

Agents are not (just) web services : considering BDI agents
and web services♦

Ian Dickinson, Michael Wooldridge1

Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2005-123
July 5, 2005*

software agents,
web services, BDI,
Nuin agent
platform

Web services and software agents share a motivation of aiming to
facilitate more flexible and adaptable I.T. systems. Web services are
increasingly being used to provide active behaviour over the Internet, and
promise end-user benefits that, in previous work, have been associated
with agent systems. Thus it is natural to consider what relationships
agents should have to web services. We argue that agents and web
services are distinct. In our work, agents provide a distinctive additional
capability in mediating user goals to determine service invocations. In
this paper, we review some of the design choices for integrating agents
and web services, and illustrate one approach using reactive planning to
control web-service invocation by BDI agents.

* Internal Accession Date Only
♦SOCABE 2005, 26 July 2005, Utrecht, The Netherlands
1Department of Computer Science, University of Liverpool, Liverpool, UK
 Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Agents are not (just) web services:
considering BDI agents and web services

Ian Dickinson
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford,
Bristol, UK

+44 117 312 8796

ian.dickinson@hp.com

Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool, UK

+44 151 794 3667

mjw@csc.liv.ac.uk
ABSTRACT
Web services and software agents share a motivation of aiming to
facilitate more flexible and adaptable I.T. systems. Web services
are increasingly being used to provide active behaviour over the
Internet, and promise end-user benefits that, in previous work,
have been associated with agent systems. Thus it is natural to
consider what relationships agents should have to web services.
We argue that agents and web services are distinct. In our work,
agents provide a distinctive additional capability in mediating
user goals to determine service invocations. In this paper, we
review some of the design choices for integrating agents and web
services, and illustrate one approach using reactive planning to
control web-service invocation by BDI agents.

Keywords
Web services. Software agents. Agent architectures. BDI.

1. INTRODUCTION
Increasing the flexibility of I.T. systems is a common strategy to
cope with ever more complex and demanding user requirements.
In most approaches, such flexibility derives from breaking larger
units of functionality into smaller components that interact over
networks to deliver a variety of end-user capabilities. An
essential part of this strategy is to avoid rigid, highly
interdependent linkages between the components. Two common
approaches to creating flexible, loosely-coupled systems are
asynchronous message-passing architectures and synchronous
remote procedure call (RPC) architectures. Both styles have
useful characteristics. Software agents, one strand of research
and development into flexible I.T. systems, extend message-
passing architectures to exhibit properties of being social,
reactive, proactive and autonomous [1].

Throughout the 1990s, the idea of composing systems as
collections of loosely-coupled software agents received
considerable attention. More recently, other researchers have
investigated the use of web services, initially based on the RPC
approach, to meet similar goals of building flexible I.T. systems.
The motivations of web service designers are similar to those of
agent designers ([2], ch. 1), despite the differences in technology.
To a large extent, the strict RPC metaphor has fallen out of
favour, mostly due to interoperability problems. For example, the
Web Service Interoperability Basic Profile suggests that web
services be seen as accepting a XML document defining the
input, and returning an XML document defining the output.
While this change de-emphasises the RPC nature of the
interaction, it is still very procedural in nature.

The increasing number of books, journals and conferences about
web service technology suggest an accelerating take-up by the
computing industry. This leads, in our view, to a number of
questions for agent researchers:

• how should agents make use of web services?
• what use, if any, should web services make of

agents?
• how can agents enhance the web services

paradigm?
As web service architectures, standards and tools mature, we see
an opportunity to revisit some of the assumptions implicit in
current agent tools and platforms. For example, many of the
infrastructure-centric capabilities of the FIPA specification suite
[3] are very adequately covered by more recent web service
standards. That web services have been more widely deployed
suggests also that the web-service specifications have been tested
more stringently in practice. If it is true that agent infrastructures
might benefit from adopting web service technology, we also
believe that some of the ideas from agent research are ideally
suited to enhancing and extending service-oriented applications.
In the rest of this paper, we explore these complementary issues
in the context of a BDI agent platform. The remainder of the
paper is structured as follows: we first review, very briefly, the
salient aspects of web services in section 2. In section 3, we
consider current approaches to integrating web services and
agents, and then in section 4 we show how we have approached
the problem in our BDI platform. We conclude with some lessons
learned from a prototype system.

