

An Environment for Enabling Interactive Grids

Vanish Talwar, Sujoy Basu, Raj Kumar
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-90 (R.1)
July 8th , 2003*

E-mail: {vanish.talwar, sujoy.basu, raj.kumar}@hp.com

Grid
Computing,
interactive
grids,
graphical
interactive
sessions,
access
control, QoS,
account
management

Traditional use of grid computing allows a user to submit batch jobs
in a grid environment. We believe, next generation grids will extend
the application domain to include interactive graphical sessions. We
term such grids interactive grids. In this paper, we describe some of
the challenges involved in building interactive grids. These include
fine grain access control, QoS guarantees, and dynamic account
management. In order to architect interactive grids, we propose and
describe I-GENV, an environment for enabling interactive grids.
I-GENV consists of GISH- ‘Grid Interactive Shell’, Controlled
Desktop, SAC-‘Session Admission Control’ module, GMMA-‘Grid
Monitoring and Management Agents’, System Policies, and
Dynamic Account Manager. We also present our testbed
implementation of I-GENV using and extending Globus Toolkit 2.0
for the Grid middleware infrastructure, and VNC as the remote
display technology.

* Internal Accession Date Only Approved for External Publication
Published in and presented at IEEE International Symposium on High Performance Distributed Computing (HPDC-
12), 22-24 June 2003, Seattle, Washington
 Copyright IEEE

An Environment for Enabling Interactive Grids

Vanish Talwar, Sujoy Basu, Raj Kumar
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304 USA

�vanish.talwar,sujoy.basu,raj.kumar�@hp.com

Abstract

Traditional use of grid computing allows a user to sub-
mit batch jobs in a grid environment. We believe, next gen-
eration grids will extend the application domain to include
interactive graphical sessions. We term such grids interac-
tive grids. In this paper, we describe some of the challenges
involved in building interactive grids. These include fine
grain access control, QoS guarantees, and dynamic account
management. In order to architect interactive grids, we pro-
pose and describe I-GENV, an environment for enabling in-
teractive grids. I-GENV consists of GISH-’Grid Interactive
Shell’, Controlled Desktop, SAC-’Session Admission Con-
trol’ module, GMMA-’Grid Monitoring and Management
Agents’, System Policies, and Dynamic Account Manager.
We also present our testbed implementation of I-GENV us-
ing and extending Globus Toolkit 2.0 for the Grid middle-
ware infrastructure, and VNC as the remote display tech-
nology.

1 Introduction

Grid Computing [1, 2] envisions a future where hetero-
geneous resources could be shared by users across geo-
graphical and administrative boundaries, and as a utility.
Several efforts [6, 14, 15, 16, 17] are underway to architect
and deploy a middleware infrastructure for Grid Comput-
ing. Commercial acceptance of Grid Computing technology
is also steadily increasing. Traditional use of Grid Comput-
ing has been for the execution of batch jobs in the scientific
and academic community. We believe that next generation
grids will extend the application domain to include graphi-
cal interactive sessions. Such sessions would allow the end-
user to interactively submit graphical, multimedia jobs to
remote nodes in a Grid. The end-user will also be able to
view the graphical and multimedia output of the submit-
ted jobs and applications through such graphical interactive
sessions. Example use cases for such interactive sessions

could be for, but not limited to, graphics visualization appli-
cations, engineering applications like CAD/MCAD, digital
content creation, streaming media, video games, text edit-
ing, command line interactions, e-mail applications. Some
of the new problems posed for the design of such grids are:
Fine Grain Access Control, QoS, and Dynamic Account
Management.

Most of the ongoing work on Grids is for batch jobs.
Other work like [13] does not focus on providing interactive
job submission ‘sessions’, and [4] does not address the
needs for graphical and multimedia sessions. Neither do the
other related works provide a comprehensive framework for
access control, QoS, and account management for graphical
interactive sessions in a Grid Computing environment. In
this paper, we propose I-GENV: a Grid environment for
graphical interactive sessions to remote nodes. Our key
contributions are as follows:

1. A framework for providing access control and
QoS for graphical interactive sessions in a Grid, consisting
of the following components:
(a) GISH - a ‘Grid Interactive Shell’, is a controlled shell
providing fine grain access control. GISH also interfaces
with SAC - ‘Session Admission Control’ system.
(b) Controlled Desktop - A Controlled desktop restricts the
user to only launch allowed applications through a desktop.
(c) SAC - a ‘Session Admission Control’ module, provides
admission control check for session resource usage param-
eters.
(d) GMMA - ‘Grid Monitoring and Management Agents’
monitor and enforce the session and resource parameters
during a graphical interactive session.
The above components are tightly coupled to each other,
and are designed with grid-enabled features.

2. A dynamic account management system for graph-
ical interactive sessions to simplify the management of user
sessions in a Grid Computing Environment.

