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The objective of this report is to present our
characterization of a shared-memory implementation
of the NAS Parallel Benchmarks (NPB). This
characterization is needed to support the design
decisions of future shared-memory multiprocessors.
This report presents two sets of characterization data;
the first set is the application characteristics that do
not change from one hardware configuration to
another, and the second set is the traffic
characteristics of the application when run on a
possible future hardware configuration. The data
presented in this report include characterizations of
NPB communication, sharing and cache behavior.
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1 Introduction

Computer architects are increasingly relying on application characteristics for insights in
designing cost-effective systems. This case study of NAS Parallel Benchmarks (NPB) is
part of a project to characterize a collection of shared-memory applications to support the
design of future systems. This study makes use of a collection of analysis tools that we
have developed to analyze and characterize shared-memory applications. These tools are
described in detail in our HP Laboratories technical report [1].

We have developed two main tools for analyzing shared-memory applications. The first tool
is intended to generate abstractions that expose the inherent application characteristics.
The second tool is intended to predict the application performance on a specific hardware
configuration. Given a system configurations, the second tool predicts the traffic flow volume
and characteristics under this configuration. It also generates traffic traces that are used to
drive detailed system-level simulators for further evaluation of alternative design options.

Figure 1 shows an outline of our methodology in characterizing shared-memory applications.
It shows that a shared-memory multiprocessor is used to collect traces by executing instru-
mented application codes. Nevertheless, other methods can be used for trace collection.

The Shared-Memory Application Instrumentation Tool (SMAIT) is used to instrument appli-
cations [1]. Instead of generating trace files, SMAIT can also pipe the traces to the analysis
tools for on-the-fly analysis. On-the-fly analysis enables analyzing longer execution periods
by solving the problem of huge trace files.

The two analysis tools are the Configuration Independent Analysis Tool (CIAT) and the
Configuration Dependent Analysis Tool (CDAT). CIAT generates a characterization of the
memory instructions, branching, synchronization, communication patterns, and data shar-
ing. CIAT also generates a memory usage file that specifies the usage statistics of all accessed
memory pages. CDAT reads a configuration file that specifies a proposed system configu-

System configuration

System-
Trace| level
> | ! Simulator
CDAT
Multi = System-dependent
i characterization
—ISMAIT ——15r0cessor
system
Memory usage
—»1 CIAT
Source Instrumented Trace » System-independent
code code characterization

Figure 1: Application analysis methodology.



ration and simulates the execution of the traces on this configuration. CDAT produces a
characterization and trace files of the traffic that would occur when the application is run
on the simulated configuration. CDAT can use the memory usage file to map memory pages
to the simulated memory banks.

Section 2 gives an overview of NPB and the analysis conditions. Section 3 presents NPB
configuration independent characteristics. Section 4 presents NPB traffic characteristics on
a possible future distributed shared memory (DSM) multiprocessor configuration. Section 5
concludes the paper by stating some of the key NPB characteristics.

2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks 1.0 [2] are 5 kernels and 3 pseudo-applications that mimic the
computation and data movement characteristics of large-scale computational fluid dynamic
applications. These benchmarks are specified algorithmically so that computer vendors can
implement them on a wide range of parallel machines. In this report we present our analysis
of the HP Convex implementation of NPB on the Convex Exemplar multiprocessor [3]. This
implementation was mainly developed by Herb Rothmund of the HP Convex Technology
Center. The performance of an earlier version of this implementation is reported in a NPB
results report [4].

We have analyzed two of the NPB kernels (CG and MG) and the three pseudo-applications
(SP, LU, and BT). Table 1 shows the two NPB problem sizes analyzed in this study. The
MG problem sizes are not standard and are selected to get a reasonable trace length.

Table 1 shows two numbers for each benchmark-size combination; the first number specifies
the problem data size, and the second number specifies the number of iterations in the main
parallel loop. The execution time of the Sample size is in the order of one second, while the
execution time of the A size is in the order of tens to hundreds of seconds.

