers. We briefly
present the compiler and wrapper technology while we focus on the enactment engine
that are a fundamental element in our architecture.

4.1 Compiler

The purpose of the compiler is, starting from a single process definition, to extract
information about the role of each organization in the enactment of the process. In terms
of cooperation, there are two main types of information we need to identify and they are
related to: (1) the activities an organization has to perform and (2) the way in which
activities performed by different organizations (or multiple activities within an
organization) has to be synchronized in order to preserve the semantic of the language

10

constructors. The definition language enforces the point of view of an independent
manager who wants to coordinate the work of different resources (the organizations) in
order to achieve a specific result. This approach allows compact and easily
understandable process definitions but for the actual enactment of the processes we take a
completely opposite approach. The impact of this choice on the flexibility of the overall
infrastructure will be clear looking at the enactment architecture.
For each organization we build a version Vorg of the federated process that contains the
specification of all and only the tasks the organization is requested to do and the
synchronization points it has to maintain with respect to its partners. Without going into
all the details of the specific compilation techniques we developed, we focus on some of
their crucial aspects. Basic operations are easy to map into Vorg while the synchronization
problems come with the composition operators. In this version of the system we do not
allow higher-order procedures, that means the parameters of procedure cannot be
procedures themselves, so their mapping is quite linear. The problem we have, for
example with sequential composition, is pictured in the following example:

 < A(xx) & B(xx) > ; < A(yy) & B(yy) >

If we take the point of view of A, we may expect to execute the task xx and when xx is
finished we would like to start the task yy. The problem is that semantics for the
sequential composition “ ; ” indicates that both A and B have to complete the task xx
before any if them can start the execution of yy. If xx is completed in A but B is still
working on it, A has to wait until also B completes xx: if B is faster than A the situation is
the same. The compiler manages these situations with specific solutions that assure the
intended semantic of the global process is preserved. Symmetry is fundamental in the
compilation process as each organization needs to be sure that all its partners will
conform their behavior to the same set of rules.
This organization-centric approach allows a modular organization of the enactment
infrastructure with major benefits also in terms of autonomy and security as well as fault
tolerance. An organization may follow its own process, unless explicit synchronization
points are specified, independently from other members of the federation (autonomy).
Security is enforced by the fact that the compiler is consistent with the PSL semantics
and all the actions an organization is requested to perform derive from the agreement
specified in the process definition. Benefits from a fault tolerance perspective derive from
the autonomy of the organizations: if an organization experiences (temporary) problems
its partner may not be affected.
The equivalence between the global federated process and the set of single-organization
processes is based on the evaluation of the changes of the federation workspace and on
the recursive structure of the process. We anticipate that the result of the compilation is
location transparent meaning that we model independent components but information on
the physic location of the organizations (components) is ignored.

4.2 Enactment Engines

The enactment paradigm has strong dependencies with both the cooperation model and
the compiler techniques presented in the previous sections. In the actual enactment

11

infrastructure we distinguish three main components (Fig. 4): workspace components
(W), engines (E) and the interconnection support (all the links between components). The
content of a workspace component has already been discussed but now we discover its
first access point (the interface with the related engine): we will see later its interface
with the PCE of an organization (wrapper).
Focusing on a single organization, the engine has complete access to the workspace
component and it can also communicate with other engines but, in a normal situation, it
cannot interact directly with any PCE. Each engine Ex enacts the projection Px of the
federated process produced by the compiler for the organization X and its main job is
related to messages and data management, task posting and synchronization. Also for the
engine implementation, the complexity is concentrated in the support for multiple
execution threads, sequential integrity and choice-step consistency.

Fig.4: Enactment Infrastructure

Choice-step consistency problems, for example, depends on the fact that if a path (Pi) is
chosen, within a choice operator, for one of the projections of the global process then also
in the enactment of all other projections we need to follow the same path. Major issue is
that we allow different execution speed in different organizations and, in order not to
introduce implicit synchronization points (with solutions like waiting for all the
organization involved in the choice to reach the evaluation point), specific solutions need
to be enforced both in the engine and in the compiler.