Grid Distributed
Resource

Management
System

Execution NodeSubmission Node

1. Submit request for a
graphical interactive

session

2. Schedule
session with an

advance reservation
of fine grained

resources like CPU
and network
bandwidth

3. Graphical Interactive Session

Figure 1. High level overview of the Interactive
Grid computing system

Our architecture is proposed as an extension to the ex-
isting Grid middleware infrastructure. Our implementation
uses Globus Toolkit 2.0 [6] as this Grid middleware infras-
tructure. We believe our proposed solution provides a com-
prehensive access and admission control methodology for
graphical interactive sessions in a Grid context. The access
control system is modular and policy based allowing for fine
grained access control, easy extensibility and easy manage-
ability. There is support for Quality of Service guarantees
in an interactive graphical session, as well as support for
dynamic accounts.

The rest of the paper is organized as follows. In Section
2, we describe Interactive Grids. We describe I-GENV in
Section 3. In Section 4, we show how I-GENV solves the
problems of fine grain access control, QoS, and manage-
ability. In Section 5, we present an analysis of our solution.
Section 6 presents implementation of the proposed solution.
In Section 7, we present Related Work and we conclude in
Section 8.

2 Interactive Grids

Figure 1 shows the Grid computing system that we are
considering. The system consists of heterogeneous exe-
cution nodes distributed across multiple administrative do-
mains. These nodes are managed by a Grid Distributed Re-
source Management system (DRM). An end-user submits a
request for an interactive session to the Grid DRM through
a submission node. On receiving the request from the user,
the Grid DRM selects a remote execution node based on
the session requirements, and reserves this node for the re-
quested duration of the session. The Grid DRM also per-
forms an advance reservation of fine grained resources like
CPU and network bandwidth, for the users’ session. At the
requested time, the DRM would establish an interactive ses-
sion between this remote execution node and the end-user’s
submission node. The end-user then interacts directly with
this remote node1, through the established session. During

1The terms ‘remote node’ and ‘remote execution node’ are used inter-
changeably in this paper.

this session, the user can submit requests directly to the re-
mote node, to launch multiple applications. A session thus
constitutes the interaction of the end-user with the remote
node involving the launching of one or more applications
and, subsequently interactively using the launched applica-
tions. These interactions could either be graphical or text-
based. We are more interested in addressing the problem
for graphical interactive sessions to remote nodes. How-
ever, the solutions being proposed and developed by us are
also applicable for text-only interactive sessions, as a spe-
cial case. The interaction of the end-user with the remote
node involves the execution of both installed applications
and user specified binaries. It is also assumed that the user
does not have a local account with the remote node apriori.

Such a grid computing model represents interactive grids
- next generation grids supporting graphical interactive ses-
sions. Interactive grids pose several new problems in the
context of Grids. Some of the challenges include fine grain
access control, QoS guarantees, and dynamic account man-
agement.
Fine Grain Access Control: Interactive sessions allow a
malicious user to submit unauthorized jobs to the remote
node and permit end-users unspecified time of access to the
remote node. Further, interactive sessions allow a mali-
cious user to probe for vulnerabilities in the Grid system,
and launch attacks against other remote nodes in the Grid
system. A fine grain access control in the Grid context is
needed.
QoS: Interactive grids permit end-users to launch interac-
tive graphics and multimedia applications. Such applica-
tions are sensitive to response time and real time require-
ments. There is a need to guarantee quality of service for
such applications.
Dynamic Account Management: Interactive grids pose
a challenge in terms of account management for arbitrary
end-users of the grid.

3 Our Solution: I-GENV

Our solution is to provide I-GENV: an environment
for graphical interactive sessions, in an Interactive Grid
Computing system. I-GENV consists of the following
components:
1. Controlled Shell: GISH - ‘Grid Interactive Shell’
2. Controlled Desktop
3. SAC - ‘Session Admission Control’ module
4. GMMA - ‘Grid Monitoring and Management Agents’
5. System Policies
6. Dynamic Account Manager

These components provide for fine grain access control,
QoS, and account management in interactive grids. Fig-
ure 2 shows the interaction of I-GENV components in the

Commands/ Graphics Applications

GISH

GMMA
Policy
Engine

OS Kernel

GISH: Grid Interactive Shell
SAC: Session Admission Control
GMMA: Grid Monitoring and Management Agents

SAC

Controlled
Desktop

Figure 2. Interaction among I-GENV compo-
nents

context of a dynamic account created by the Dynamic Ac-
count Manager. In the next few sections, we describe GISH,
GMMA, SAC, and Account Manager. We then describe
how these components provide for access control, QoS, and
manageability.

3.1 Controlled Shell

A controlled shell provides a restricted interface to the
end-user to submit requests for executing applications and
commands to the remote node interactively. We have de-
signed a controlled shell called GISH -’Grid Interactive
Shell’. GISH accepts requests to execute two kinds of com-
mands/applications:
1. Commands and applications that are already installed on
the remote node by the system administrator.
2. Commands and applications that are NOT already in-
stalled on the remote node, and is a user specified binary
file. Such applications must be certified to be non-malicious
by a trusted certificate authority.

GISH allows grid-users to be logged on to the remote
node through two kinds of user accounts:
1. Controlled normal user accounts. This corresponds to a
normal user account given by the underlying operating sys-
tem, restricted by the access control policy files.
2. Controlled super user accounts. This corresponds to a su-
per user account given by the underlying operating system,
restricted by the access control policy files.