The Convex implementation of NPB uses threads. In this implementation, all benchmarks
start with a serial initialization phase where only thread 0 is active. SP and LU also have
parallel loops in the initialization phase. After the initialization phase, p threads are spawned
to run on p available processors where they cooperate in executing the main loop for the
number of iterations specified in Table 1. We call this phase the parallel phase. The threads
coordinate their work by using synchronization barriers. At the end of the parallel phase, the

Table 1: Analyzed NPB problem sizes.

” Problem size name | CG I MG ’ SP | LU | BT ”
Sample 1,400/15 | 643/4 [ 123/100 | 123/50 | 123/60
A 14,000/15 | 128%/4 | 643/400 | 643 /250 | 643 /200




multiple threads join and only thread 0 remains active in the wrap-up phase to do validation
and reporting.

Generally, most of the execution time is spent in the parallel phase which has the main time
component reported for these benchmarks. For this reason, we give more attention to the
parallel phase. Unless otherwise specified, the reported characteristics are for the parallel
phase. We have noticed that, within the parallel phase, the characteristics do not change
from one iteration to another. Hence, to save analysis time, we perform our analysis of
the A size from the start to the end of the second iteration of the parallel phase. We use
the characteristics of the second iteration as a representative of the whole parallel phase.
However, for the Sample size, the reported characteristics are for the whole parallel phase.

This NPB implementation was instrumented, compiled, and analyzed on a 4-node Convex
SPP-1600 multiprocessor. Table 2 shows the configuration of this system.

We have analyzed these benchmarks on a varying number of processors: 1, 2, 4, 8, and
16. Analyzing these benchmarks for two problem sizes and a variety of processor numbers
enabled us to understand the characteristics of these applications as a function of problem
size and number of processors used.

Table 2: The SPP-1600 configuration.

| Feature SPP-1600 Data |
Number of processors 32 in 4 nodes
Processor PA 7200 @ 120 MHz
Main memory 1024 MB per node
OS version SPP-UX 4.2
Fortran compiler Convex FC 9.5

3 Configuration Independent Characteristics

In this section, we present the characteristics of NPB reported by CIAT. This section presents
the characteristics that are inherent in the code generated by compiling this NPB implemen-
tation using the compiler specified in Table 2. These characteristics are called configuration
independent characteristics because they only include characteristics that do not change
from one hardware configuration to another. Here, hardware configuration refers to inter-
connection topology, cache type and size, coherence protocols, memory allocation, etc.

These characteristics are summarized in the following 5 subsections. Subsection 3.1 presents
the overall volume characteristics. Subsection 3.2 presents the sharing characteristics. Sub-
section 3.3 presents the memory instructions characteristics. Subsection 3.4 presents the
average communication characteristics and Subsection 3.5 presents the communication vari-
ations over time.



3.1 Overall Characteristics

Table 3 presents the overall characteristics of the 5 benchmarks. These characteristics are
found by analyzing the execution from the start to the end for the Sample size of the 5
benchmarks and for the A size of the CG benchmark, and from the start to the end of the
second iteration for the A size of the other 4 benchmarks. Although these characteristics
were extracted from 4-processor runs, we have noticed that they do not significantly change
with different number of processors.

The code size is the size of the touched instructions,

the data size is the size of the accessed data elements,

e the data locality index is found as the ratio of the sum of the sizes of all load and store
instructions to the data size, and

the code locality indez is found as the ratio of the number of executed instructions to
the code size.

Table 3 shows that while the code size of the 3 pseudo-applications is larger than the code
size of the 2 kernels, the pseudo-applications access smaller data sets. This in turn results
in smaller code locality and larger data locality.

While the code size remains almost constant for the two problem sizes, the data size of the
A size is about an order of magnitude larger than the Sample size. Note that the locality
numbers of the A size of the last four benchmarks are from a partial execution and would
be larger if we had analyzed all the iterations of the benchmark.

Table 4 shows some of the overall characteristics of the parallel phase.