4.3 PCE Interface

The logic interface an organization has to the federation is provided by its workspace
component. In practice the PCE of an organization needs a bridge to the W in order: (1)

EA

EC

ED

EK

EJ

I

C

A

K

J

D

Federation

Wa

Wc

Wd

Wj

Wk

12

to put and get messages and data as indicated by the tasks posted by the process and (2)
to access the indications on the tasks it has to perform. The W is mainly a container of
data and information, and the bridge to the PCE depends on the level of interactivity and
automation it enforces. In our investigation we focused on two extremes (full automation
and pure presentation) but solutions in between are also possible. Concerning the
technology, we focused on Java and Corba though OLE is also under investigation.
We can consider, for example, the case of full automation based on Java. The wrapper
uses an event-based mechanism in order to receive a notification every time the engine
posts a new task in the W. A one-to-one association between tasks and objects is
established so that as soon as a task is posted the correspondent method is activated. The
association of a task to a structured set of methods invocations is not directly supported
but this limitation can be bypassed using a proxy method whose body contains the
desired invocation sequences. In order to put data or messages into the workspace
component the PCE can invoke specific methods of the wrapper API.
In general the characteristics of the wrappers are related to the level of detail in the
process specification and to security (autonomy) considerations. We may want, for
example, to integrate a complex tool [21] into the federation allowing automatic access
to the functions it provides. In the process specification we need detailed procedures
encapsulating information on how to access those functions and the wrapper for the W of
the organization that hold the tool should have direct access to the tool in order not to
slow down the process. The drawback for the owner of the tool is that, if its PCE does not
enforce access policies to the resources, the organization may loose part of the control
over its own environment.

5 Deployment

Deployment considerations had a big impact on the actual implementation of the
enactment infrastructure and flexibility was our main reference.

Fig.5: Deployment of federation infrastructures

Information Distribution

C
on

tr
ol

 D
is

tr
ib

ut
io

n

min max

max

13

Considering the problem of where to deploy the various components of the federation
infrastructure, focusing on information and process management components, we noticed
(Fig. 5) that there is a tendency [2,3,5] to associate information with process logic.
Alternative approaches have been investigated [8] but we decided that, given the dynamic
characteristics of a federation context, the ability of our infrastructure to adapt to different
situations without being re-engineered was a major goal. The main components of our
architecture (enactment aspect) are the engines, the workspace components and wrappers
and thanks to the support of Java RMI (remote methods invocation) we enforced the
possibility to allocate them in different ways without major changes.
Solution in which all the Ws are in the same physic location may be enforced if, for
example, an organization offers efficient storage facilities to the federation and privacy
problems are not dramatic. The volume of data moved in/out the W by an organization
and the exchanges among the various Ws must be analyzed. If performance optimizations
are important, we may decide to install on the same machine (system) also the Ws
keeping in the local PCE only the wrapper or a proxy.

6 Future developments

Higher-order procedures are among our objectives for the evolution of the language but a
more flexible approach to variable and data structure is also under investigation.
Concerning implementation aspects, a deeper integration of wrappers with OLE (without
Java or Corba proxy) is a near term objective in the perspective of tools automation.

7 Conclusions

Distributed object architectures (DCOM, CORBA, Java RMI) coupled with Internet and
Intranet technology have a great impact in process-centered environments both in terms
of connectivity and application automation. As software projects become more complex
they span over different organizations and/or different parts of an organization and the
coordination need of different PCE (federation) is the target of our work.
We present a complete infrastructure supporting the federated process starting from its
definition to its actual enactment. Few simple basic operators and the possibility to build
high-level modules and process libraries are the design environment we provide while the
enactment environment is based on the result of a distribution-oriented compiler and
specific cooperation environment. Concerning the deployment of the federation
infrastructure, the components are built taking into consideration location transparency
problems therefore we can tune the deployment process on the peculiarities of the
federation.