Figure 3 shows the design of GISH. It consists of a com-
mand interpreter interfaced to an access control subsystem.
The access control subsystem consists of access control
modules described in detail below. The user submits a
request to start a command or application to GISH. The
command is first parsed by the command interpreter, and
then passed onto the access control modules. Each of
the access control modules performs an access control

Access Control Subsystem

 Commands
 Applications

 System
 Policies

 SAC

Command
Interpreter

EAM: Module for checking list of
allowed executables/options/

files

UbAM: Module for verifying
certificates for user specified

binaries

SAM: Interface to SAC for
checking session specific

policies

GISH

Figure 3. GISH Design

Session Admission Control
Application

Profiles

SLA

Data from
GMMA
agents

Session
Policies

Admission
Control

Decision

Requested
application

Figure 4. SAC Design

check. If the access control check fails for any of the
modules, a failure message is returned back to the user
and the request to start the application/command is denied.
If the access control check succeeds for all the modules,
then the command or application is started by GISH and
the graphical output, if any, can be viewed through the
remote graphical display. We describe briefly some of these
access control modules below. In order to make the design
modular, we choose to interface GISH with a Session
Admission Control system (SAC). SAC is responsible for
making admission control decisions for session parameters.

EAM: Executables and files Access control Module
This module is responsible for verifying that the requested
command/application (i) Belongs to the list of allowed
executables, (ii) Is invoked with a list of allowed ar-
guments/options, (iii) Only accesses allowed files and
directories. This verification is enforced through a policy
file which enumerates the list of allowed executables,
allowed executable arguments, allowed files and directories
for the user. The policy files used by EAM is categorized
based on whether the user is logged on as a controlled
normal user or as a controlled superuser. For allowed
executables, EAM would not be able to determine all of
the files and directories that an application would access.
In order to restrict the applications from accessing only the
allowed files and directories at run-time, we supplement
GISH, based on a policy decision, with systems like [19, 5]
which compartmentalize the execution of processes, or
with virtual machine sandbox environments like [3].

UbAM: User binaries Access control Module
This module is responsible for verifying the signature for

user specified binaries. We assume that there exists trusted
services in our grid computing environment that checks
user specified binaries and signs non-malicious binaries.
UbAM verifies such signatures. If such trusted services
are unavailable to the user, we provide based on a policy
decision, a virtual machine environment [3] for executing
the users’s binaries, or supplement the system with runtime
system call monitoring systems [4].

SAM: Session Access control Module
This module interfaces with SAC- ‘Session Admission
Control’ module, for verifying session specific parameters.
SAC is explained in detail in Section 3.4. SAM passes
the requested command to the SAC. SAC replies back
with an ‘Allow’ or ‘Deny’ decision for the requested
command/application.

The GISH design shown in Figure 3 could be extended
with other access control modules as seemed appropriate
for a particular implementation. We have presented a few
access control modules that we envision to be necessary in
a Grid environment for graphical interactive sessions.

3.2 Controlled Desktop

The controlled desktop has to be identical to GISH in
terms of the policies enforced. The desktop’s menus and
icons is customized by a desktop configuration file that en-
forces these policies. At the time of initialization of the
session, this file is read in for customizing the desktop. The
user is not given permission to modify this file, or to add
or modify menu items or icons. Only the allowed executa-
bles with allowed arguments, and allowed files for the user
is accessible through the controlled desktop.

3.3 SAC

SAC stands for Session Admission Control module. This
module is responsible for making an admission control de-
cision for a requested application, based on Service Level
Agreements (SLAs), and session policies. Figure 4 shows
the inputs to a SAC system. These are explained below:
1. Requested application: The graphics application which
the user is requesting to be launched. This is provided to
SAC by GISH through the SAM module.
2. SLA: The Service Level Agreement for the session in
progress. The SLA is determined prior to the start of the
session.
3. Application profiles: The application profiles contain the
estimated CPU and bandwidth required for various classes
of applications to meet their acceptable performance lev-
els. Example classes of applications are engineering appli-
cations, visualization applications, video games etc. Such

application profiles are determined by a system administra-
tor, and refined by an application predictor system.
4. Data from GMMA agents: The resource usage data gath-
ered by GMMA monitoring agents. The GMMA monitor-
ing agents are explained in Section 3.4.
5. Policies: The session policies in place for the session.

Given these inputs, SAC checks the session parameters
to verify availability of resources in compliance to SLAs.
These session parameters are:
1. Number of processes launched during a session.
2. Usage time for a session.
3. Disk quota usage for a session.
4. CPU utilization percentage for a session.
5. Network bandwidth utilization percentage for a session.

SAC compares the current values for these session pa-
rameters with the limiting values agreed upon in the SLA.
If there is a violation, or if a violation would occur upon ex-
ecuting the application, SAC decides on a ‘Deny’ decision
for executing the application. Otherwise, an ‘Allow’ deci-
sion is made for the application by SAC. Figure 5 shows
an algorithm for SAC to make an admission control deci-
sion, based on the CPU and network bandwidth utilization
parameters for a session.