Table 3: Overall characteristics.

|| Characteristic | Size | CG | MG | SP [ LU i BT ”

Problem size Sample | 1,400/15 | 643/4 | 123/100 | 123/50 | 12°/60
A 14,000/15 | 128%/4 | 64°/400 | 64°/250 | 64°/200
Code size (in KB) | Sample 12 21 71 59 70
A 12 21 71 59 70
Data size (in MB) | Sample 9.0 5.3 0.21 0.22 0.25
A 120 39 30.1 30.1 30.3
Data locality Index | Sample 50 92 2536 1583 4534
A 86 62 47 189 344
Code locality index | Sample 39 30 11 10 19
(in 10%) A 915 751 | 100 | 121 116




Table 4: Parallel phase characteristics.

|| Characteristic Size I CG | MG Sp LU | BT |
Instructions per iteration Sample | 6.6 | 28.9 1.9 2.8 5.7
(in 10°) A 228 | 221 432 555 1335
Memory instructions Sample | 64% | 41% | 37% 34% 46%
A 67% | 42% | 3% 36% 46%
Average instructions between | Sample | 13 44 62 18 117
taken branches A 13 43 58 78 151
Average instructions between | Sample | 34 | 243 118 142 354
barriers (in 103) A 722 | 1,590 | 27,000 | 27,700 | 83,400

e The number of instructions executed in each iteration of the parallel phase by all
processors,

e the percentage of the instructions that reference memory,
e the average number of instructions between taken branches, and

e the average number of instructions between synchronization barriers.

As expected, the instructions per iteration numbers show that the amount of “work” in one
iteration increases as the problem size increases. CG has the highest percentage of memory
instructions because it spends most of its time doing a reduction process where it loads two
values followed by an arithmetic operation. The large number of instructions between taken
branches is typical in some scientific applications where the application spends most of its
time in loops that have significant arithmetic computations and one backward branch at the
end of the loop. Table 4 also shows that this implementation uses sparse synchronization.
For the A size, the average number of instructions between synchronization barriers is, at
least, hundreds of thousands of instructions.

3.2 Sharing

Figure 2 shows four graphs that summarize the sharing characteristics of the five benchmarks.
The left-hand graphs show the shared memory percentage as a function of the number of
processors. The shared memory percentage is the percentage of memory locations that were
touched by more than one processor of all touched memory locations. For example, about
90% of CG’s memory is accessed by a single processor in the Sample size. In general, the
shared memory percentage is approximately constant for multiple processors, or increases to
an asymptotic value as O(1 — 1/p), or decreases for large number of processors (as in LU).

The constant behavior occurs when there is a fixed size of memory that is shared by all the
available processors. The O(1 — 1/p) behavior often occurs when a fixed size of memory is
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Figure 2: Sharing characteristics.

initialized by one processor and is then partitioned linearly to the available processors. The
decrease in the shared memory percentage is due to the increase in the private memory as
the number of processors increases.

The shared memory percentage is larger for the larger problem size because most of the
private data structures like the stack and constant data do not increase for larger problem
sizes.

The right-hand graphs show the shared data access percentage as a function of the number
of processors. The shared data access percentage is the percentage of memory instructions
accessing shared memory locations of all memory instructions. Notice that for the 3 pseudo-
applications in the Sample size, while the shared memory is about 70%, the shared accesses
are only about 30%. This indicates that private memory is more intensely accessed than
shared memory.



3.3 Memory Instructions

Table 5 shows the percentages of the various memory instruction types when using 4 pro-
cessors. These percentages do not change much for a different number of processors.

Table 5 shows that about 70%—-96% of memory instructions are loads. The vast majority of
memory instructions access word and double elements. Double accesses are 68%-85% of the
total. There is a very small percentage of byte and halfword accesses if any. Moreover, the
percentage of double accesses generally increases as the problem size increases.

Table 5: Distribution of memory instructions (in percent).

0 Type Size CG | MG | SP LU BT |
Load byte Sample 0 0 0 0 0
A 0 0 0 0 0
Load halfword | Sample 0 0 0.01 0 0
A 0 0 0 0 0
Load word Sample | 30.10 | 1.70 | 3.35 | 8.59 | 10.64
A 32.09 | 0.85 | 1.72 | 3.06 | 11.33
Load float Sample 0 0.15 | 0.02 0 0
A 0 0.07 0 0 0
Load double | Sample | 64.24 | 85.81 | 69.50 | 70.14 | 57.25
A 66.25 | 87.90 | 73.23 | 77.56 | 58.88
Store byte Sample | 0 0 0 0 0
A 0 0 0 0 0
Store halfword | Sample 0 0 0 0 0
A 0 0 0 0 0
Store word Sample | 1.06 | 0.21 | 1.49 | 2.52 | 4.29
A 0 0.08 | 0.21 | 0.30 | 3.711
Store float Sample 0 0.08 | 0.01 0 0
A 0 0.03 0 0 0
Store double | Sample | 4.60 | 12.06 | 25.62 | 18.75 | 27.80
A 1.65 | 11.06 | 24.84 | 19.08 | 26.08