14

Bibliography

[1] S. Bandinelli, E. Di Nitto and A. Fuggetta. Supporting cooperation in the
SPADE-1 environment. In IEEE Transactions on Software Engineering, Vol. 22,
no. 12, December 1996.

[2] N.S. Barghouti. Supporting cooperation in the Marvel process-centered SDE. In
Fifth ACM SIGSOFT Symposium on Software Development Environments.
Herbert Weber (ed.), 1992.

[3] C. Basile, S. Calanna, E. Di Nitto, A. Fuggetta and M.Gemo. Mechanisms and
policies for federated PSEEs: basic concepts and open issues. In Proc. 5th

Europeen Workshop on Software Process Technology. Nancy, France, 1996.

[4] I.Z. Ben-Shaul, A. Cohen, O. Holder and B. Lavva. HADAS: A Network-centric
framework for interoperability programming. In Proc 2nd Inter. Conference on
Cooperative Information Systems. June 1997.

[5] I.Z. Ben-Shaul and G.E. Kaiser. Federating process-centered environments: the
Oz experience. In Automated Software Engineering, Vol. 5. Kluwer Academic
Publisher, 1998.

[6] I.Z. Ben-Shaul and G.E. Kaiser. Integrating groupware activities into workflow
management. In Proc. 7 th Israeli Conference on Computer Based Systems and
Software Engineering. June 1996.

[7] A. Giacalone, P. Mishra and S. Prasad. FACILE: A symmetric integration of
concurrent and functional programming. In Proc. of TAPSOFT’89, Vol.2. Lecture
Notes in Computer Science (LNCS 352). Springer-Verlag, 1989.

[8] D. Heimbigner. The Process Wall: a process state server approach to process
programing. In Proc. 5th SIGSOFT Symposium on Software Development
Environments. ACM Press, December 1992.

[9] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall, 1985.

[10] D. Hollingsworth. The workflow reference model. Workflow Management
Coalition (WfMC), TC00-1003, November 1994.

[11] N. Krishnakumar and A. Sheth. Managing heterogeneous multi-system task to
support enterprise-wide operations. In Distributed and Parallel Databases.
Kuwler Academic Publishers, 1995.

15

[12] J. Miller, A. Sheth, K. Kochout and D. Palaniswami. The future of Web-based
workflow. In Proc. of the International Workshop on Research Directions in
Process Technology. Nancy, France, July 1997.

[13] R. Milner. A calculus of communicating systems. Lecture Notes in computer
Science Vol. 32. Springer-Verlag, 1980.

[14] Object Management Group (OMG). A discussion of the object management
architecture. January 1997.

[15] Object Management Group (OMG). CORBA facilities: common facilities
architecture V4.0. November 1995.

[16] R. Orfali and D. Harkey. Client/Server programing with Java and CORBA. Wiley
Computer Publishing, 1997.

[17] M. Rusinkiewicz and A. Sheth. Specification and execution of transactional
workflows. In Modern Database Systems: the Object Model Interoperability and
Beyond. ACM Press and Addison-Wesley, 1995.

[18] Creating Programmable Applications with OLE Automation. Vol. 1 and 2.
Microsoft Press, 1994.

[19] A. Sheth, D. Georgakopulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J.
Wileden and A. Wolf. Report from the NSF workshop on workflow and process
automation in information systems. In Proc. NSF workshop on workflow and
process automation in information systems: state-of-the-art and future directions.
A. Sheth (ed.), May 1996.

[20] K.D. Swenson and K. Irwin. Workflow technology: tradeoffs for Business
Process Reengineering. In Proc. Conference on Organizational Computing
Sysyetms. ACM Press, August 1995.

[21] G. Valetto and G.E. Kaiser. Enveloping sophisticated tools into process-centered
environments. In Proc. 7th IEEE International Workshop on CASE. IEEE
Computer Society Press, 1995.

[22] A.L. Wolf and D.S. Rosenblum. Process-centered environments (only) support
environment-centered processes. In Proc. 8 th Inter. Software Process Workshop
(ISPW8), Wadern, Germany, March 1993.