Input: Application request, reservation agreement from SLA,
 data from GMMA agents, application profiles

Output: Admission control decision (Allow or Deny)

1. Determine the class of applications that the requested
 application belongs to.
2 Obtain from the application profiles, the CPU and network
 bandwidth usage requirement for this application.
3. Use the data gathered by GMMA agents to obtain the
 current CPU and network bandwidth utilization values for
 the session.
4. Obtain from the SLA, the CPU and network bandwidth
 reservation values made for this session.
5. Compare the values from Step 3 and Step 4 to determine
 the CPU and network bandwidth available for the requested
 application, to comply with the SLA.
6. Compare the values from Step 2 and 5 to determine if
 executing the requested application would violate the SLA.
 If so, return "Deny". Else return "Allow".

Figure 5. An algorithm for SAC with CPU and
network bandwidth utilization as the session
parameters

SAC could be extended to support other session parame-
ters as seemed appropriate for a particular implementation.
We have presented a few session parameters that we envi-
sion to be necessary in a Grid environment for graphical,
interactive sessions.

3.4 GMMA

GMMA stands for ‘Grid Monitoring and Management
Agents’. The monitoring agents collect dynamic monitor-
ing data, which is used by the management agents to enforce

System
Policies

SAC

 GMMA

 Session
 Parameter
 Monitoring

 Intrusion
 Prevention
 Monitoring

 Log
 Files

Peer Agents

 Resource
Utilization
Monitoring

 Intrusion
 Detection

 Monitoring

 Quality of
 Service

 Enforcement
per-application

 Intrusion
 Protection

 Enforcement

SLA
Enforcement
for Session

 Access
Control
Policies

 Enforcement

Monitoring Agents

Management Agents

System
Policies

Figure 6. GMMA Design

session SLAs, QoS for applications, intrusion protection,
and access control policies.

Some of the GMMA agents are associated with a spe-
cific session, while some others are system wide agents that
monitor all the sessions started through the interactive Grid
environment. The monitoring agents log their information
in log files2, interface with other peer agents, other moni-
toring systems, as needed. The management agents use the
data gathered by monitoring agents for enforcement pur-
poses. Figure 6 shows the design of GMMA. We describe
below a few categories of the monitoring and management
agents, focusing on the functionality to be provided by these
agents in the context of interactive grids.

3.4.1 Monitoring Agents

Session Parameter Monitoring
The Session parameter Monitoring is for monitoring ses-
sion specific parameters like (i) Usage Time for the session,
(ii) Number of processes spawned during the session, (iii)
Number of socket connections opened during the session,
(iv) Disk quota usage for the session, (v) CPU Usage for
the session, (vi) Network Bandwidth usage for the session.
This data is then used by the management agents to enforce
SLA guarantees for these session parameters.

Resource Utilization Monitoring
The resource utilization monitoring is for monitoring the
overall as well as per-application utilization of resources
like CPU, network bandwidth. This data is then used to
provide QoS guarantees to applications. The resource
utilization data is also used by the Grid DRM while making
scheduling decisions onto this node.

Intrusion Detection Monitoring
The Intrusion Detection Monitoring is for monitoring the

2This logged data is used only for session and Grid management pur-
poses. Any privacy issues regarding this information would be agreed upon
as an agreement prior to the start of the session.

intrusion detection parameters. For example, these agents
monitor the IP addresses of incoming connections, TCP
connection information. These agents could also interface
with their peer agents on other grid enabled nodes. This
allows the agents to share intrusion detection information,
thus forming a distributed intrusion detection system for
Grid environments.

Intrusion Prevention Monitoring
The Intrusion Prevention Monitoring is for monitoring
the intrusion prevention parameters. For example, these
agents monitor the IP addresses for outgoing connections,
and notify the management agents when certain selective
connections are attempted. The agents are informed
about the list of selective connections through policy
files. The management agents take appropriate action for
these selective connections, for example, they may block
these connections as a precautionary measure to prevent a
possible intrusion.

Other possible monitoring agents are for monitoring the
files, directories, and system calls made by applications
started through I-GENV. This monitored data is then used
by management agents to enforce access control policies.

3.4.2 Management Agents

SLA Enforcement for sessions
The SLA Enforcement for session parameters is for
enforcing the Service Level Agreements for the session
parameters. The SLA agents obtain the session data from
the monitoring agents, and use this data to verify for any
violation of session SLAs. The SLAs are for resource
reservations made per session, wall-clock usage time for
the session, number of processes launched during a session.
Based on policies, an appropriate action is taken on a
violation of SLA, for example kill the processes started
during the session, and end the session3.

Quality of Service Enforcement Per application
The QoS Enforcement is for enforcing the QoS guarantees
per application. The application profiles discussed in an
earlier section contain the estimated CPU and network
bandwidth required for various classes of applications for
acceptable performance and response time to the user.
The QoS enforcement agents obtain the data from the
monitoring agents, and check for any violation of QoS
specified in the application profiles. Once a violation is
detected, an enforcement action is taken as one or the
combination of the following: (i) Decrease the priority of
applications that exceed their resource utilization levels.