3.4 Communication

In a shared-memory application, processors communicate by accessing shared memory. CIAT
is used to find the amount of communication and it is classified into the following commu-

nication patterns:

1. Number of read-after-write accesses (RAW): A RAW access occurs when one or more
processors load a memory location that was stored by a processor. This pattern does



not include the case where only one processor loads a memory location that was stored
by this same processor. This is a common communication pattern; it occurs in a
producer-consumer situation where one processor produces data and one or more pro-
cessors consumes it.

2. Sharing degree for RAW. This is a vector S, where S[k] is the number of times that a
memory location was read by k processors after being written.

3. Number of write-after-read accesses (WAR): A WAR access occurs when a processor
stores a memory location that was loaded by one or more processors. This pattern
does not include the case where a processor stores to a memory location that was only
loaded by itself. This is also a common pattern; it occurs when a processor updates
data that was read by other processors.

4. Invalidation degree for WAR. This is a vector I, where I[k] is the number of times that
a memory location was written after being previously read by k processors.

5. Number of write-after-write accesses (WAW): A WAW access occurs when a processor
stores to a memory location that was stored by another processor. This is a less
common pattern; it occurs when multiple processors write without reading, or when
processors take turns on a memory location where in each turn a processor writes and
reads.

6. Number of read-after-read accesses (RAR): A RAR access occurs when a processor
loads a memory location that was loaded by another processor and the first visible
access to this location is a load. This is an uncommon pattern; it occurs in bad
programs that read uninitialized data. Nevertheless, CIAT sometimes encounters this
pattern when the data is initialized in untraced routines. These accesses can be added
to the RAW accesses.

Figure 3 shows two graphs for the percentage of RAW access of all accesses as a function
of the number of processors. The left-hand graph is for the Sample size and the right-hand
side is for the A size.

It is clear that the percentage of RAW access in the Sample size is larger than the A size.
This is because larger problem sizes result in less communication per instruction due to the
decrease in the ratio of processor domain boundary to the domain size. CG and MG have
the worst communication scalability because their RAW access increases linearly with the
number of processors. The pseudo-applications’ RAW access follows O(1 — 1/p).

Figure 4 shows the percentage of the 16 possible sharing degrees of the RAW access when
using 16 processors for the A size ((S[k] x 100/ 18, S[i]);k =1,...,16). The sharing degree
for the Sample size is similar. It shows that the majority of RAW accesses for SP and BT
have a sharing degree of 1; this is a one producer, one consumer situation. For MG and LU,
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Figure 3: Read-after-write communication.
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Figure 4: Sharing degree in RAW for 16 processors.

the majority of RAW accesses have a sharing degree of 2. CG has a wide sharing degree;
the majority of RAW accesses have a sharing degree that equals the number of available
processors.

Figure 5 shows two graphs for the percentage of WAR access of all accesses as a function
of the number of processors. The left-hand graph is for the Sample size and the right-hand
side is for the A size.

Similar to RAW, the percentage of WAR access in the Sample size is larger than the A
size. Although MG still has a linear increase in WAR as a function of processors, CG has a
constant percentage of WAR for multiple processors. The pseudo-applications’ WAR access
also follows O(1 — 1/p). Notice that RAW accesses are more than WAR accesses because in
these iterative applications one WAR access can follow multiple RAW accesses.
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Figure 5: Write-after-read communication.
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Figure 6: Invalidation degree in WAR for 16 processors.

Figure 6 shows the percentage of the 16 possible invalidation degrees of the WAR access when
using 16 processors for the A size ((I[k] x 100/ 318, I[i]);k = 1,...,16). The invalidation

degree for the Sample size is similar. For these iterative applications, the invalidation degree
is similar to the sharing degree.