2. Background: web services
There are numerous definitions of the term web service. The
W3C defines a web service as: “A Web service is a software
system designed to support interoperable machine-to-machine
interaction over a network” [4]. The W3C definition goes on to
specify the use of SOAP [5] and WSDL [6] as communication
standards, but this would preclude those web-services that are
based on a REST-style [7] interface. In our work we don’t limit
consideration to only SOAP-based web services.

Service oriented architectures (SOA) describes an approach to
building business applications based around web services. A very
large number of standards, some of which are still being
developed, describe many aspects of SOAs, from basic
mechanisms for exchanging data, though service directories to
aspects of security, message exchange patterns and business
process description.

A common pattern for web-service implementation is familiar
from RPC styles of distributed computing. A service exposes
operations, these operations consume inputs and produce
outputs. Service invokers communicate with web services over
HTTP, and typically use XML as a meta-language for encoding
inputs and outputs. These elements are typically described in a
machine-readable specification, such as WSDL [8], which is also
encoded in XML.

Advocates for web-services often emphasise loose coupling ([9]
p76) of service components, to make applications more resilient,
and their components more reusable, by minimising explicit data
and control flow dependencies between services. Instead,
elements of the service description are combined with a process
description to determine which service operations are invoked in
which sequence. A variety of approaches exist for constructing
complex behaviours from loosely-coupled components. This is
often termed web service choreography [10]. Such approaches
define, at varying levels of abstraction, possible sequences of
web-service invocation, and the dataflows between them.

2.1 Semantic web services
It may be observed that WS choreography and similar approaches
concentrate on the operational aspects of web-service
composition. While such choreography can add flexibility and
resilience to an application architecture, it does imply that the
actual services to be invoked are known, or discovered by the
developer, at design time. There are situations in which such an
operational approach is inadequate, for example:

• A service of a given type is required, but the
identity and location of the provisioning service is
not known (or cannot be known) at design time;

• A given capability is required, or some end effect
needs to be achieved, but again the identity and
location of the service, or services, that can fulfil
the need are not known at design time;

• The process of invoking the service is more
complex than simple RPC, for example it is
strongly context-dependent, or it requires resource-
management or negotiation.

To go beyond the standard choreographing of known services, we
require additional information about what the service will do,
should it be invoked. The service must be sufficiently self-
describing that, if the caller subsequently decides to invoke that
service, it is able to do so. To maximise flexibility, such
descriptions need to be machine-processable, so that as much as
possible of the flexible adaptation-to-circumstances takes place
without human intervention. In particular, such adaptations
should place a minimal burden on the end-user.
Following from recent work in the semantic web [11], one
approach to this objective is termed semantic web services – the
provision of semantic-web style semantic descriptions of services
and processes. A number of semantic web services projects and
standards initiatives are underway, but space does not permit a
complete exploration here. Instead, we briefly outline one of the
prominent technologies, OWL-S [12], as an exemplar that
typifies the semantic web services approach.
An OWL-S description of a web service has three components:

• A service profile, that describes what the service
does;

• A process model that specifies, in abstract terms,
the operation of the service;

• A grounding model that specifies how other
processes should invoke the service being
described.

The service profile describes the preconditions that should exist
prior to a service being invoked, the effects that occur as a result
of invoking the service, and the explicit inputs to and outputs
from the service. These inputs, outputs, preconditions and effects
(IOPE) are described using a pre-defined OWL ontology. Using
the IOPE descriptions, it is possible to use algorithmic
approaches, including planning, to construct complex services
from simpler components without depending on a human
programmer.