3A warning message may be optionally given to the end-user before
killing the process.

Session Policies

 CPU &
 Process

 Usage
 Policies

Account Policies
Application

Policies

Installed
Applications

I-GENV System
Policies

QoS Policies

QoS Enforcement
Policies

 Accounting
 & Pricing
 Policies

 File
 System
 Usage

 Policies

Controlled
Super User

Authorization Policies
for Executables and

Files

Controlled
Normal User

User
Binaries

Virtual
Machine
Policies

Third Party
Trusted Systems

(eg. Pitbull,HP-LX)
Policies

Third Party
Trusted Systems

(eg. Pitbull, HP-LX)
Policies

Authorization Policies
for Executables and

Files

Figure 7. Taxonomy of I-GENV system poli-
cies

(ii) Increase the priority of applications falling below their
desired resource utilization levels. (iii) Kill applications
that have violated their resource utilization levels by a large
amount. The enforcement process for QoS is controlled by
policies.

Intrusion Protection Enforcement
The intrusion protection enforcement is for enforcing
intrusion protection mechanisms. An intrusion protection
enforcement action can be triggered through (i) Intrusion
prevention monitoring agents on detecting certain selective
connections. In such cases, an example enforcement action
is to block those connections. (ii) Detecting an intru-
sion using the data gathered through Intrusion Detection
Monitoring Agents. In such cases, the IP addresses in
question could be added to the list of selective connections
monitored by the Intrusion Prevention Monitoring Agents.

Access Control Policies Enforcement
The Access Control Policies Enforcement is for enforcing
access control policies like restricting the access to only the
set of allowed files and executables for this grid user. The
monitoring agents would gather the information about files
and executables accessed by a grid-user during the interac-
tive session, and this data is used to verify compliance with
access control policies. On a violation of access control
policies, an appropriate action is taken eg. killing of the
violating application.

The GMMA design presented in Figure 6 could be ex-
tended with other monitoring and management agents as
seemed appropriate for a particular implementation. As for
GISH and SAC, we have presented a few categories of mon-
itoring and management agents that we envision to be nec-
essary in a Grid environment for graphical interactive ses-
sions. However, the design can be extended with other cat-
egories of monitoring and management agents as well.

 % Example of Account Policies

 % Authorization policy for
 % executables
account pool: MMGRID
action: allow executables
 ls
 mkdir
 cd
 df
 gcc
 vi

% Example of Account Policies

 % Authorization policy for
 % files
account pool: MMGRID
action: allow files
/home/mgrid001/*
 /usr/local/graphics/examples/*

 /usr/local/engg/examples/*
 /usr/include/*
 /usr/local/include/*

% Example of Session Policies

event: NUM_PROCESSES > 10
action: KILL

event: USAGE_TIME > 60
action: KILL

Figure 8. Example system policy files

3.5 System Policies

The system policies can be classified into the following
categories also shown in Figure 7:
(1) Session Policies. These specify policy information for
each session. Examples of such policies are accounting and
pricing policies, CPU and process usage policies, file sys-
tem and disk quota usage policies. The policies specify the
default action to be taken on a violation of the system pa-
rameters.
(2) Account Policies. These specify policy information as-
sociated with account pools. There are separate policies for
controlled normal users and controlled superusers. Exam-
ples of such policies are the authorization polices for exe-
cutables and files for a user of the account pool.
(3) Application Policies. These specify policy information
for applications that are started by I-GENV. There are two
kinds of applications: installed applications, and user speci-
fied binaries. The execution of these applications could take
place in a secure environment using systems like PitBull
[19], HP-LX [5], or virtual machine environments [3]. Such
systems have their own policies.
(4) QoS Policies. These specify policy information for QoS
metrics. Example policies are the QoS enforcement poli-
cies on violation of QoS metrics specified in the application
profiles.

Each of the above policies are customized for a given
grid-user of the system. Figure 8 shows examples of some
system policy files.

3.6 Dynamic Account Manager

I-GENV uses dynamic or template accounts to make the
resource virtualization more appropriate for grids. The scal-
ability and manageability of the system are enhanced if we
do not require grid users to have their personal user accounts
on all the machines that are part of the grid. Instead the sys-
tem administrator has to add the user once to a directory
maintained by the virtual organization in which the user has
obtained membership. Any site that participates in that Vir-
tual Organization (VO) will check the user’s membership
with the directory during authentication, and authorize the

user as a dynamic account if she does not have a static ac-
count. The dynamic account is chosen from the pool of
dynamic accounts maintained for that VO. Each dynamic
account is a full-fledged Unix account created on the com-
puter, but without a permanent real-world user associated
with it.

Each pool is associated with a set of the policy files for
I-GENV mentioned in Section 3.5, customized to the tar-
get users of that pool. Unlike normal user accounts that
belong permanently to their real-world owners, a dynamic
account is bound to a user temporarily. The selection of a
pool and the binding of the user to an available dynamic ac-
count from that pool are based on the Grid credentials pre-
sented. After the successful selection and binding of user
to a dynamic account, the graphical interactive session is
started. A window manager, terminal windows running the
GISH shell, and other programs specified in the window
manager’s startup files are started as processes owned by the
allocated dynamic account. The appropriate GMMA agents
are also simultaneously started for this session. The entire
process can be described by a flowchart shown in Figure 9.