These applications have negligible RAR and WAW accesses.

Table 6 summarizes the communication characteristics of the 5 benchmarks. The percentage
of RAW accesses ranges from 0.4% to 8% for 16 processors which is larger than the percentage
of WAR accesses that ranges from 0.2% to 5%.

Table 6 also summarizes the RAW and WAR access as a function of the number of processors
p and shows the weighted average of the sharing and invalidation degrees.

12



Table 6: Summary of the communication characteristics.

l Type Size | CG | MG | SP LU BT |
RAW for p=16 Sample | 7.6% | 8.2% 3.8% 1.4% 1.1%
A 3.7% | 4.2% 3.8% 0.4% 1.0%

WAR for p=16 Sample | 0.5% | 4.9% 2.8% 0.8% 0.7%
A 0.2% | 2.5% 2.7% 0.3% 0.7%

RAW(p) Both | O(p) | O(p) | O(1-1/p) | O(1-1/p) | O(1-1/p)

RAW(p) Both | O(1) | O(p) | O(1-1/p) | O(1-1/p) | O(1-1/p)
RAW sharing degree | Sample | 15.1 | 1.8 1.4 2.8 1.4
for p=16 A 16.0 | 1.7 1.4 2.3 14
WAR Invalidation | Sample | 15.1 | 1.9 1.4 2.2 1.4
degree for p=16 A 16.0 | 1.8 1.4 2.0 1.4

3.5 Communication Time Analysis

In this subsection we present our characterization of the communication variation over time.
We only present our analysis of two representative benchmarks. Our characterization method
is summarized by the following steps:

1. CIAT is used to analyze the benchmarks and to generate a trace of the four commu-
nication events described in Subsection 3.4. Each event is tagged with the instruction
number that caused that event.

2. The execution period is divided into 1000-instruction intervals.
3. The number of communication events in each interval is counted.

4. The communication rate in each interval is calculated as the number of communication
events divided by the product of the interval width and the number of processors.

5. Using standard statistical methods, the average, minimum, and maximum communi-
cation rates are calculated.

6. The communication rate density function is calculated (not including rate=0). The
rate zero is excluded to minimize the effect of the serial initialization phase which does
not have any communication.

7. The density function is integrated to find the distribution function.

Figure 7 shows the number of communication events over time for the kernel CG and the
pseudo-application SP using 16 processors for the Sample size. The two graphs show a
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Figure 7: Number of communication events over time using 16 processors for the Sample size.
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Figure 8: Communication rate using 16 processors for the Sample size.

500,000-instruction period from the parallel phase. Both applications show a bursting be-
havior; however, CG has a higher rate of communication events.

From Figure 7, the periodic behavior of CG is obvious; its graph has 18 cycles with a cycle
time of about 28,000 instructions. SP’s periodic behavior is less clear with larger cycles;
its graph has 3 cycles with a cycle time of about 170,000 instructions. For larger problem
sizes, these cycles get longer. The periodic behavior of these applications is mainly because
of their good load balance and barrier synchronization.

Figure 8 shows the density and distribution functions of CG and SP using 16 processors for
the Sample size. The two graphs show that the communication rate probability decreases
for larger rates and SP’s rate decreases faster than CG’s rate which has a longer tail.
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4 Configuration Dependent Characteristics

In this section, we present the characteristics of NPB reported by CDAT. This section
presents the traffic characteristics of this NPB implementation when run on a cc-NUMA
multiprocessor. The configuration of this multiprocessor is selected to match our projections
of systems that may be available a few years from now. Additionally, this section presents
results for evaluating some of the design options.

Subsection 4.1 starts with an overview of the multiprocessor configuration used in this study.
Subsection 4.2 starts with the big picture of the traffic by presenting the miss ratio as a
function of the number of processors and the problem size. Subsection 4.3 investigates
the effect of the cache line size on the miss ratio. Subsections 4.4 and 4.5 present the
traffic characteristics for single-node and multiple-node configurations respectively. Finally,
Subsection 4.6 investigates the performance of four memory allocation strategies.

