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We show that in two different arrangements of six lines in the Euclidean
plane an inequality holds between the products of the sines of selected 
angles from the arrangement. Either of these then provides a short proof
of the falsity of Ringel's conjecture, using no more than schoolbook
geometry, as opposed to the oriented matroid techniques of Las Vergnas.
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Abstract 
We show that in two different arrangements of six lines in the Euclidean plane an 
inequality holds between the products of the sines of selected angles from the 
arrangement. Either of these then provides a short proof of the falsity of Ringel’s 
conjecture, using no more than schoolbook geometry, as opposed to the oriented 
matroid techniques of Las Vergnas. 
 

1. Introduction 
Ringel [5] conjectured that in an arrangement of lines in general position the slopes 
could be arbitrarily prescribed. This conjecture was disproved first by Las Vergnas [3] 
using oriented matroid techniques over a 32 point dual construction. Richter and 
Sturmfels [4] improved this to give a 6 line counterexample (figure 1), still 
demonstrating the slope constraint using oriented matroid techniques. Felsner and 
Zieglar [2] give a different proof of the counterexample using higher Bruhat orders. In 
contrast, we directly analyse the figure using schoolbook geometry. 

2. Products of Sines 
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Figure 1 

 

Theorem: in figure 1, with C4=C0, ∏∏
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Figure 2 

 

Theorem: in figure 2, with C3=C0, ∏∏
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Proof: In the first figure, take A=A0=A1=A2=A3, and B4=B0, take subscripts i ranging 
from 0 to 3. In the second figure, take subscripts i ranging from 0 to 2, and take A3=A0 
and B3=B0. We have: 1110 +++ << iiii CABA . Taking products: 
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By the sine formula, for the highlighted triangles: 
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A substitution gives the results. 
 
In [1], these results are generalized to n triangles exscribed around a convex polygon 
with n sides. 

3. Disproving Ringel’s Conjecture 
In the first figure, the angles to the horizontal of the lines a, b, c, d, e and f are 
approximately: 0°, 35°, 55°, 80°, 160° and 165°, respectively. If we could draw the 
figure with the lines at angles 0°, 15°, 20°, 100°, 125° and 145° respectively, then we 
would contradict the first theorem. A similar argument holds for the second figure. 
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