The dynamic account is freed at the termination time
agreed upon for the session that is using the dynamic ac-
count. At the termination time, GMMA management agents
kill the processes still running with this account as owner,
and delete all files owned by the account. The account is
then returned to the pool. We could also choose to archive
the files created by the user as against deleting it, on a server
maintained by the VO. Subsequent sessions for this user re-
trieve the files from the archive.

4 Discussion

Figure 2 shows the interaction among the components
of I-GENV. As shown in the figure, there is a tight coupling
among the components. These components exist in the
context of a dynamic account created by the Dynamic
Account Manager. Together, the I-GENV components
achieve Access Control, QoS, and Manageability. We
explain this below.

Access Control through I-GENV
Access Control for a grid-user is achieved through a
combination of GISH, Controlled Desktop, GMMA, SAC,
and system policies. Using these components, we can
control the access of the user to (i) Executables, (ii) Files,
(iii) Network interfaces, (iv) Network connections, (v)
Resource usages decided in SLA.

QoS through I-GENV
QoS in I-GENV is achieved through a combination of
SAC, GMMA, and system policy files. We assume that the
the Grid middleware would have made CPU and network

User’s grid
client

presents
credentials

Authentication

Authorization

Policy Files
for Pool 1

of Dynamic
Accounts

Policy Files
for Pool 2

of Dynamic
Accounts

Policy Files
for Pool 3

of Dynamic
Accounts

Window manager,
command terminals

running GISH, etc. started
as user dyn001

GMMA started to
monitor

compliance to
policy files

Success

User works by interacting
with window manager,
GISH shells and other

applications started by him

Allocated dyn001

FailureNotify user of failure
and terminate

Failure

Timeout due to inactivity or
session limit. After grace period,

processes killed and files
archived and deleted

Monitor

Advance warning
and termination

User account
dyn001 returned to

its pool

Figure 9. Flow Chart describing the process
of account allocation, access control and ses-
sion management

bandwidth reservation, before the session is launched
on the remote node. We also assume the existence of
application profiles which contain the estimated CPU and
network bandwidth required for various classes of appli-
cations to meet acceptable performance levels. GMMA
monitoring agents monitor the actual usage values of the
CPU and network bandwidth utilization of applications.
This data is used to enforce QoS for each application as
specified in the application profiles. The data gathered by
GMMA monitoring agents is also used by the GMMA
management agents for enforcing the reservation limits for
sessions stated in the SLA (policing). Further, before a new
application is launched, the Session Admission Control
System (SAC) verifies that the requested application would
consume resources within the reservation limits agreed
upon for the session. This check ensures that the SLA and
QoS guarantees for currently executing applications, would
not be violated upon launching the application4.

Manageability through I-GENV
The system policy files are associated with a pool of
dynamic user accounts. A grid user is mapped to one
of these pools of dynamic accounts based on a VO-wide
policy. The user is then dynamically allocated one of

4Even if the SAC does not perform this admission control check, the
monitoring agents would detect the violation and an appropriate enforce-
ment action would be taken. However, there would be a time delay before
such an action can take place. Performing a check at the SAC itself ensures
no violation of SLA even for this time delay period.

the accounts from the mapped account pool. The user is
subject to the system policies associated with that account
pool. After the session for the user expires, the dynamic
account is returned back to the pool. Such a design coupled
with the access control and monitoring agents system
provides for easy manageability through the proposed Grid
Environment, I-GENV.

5 Analysis

We now provide an analysis of our solution as described
in the previous sections. While designing the system, we
came up with a list of requirements for our solution to sat-
isfy. These were: (1) Be applicable across heterogeneous
platforms, (2) Extend existing general purpose tools, (3) Re-
quire minimal changes to the existing system software, (4)
Be extensible and modular, (4) Address needs of graphics
and multimedia applications, (4) Support self-managing ca-
pabilities, (5) Work for all application types, (6) Be flexible
to interface and interoperate with other complementary and
grid solutions, (7) Be driven by policies.

Towards this end, we avoided designing solutions spe-
cific to an OS, or in-kernel solutions, or solutions requiring
drastically new tools. This is reflected in our design for
example through GISH, which can be implemented by ex-
tending existing popular shells like bash. In order to make
the design self-managing, we propose monitoring and man-
agement agents, which gather run-time information, and en-
force appropriate enforcement actions to honor SLAs and
access control policies. We also took a two-level approach
of (1) filtering commands before execution to verify for ac-
cess and admission control, and then (2) monitoring and
managing the behavior of the system at run-time. In such a
two-level approach, we introduce tight feedback loops from
the GMMA agents to access control policy engine and SAC
module, so that dynamic run-time information gathered can
be used for subsequent admission and access control deci-
sions. This helps in making the system self-learning and
self-managing. The two-level approach is also expected to
provide performance benefits by eliminating some of the
non-compliant application requests at the shell itself. Since
we desired to design the system to work for any application,
we avoided QoS solutions like QuO [22] from the Quorum
project [23], that specifically address needs of distributed
object systems built over CORBA-like middleware infras-
tructures. Rather, in order to provide QoS management
we provide (1) Functionality in the Interactive Grid DRM
to allocate the most appropriate available resource(s) that
would satisfy the QoS requirement of the application. (2)
Monitoring and enforcement framework to adjust fine-grain
resource allocations of applications at run-time to enforce
QoS guarantees.