4.1 Multiprocessor Configuration

The simulated configuration is a cc-NUMA multiprocessor that consists of nodes intercon-
nected by a crossbar. Each node has 4 processors connected by a cache coherent bus and has
a 4-bank memory with full directory. The system uses a cache coherence protocol similar to
the one used in the DASH [5] project.

Each processor has a combined level 2 cache that is 4 MB in size and 4 way set-associative.
We used a number of cache line sizes ranging from 32 to 256 bytes. Unless otherwise specified,
the cache line size is 64 bytes. The memory page size is 4 KB.

4.2 Miss Ratio

Figure 9 shows five graphs for the data miss ratio of the five benchmarks. The data miss
ratio is the ratio of load and store misses to the total loads and stores. Each graph has two
curves; one curve for the data miss ratio of the Sample size as a function of the number of
processors, and another for the A size. Note that the first two graphs have a different scale
than the rest.

It is clear that the data miss ratio depends on the number of processors and the problem
size. Table 7 summarizes the effects of these two factors on the data miss ratio and the cause
of these effects.

Capacity misses occur when the working set is larger than the cache size. When the problem
size decreases, capacity misses decrease until they become zero when the working set fits
in the cache. In NPB, as the number of processors is increased the data structures are
partitioned into smaller working sets, thus decreasing capacity misses. This behavior is clear
for all the benchmarks with the A size, particularly for CG, which has a large working set

15



that results in large data miss ratio for 1, 2, and 4 processors. When the number of processors
increases to 8, the working set suddenly fits in the 8 caches and there are no capacity misses.

Coherence misses are due to inter-processor communication and the overheads of the cache
coherence protocols. The communication characterized in Subsection 3.4 can be used to
explain the coherence misses in these benchmarks. As we have noticed above, communication
percentage increases for smaller problem sizes and larger number of processors. This trend
is most clear in the Sample size where the data miss ratio increases as p increases.

Communication efficiency refers to the ratio of used bytes to transferred bytes. The commu-
nication efficiency increases when more elements in a cache line are used. Communication
efficiency and false sharing explain why the data miss ratio of the Sample size increase faster
than the data miss ratio of the A size.
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Figure 9: Data miss ratio.
Table 7: Factors affecting the data miss ratio.
Sample size A size
or Large p | or Small p
Capacity misses less more
Coherence misses more less
Communication efficiency worse better
False sharing more less
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4.3 Effect of Cache Line Size

Figure 10 shows the effect of the cache line size on the data miss ratio for the Sample size.

CG and MG have data miss ratios that decrease by about 1/2 when the cache line size is
doubled. The three pseudo-applications, using small problem size to processors ratio, have
data miss ratios that increase as the line size is increased due to false sharing.

Figure 11 shows the effect of the cache line size on the data miss ratio for the A size when
using 4 processors. All the five benchmarks have data miss ratios that decrease by about
1/2 when the cache line size is doubled. This indicates that the effect of false sharing is
negligible at this problem size to processors ratio.
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Figure 10: Effect of cache line size (Sample size).
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Figure 11: Effect of cache line size (A size).
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4.4 Single Node Traffic

Figure 12 shows graphs for single node traffic of CG and SP using 4 processors for both
problem sizes. These graphs show the number of bus signals generated in response to cache
misses and replacements. When there is an instruction miss, the cache generates a read_shar
signal, it generates a read signal for load miss, a read priv for store miss, a req-inv for
store hit on a shared line, an update_data on snoop hit where the cache writes the dirty
line to the bus, a write-back (w/b) when replacing a dirty line, and a zero-length write-back
(0_w/b) when replacing an exclusive line.

Note that the instruction miss number is relatively negligible. Most of the store misses of
CG Sample size are due to initialization in the parallel phase start. When cold misses are
ignored, load misses are extremely more than store misses. Since req_inv number is larger
than read priv, this means that the two benchmarks usually read shared values before
updates. Coherence misses are responsible of most of the Sample size traffic and capacity
misses are responsible of most of the A size traffic. Snoop hit rates increase with higher
communication and smaller data sets. Write-back rates increase with larger data sets and
zero-length write-back traffic can be intense.
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Figure 12: Single node traffic.