2.2 Limitations of semantic web services
There are clearly scenarios in which the service descriptions
provided by semantic web services research do provide effective
solutions. For example, consider a supply-chain automation
problem. Given a description of the required materiel for a
certain production process, it is easy to imagine that a well-
designed application could make use of semantic descriptions of
component suppliers’ ordering and estimation processes, and
logistics providers’ shipping and tracking processes, to ensure a
smooth production supply. The supply chain manager process
should be able to switch suppliers straightforwardly if one
supplier forecasts a component shortage, or a delivery channel
fails. The semantic descriptions of the services allow some
robustness to variances in the interfaces to the different
suppliers’ services.
However, a more open-ended scenario presents greater
challenges. In [12] section 2, it is suggested that OWL-S will
help a user to locate a service that (i) sells airline tickets between
two given airports, and (ii) accepts a certain type of credit card.
We might speculate that the user's overall goal may be to get
home in time for Thanksgiving, nevertheless the interaction is
based around much more basic operations. This puts a strong
onus on the user to decompose their own goals down to a level of
necessary basic actions, which may then be performed by web
services. But if the user has to perform this goal decomposition
themselves, and form a suitable plan for achieving their goals, it
is unclear how the automation provided by the web service is
genuinely helping that person. If that user is able to analyse their
own needs to that necessary degree, would it not would be
simpler and easier for them simply to use a conventional travel
web site to book their trip?
We propose that much of the putative benefit from flexible,
advanced IT systems is largely contingent on increasing
automation. We propose that more of this benefit will be
delivered when users can specify the goals they wish to achieve,
rather than the actions they wish to perform.

2.3 Software agents
A natural idiom for encoding and executing goals is through
software agents [1]. For the purpose of this discussion, we
restrict our attention to deliberative agents [13], that is, agents

that have a symbolic knowledge representation, and which use
symbolic reasoning to achieve their behaviour. In our work, we
are particularly interested in ways that human users interact with
agents, especially agents that behave autonomously. Such
autonomous behaviour shifts the basis of the interaction from a
direct manipulation model to a delegation model [14]. One
advantage of deliberative agents over other approaches is that
key elements of the user-agent interaction, for example the user's
goals or the agent's strategies, have an explicit representation.
Crucially, this enables those objects themselves to be part of the
dialogue. The user could, for example, critique the agent's
strategy for achieving a given outcome, perhaps by refining or
updating their own expressed goal.

Deliberative agents use symbolic structures, founded on
predicate logic, to represent knowledge. In particular, logical
formulae stand for mental attitudes in both the user and the
agent, where mental attitudes include beliefs, desires,
preferences and so forth. Often, modal operators, qualified by the
name of the actor, distinguish (say) the agent’s beliefs from the
user’s beliefs.

3. Agents and web services
There are many different ways in which to consider the
relationship between software agents and web services. Drawing
from the published literature, we identify the following common
themes:

3.1 Theme 1: no conceptual distinction
One view (see, for example, [15]) is that agents and web services
are not conceptually distinct. In this view, there is no conceptual
difference between a web service and an agent: both are active
building blocks in a loosely-coupled architecture. In such
architectures, there is only an engineering problem of creating
overall system behaviours from active components.
We reject this position, and suggest that there is a useful
distinction between web-services and agents. Moreover, we
propose that this distinction is useful to both the system
designers and its users. If an agent is able to represent, mediate
and proactively act to achieve a user’s goals, it will manifest in
the user-interface in a different way to non-agent components
that do not have those properties. We propose that agents are
necessarily those elements of the system that are most
parsimoniously describable in terms of mental attitudes,
particularly intention (the user's or the agent's).
Suppose we wish to represent the intent of the user, e.g. “Mary
wishes (i.e. has a goal) to meet the product team in Paris”, and
we aim to use this intention to structure interactions between the
system and the user, and perhaps between system components.
There must be a locus for the representation of this intent in the
system. Mary's digital travel assistant might represent her Paris-
travel goal, and subsequently adopt an intention to assist with
travel planning. The observable behaviours of a component that
holds understands user goals and can adopt its own mental
attitudes in response are distinct and different from deterministic
components. Clearly a given software component can both
represent intention and act as a web service, but this makes it

different from traditional web services, which don’t. Hence
representing intention is, in our view, the key conceptual
difference between agents and services.