We also realized during the design process that an inte-

grated set of components could be used to together solve
the three problems of fine grain access control, QoS, and
account management, compared to providing separate solu-
tions to each of these problems. We believe this would help
improve efficiency. At the same time, our solution is also
designed to be modular. The solution is designed to build
upon components providing common functionality that can
be used for multiple purposes. For example, our GMMA
agents provide input to both the first step of application ad-
mission control and the second step of QoS management at
runtime. Dynamic account management also contributes to
our theme of QoS enforcement by allowing us to customize
the policy files governing the account that serve as input to
QoS management.

In terms of performance analysis, we are interested in
reducing the overhead caused by I-GENV during an inter-
active session in an interactive grid computing system. The
overhead caused by Dynamic Account Manager is only at
the beginning of a session, and is expected to be minimal
since it would primarily involve accessing the gridmap-
file, and executing a simple logic to map the user to the
appropriate account. The overheads caused by GISH and
SAC is also expected to be insignificant compared to the
high human response time expected while the user is in-
teractively submitting commands. The overhead caused by
GMMA agents would incur in terms of filesystem read ac-
cess, agent-agent communication, enforcement algorithms.
These can be addressed through appropriate implementa-
tion techniques and as future work, we are designing the
GMMA agents taking these factors into consideration, so as
to not limit the usefulness of the system due to these over-
heads.

6 Implementation

Our implementation environment consists of Intel x86
machines running Red Hat Linux 7.3, as the remote nodes.
The end-user can request a graphical interactive session to
these remote nodes from any machine supporting a web
browser. We use Globus Toolkit 2.0 [6] as the Grid mid-
dleware platform, and VNC [8] as the remote display tech-
nology for remote graphical sessions. GPDK [7] is used to
provide a web portal to the end-user for submitting job re-
quests. We have extended the functionality of Globus, so
that it can also be used for submitting requests for starting
a graphical interactive session to the remote nodes. Figure
10 in Appendix shows the job submission process. On a
successful authentication, the appropriate account pool for
the user is determined. A set of policy files is associated
with this account pool. A dynamic account from this pool
is then allocated for this user. We then start a VNC server
and GMMA agents for this session. On a successful VNC
authentication, the user is presented with a controlled KDE

Desktop environment containing only the applications and
menus the user is allowed to access. The KDE desktop en-
vironment is pre-configured by the system administrator for
each pool of accounts.

The session starts with default startup applications, in-
cluding a GISH shell. The GISH shell has been imple-
mented as an extension to the popular GNU bash shell for
Linux and Windows. The shell source code was modified
so as to include the access control modules. GISH currently
checks for list of allowed executables from a file, before ex-
ecuting commands. The GMMA Agents started at the be-
ginning of the session, run with super-user privileges. They
record the session and system information and store them in
pre-determined files. Currently, the GMMA agents check
for the usage time for the session, number of spawned pro-
cesses. The system policy files contain information about
the session usage time, number of allowed processes etc.
along with their maximum allowed values, and actions to
be taken on violation of these policies. The current de-
fault action is to KILL all the processes and end the ses-
sion, on violation of the session policies. Implementation
for other modules and agents for GISH and GMMA is a
work in progress. Figures 11 shows some interaction exam-
ples within GISH during a session in progress, and Figure
12 shows the session screen on termination.

To support dynamic accounts, we modified
������ ����	��
�� and GSI-SSH daemon from Globus
Toolkit 2.0 by linking them with a modified library for
reading the ���
��
����. Normally the ���
��
����

contains entries mapping the distinguished name (DN)
of the user to the local Unix account. As a first step,
we modified the ���
��
���� to replace the local Unix
account name with a predefined string for the user’s VO,
indicating that a dynamic account from the VO’s pool
should be used for this user. To get our modified library
for reading the ���
��
����, we started with a patch to
the ������ ��� ������ package, distributed by the Grid for
UK Particle Physics, obtained from [11]. As a second step,
we are extending the ������ ��� ������ library further.
We are removing the requirement to have an entry in the
���
��
����. When the user authenticates herself, the DN
obtained from her certificate will be queried against the
directory maintained by the VO for membership. If the user
is a member, she will be assigned a dynamic account from
the pool customized for that VO.