4.5 Multiple Node Traffic

Figure 13 illustrates one important aspect of the multiple node traffic of CG and SP using
16 processors in 4 nodes for both problem sizes. These graphs show the status of the missed
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Number

100000-:'
e

1 S ED S ED1I1I S EDSEDS ED

1 S ED S ED 1 s ED S ED S ED
Remote Home Local Remote

Home

Local home Remote home

Number

w CG_S

-=CGA E
z

Status at fetch and load misses for 4 nodes

150000

N ) l

1 s ED S E D1 S ED S E D S E D

100000

I S ED S ED 1 § ED S E D S E D
Local Remote

Home Remote Home

Local home Remote home

Figure 13: Multiple node traffic. .

wm SP_S

== SP_A

lines at instruction and load misses. The line status depends on its home (local or remote),
where it is cached (home, local, and/or remote), and its caching status (I: idle not cached,

S: shared, E: exclusive, D: dirty).

Because of CG’s high sharing degree, a miss most likely finds the line in the shared state.
Because of SP’s low sharing degree, a load miss most likely finds the line in the dirty state.

4.6 Memory Allocation Strategies

In this subsection we present our results comparing 4 memory allocation policies, i.e. policies
for allocating home nodes for memory pages. We have used the following 4 policies:

1. RR1: Round Robin interleaving 1. All pages are interleaved in a round robin scheme
across the available nodes according to their virtual addresses.

2. RR2: Round Robin interleaving 2. Similar to RR1, but code pages are replicated in

every node.

3. Oracle: Code pages are replicated, private pages are allocated locally, and shared pages
are interleaved in a round robin scheme across nodes.

4. 1Touch: First Touch allocation. A page is allocated in the node where it was first

accessed.
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Figure 14: Memory allocation policies.

Figure 14 shows some of the performance effects of using these four memory allocation
policies. The data shown is the percentage of misses satisfied locally when using 16 processors
for the Sample size. Better policies result in more local misses since remote misses normally
take longer latency.

Oracle is always better than round robin allocation because it allocates private data locally.
For CG and MG, 1Touch has good performance because most of the accesses are to private
memory, thus it pays to allocate them in the node where they are first touched. Nevertheless,
1Touch has relatively bad performance because most of the data is shared and is initialized
by processor 0, thus it will all be allocated in node 0.

5 Conclusions

In this report we characterized 5 benchmarks of the NAS Parallel Benchmarks. We have
analyzed these benchmarks using two problem sizes and a varying number of processors
to get an understanding of their characteristics as a function of the problem size and the
number of processors. We used configuration independent analysis to capture their inherent
characteristics and configuration dependent analysis to get useful information about their
performance on future configurations.

These benchmarks have relatively small code size and the 2 kernels have data sizes larger
than the pseudo-applications. As the problem size increases, the work in the parallel phase
increases. While about 2/3 of CG’s instructions are memory instructions, only about 1/3 of
the instructions from other benchmarks are memory instructions. These benchmarks have
generally large basic blocks promoting instruction level parallelism and also have sparse
synchronization.

While less than 20% of CG’s memory is shared, the other benchmarks have a large fraction
of shared memory. This is not reflected in the percentage of shared accesses; e.g. the
pseudo-applications have less than 40% of their accesses shared, indicating that private data
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is accessed more intensely. The majority of these accesses access single word and double
elements.

Most of the communication is in the form of an iterative producer-consumer(s) pattern.
While communication grows linearly with the number of processors for the two kernels, it
grows to an asymptotic value in the 3 pseudo-applications. Although CG has wide sharing
degree, the other benchmarks have the majority of their shared accesses with degree of one
or two. This communication has a bursting and periodic nature.

The data miss ratio is affected by two main factors: it decreases when the number of pro-
cessors is increased and the problem size is decreased due to fewer capacity misses, and it
increases when the number of processors is increased and the problem size is decreased due
to more coherence misses. The data miss ratio generally benefits from larger cache line sizes.

We have also presented some data for single-node and multiple-node traffic. Most of the
traffic is due to load misses. When the sharing degree is high, the status of the missed lines
is likely to be shared. While when the sharing degree is low, the status of the missed lines
is more likely to be dirty.
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