7 Related Work

Majority of the work in the area of grid computing has
been for batch jobs and hence do not address the problems
as outlined in the paper. The same holds with recent projects
on interactive applications like CrossGrid [13]. Solutions
developed in Punch project [4] do not address graphical and

multimedia sessions. gsissh [18] provides for encryption
of interactive sessions and can be used with our solution.
QoS solutions provided through Quorum project [23, 22]
address the needs of distributed object systems and provide
QoS support in underlying middleware infrastructure like
CORBA. We propose QoS support for applications through
appropriate initial resource allocation and subsequent mon-
itoring and adjustment of resource allocations by the Grid
resource management framework. We do not assume any
available support for application adaptation through multi-
ple application behaviors. Most of the other related work
for access control and QoS are in the non-grid context do
not completely satisfy the requirements for Grid. For exam-
ple, traditional OS access control mechanisms do not allow
to easily enforce fine grain access control for arbitrary end-
users. Sudo [21] is not a replacement for shell and does not
provide a complete solution for all our needs in Grid con-
text. Our solution provides for an integrated and compre-
hensive solution for problems of access control, QoS, and
account management in the context of graphical interactive
sessions in Grids. Our solution is not specific to any re-
mote display technology and can be used with systems like
[8, 20]. Monitoring Systems like Network Weather Service
[10] can be interfaced to the GMMA framework. Dynamic
account management has been described in [9, 12]. How-
ever, we differ from the prior work in using the dynamic
account as a component of our customizable grid environ-
ment, by associating each pool of dynamic accounts with its
set of policy files that I-GENV enforces.

8 Conclusions

In this paper, we introduced interactive grids which al-
low end-users access to remote execution nodes belonging
to a Grid, for graphical interactive use. Interactive Grids
extend the application domain for Grid Computing Systems
from traditional batch jobs to graphical, interactive sessions.
We described some of the problems posed for the design
of interactive grids, namely that of fine grain access con-
trol, QoS, account management. In this paper, we have
presented I-GENV: an environment for enabling interactive
grids, that addresses these issues. Our approach has been
in building a set of components addressing these issues in
an integrated but modular manner. We believe this leads to
more efficiency. The components are GISH - ‘Grid Interac-
tive Shell’, Controlled Desktop, SAC - ‘Session Admission
Control’ system, GMMA - ‘Grid Monitoring and Manage-
ment Agents’, System Polices, and Dynamic Account Man-
ager. While designing the system, we realized the need to
satisfy important requirements of heterogeneous platforms,
easy extensibility, modularity, and self-managing capabil-
ity. We identified the areas of overheads that would occur
with a deployment of our solution, which would be consid-

ered for optimization in the future work. We also described
our implementation of the system on Linux x86 machines,
using and extending Globus Toolkit 2.0 for the base grid
middleware infrastructure and VNC as the remote display
technology.

References

[1] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kauffman Pub-
lishers, 1999.

[2] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. International
Journal of SuperComputing Applications, 15(3), 2001.

[3] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:
Running commodity operating systems on scalable mul-
tiprocessors. ACM Transactions on Computer Systems,
15(4):412–447, 1997.

[4] A. Butt, S.Adabala, N.Kapadia, R.Figueiredo, and
J.A.B.Fortes. Fine-grain access control for securing shared
resources in computational grids. In IPDPS, April 2002.

[5] N. Edwards, J. Berger, and T. Choo. A secure linux plat-
form. In 5th Annual Linux Showcase & Conference, Novem-
ber 2001.

[6] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of SuperComput-
ing Applications, 11(2):115–128, Summer 1997.

[7] J. Novotny. The grid portal development toolkit.
Concurrency-Practice and Experience, 2000.

[8] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hop-
per. Virtual network computing. IEEE Internet Computing,
2(1):33–38, 1998.

[9] T.J.Hacker and B.D.Athey. A methodology for account
management in grid computing environments. In 2nd In-
ternational Workshop on Grid Computing, November 2001.

[10] R. Wolski, N. T. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing. Future Generation Computer Sys-
tems, 15(5–6):757–768, 1999.

[11] http://www.gridpp.ac.uk/gridmapdir.
[12] An Accounting System for the Datagrid Project version

3.0. http://server11.infn.it/workload-grid/docs/DataGrid-
01-TED-0115-3 0.pdf.

[13] Crossgrid. http://www.crossgrid.org.
[14] NASA IPG. http://www.ipg.nasa.gov.
[15] Teragrid Project. http://www.teragrid.org.
[16] Eurogrid Project. http://www.eurogrid.org.
[17] Entropia. http://www.entropia.com.
[18] Gsi-ssh. http://www.ncsa.uiuc.edu/Divisions/ACES/GSI/openssh/.
[19] Pitbull lx white papers. http://www.argus-systems.com.
[20] Sgi opengl vizserver.

http://www.sgi.com/software/vizserver.
[21] Sudo. http://www.courtesan.com/sudo/.
[22] J. Zinky, D.Bakken, and R. Scantz Architectural Support for

quality of service for CORBA objects. Theory and Practice
of Object Systems, 3(1), 1997.

[23] Quorum. http://www.dist-
systems.bbn.com/projects/QuOIN/

Figure 10. Job Submission screen for a
graphical interactive session through Globus

Figure 11. Screen during an interactive ses-
sion in progress

Figure 12. Screen at a session logout