3.2 Theme 2: bi-directional integration
A second theme in the literature is that agents and web-services
can interoperate by either of them initiating communications
[16], [17]. That is, agents can invoke web services, and vice
versa. The work of Greenwood and Calisti [16] shows clearly
that it is feasible for web-services to invoke an agent capability,
providing that an appropriate WSDL to ACL mapping is in place.
However, we view the invocation of agents by web services as
problematic. The implication of the web-service to agent
invocation is that the agent must expose pre-determined
behaviours, for example named operations with known
parameters. Suppose such exposed methods represent fixed,
deterministic behaviours. This makes the invoking service easier
to write, but violates the presumption of the autonomy of the
agent. It is not clear why a software component that behaves in
this deterministic manner can be termed an agent. If the invoked
agent is not fixed and deterministic in its behaviours, the
invoking web-service must behave in an agent-like manner to
adjust to the agent’s autonomous responses. If the behaviour of
the web-service is not distinguishable from an autonomous agent,
then we argue that it should be regarded conceptually as an
agent, not a service.
In our model we regard web-services as more primitive than
agents. If an agent is to behave plausibly autonomously, and
respect its (and its user’s) current intent, then it can only expose
the most generic interfaces to other services – such as the
delivery of a message or event.
Greenwood and Calisti also propose that agents exposing their
capabilities as web services should use an adapter to translate
between SOAP and ACL requests. An agent registers entries in a
FIPA directory facilitator (DF) to advertise its abstract services,
and it is these that are made available as web services via the
adapter. This implies that agents advertise their capabilities and
roles procedurally, using the operations they can perform, rather
than declaratively describing their capabilities. This is also
different from our approach.

3.3 Theme 3: agents invoke web services
A key proposal of web-service architectures is that simple
(atomic) services can be composed together, in a workflow, to
form complex composite behaviours. A number of researchers
(e.g. [18], [19], [20]) have explored the use of AI planning to
compose complex behaviours. Such planning is performed on
behalf of a user to meet some set of goals. This suggests a
layered view, as shown in Figure 1 (below).
In this view, agents primarily are responsible for mediating
between users’ goals, and the available strategies and plans.
Agents invoke, or design, atomic or composite web services as
necessary.

Figure 1: layered view of agent-ws interactions
A related approach is explored in [21], although in this work the
authors seek to generalise the interface to web services from
specific operations to generic operations that are analogous to
speech acts. So a web service might have an inform operation,
with an argument which has a similar role to :content in a
FIPA ACL message.

Our approach broadly follows this third theme. Web services are
invoked by agents as component behaviours, but autonomy and
intent is only represented at the agent level. In the remainder of
this paper, we explore how this general theme is embodied in our
experimental BDI agent platform.

4. NUIN BDI AGENT PLATFORM
The Nuin agent platform [22] is an open-source Java
implementation of a combination of a belief-desire-intention
(BDI [23]) agent platform and semantic web techniques. A
particular goal of the Nuin architecture was to make the platform
easily extensible by agent developers. The outline architecture of
Nuin is shown in Figure 2. A key extension point is the abstract
service boundary. The original design intent for the abstract
service boundary was as a means to add custom behaviours to the
agent, written as Java plug-ins. For example, an incoming event
might trigger a plan, which would delegate handling of the event
to a GUI, incorporated as a plug-in capability.

This abstract service boundary provided a natural basis for
extending the internal agent services to include external web
services. So, for example, with the correct service binding in
place, an invoke action from the agent script can directly call an
operation on a web-service, and bind the result to a script
variable. Moreover, this abstraction boundary also provides a
natural place to encode know-how – the knowledge that an agent
has of its own capabilities [24]. Currently, we use an RDF [25]
knowledge base to store any local meta-knowledge an agent has
about its own capabilities. The set of known web services may be
fixed at design time, or dynamically extended at run time. Agents
can dynamically create web-service bindings by fetching and
parsing the WSDL service description.

4.1 Service descriptions
In order to determine which services to utilise to achieve a given
goal or satisfy a given intent, the agent requires meta-data
describing the available services. As an example, consider one
aspect of a typical knowledge management application. As part
of this application, the user can specify a search string to locate
articles stored in the systems’ database. While it could be said

that the user’s intent is to perform a search with the given terms,
it is perhaps more accurate that the user’s specific intent is to
locate a document relevant to a certain task, where the task
might be generating a customer bid. Indeed, the overall intent is
to satisfy the customer’s RFP, with the “locate-document” intent
as a component of that overall goal. Suppose that the agent has
access to a number of services, including a database search
service, and a query-rewrite service. The query rewrite service
has a number of tactics for modifying the user’s query, for
example performing WordNet [26] synset expansion or
narrowing. We would like the agent to be able to offer strategic
choices to the user, including the choice of the composite service
of searching on the re-written query string. How does the agent
know to offer this composite service to the user, to help satisfy
the document location intent? The agent must be able to
determine that a given service (including composite services) is:

• relevant to the user’s intent
• strategically useful to meeting the user’s goals
• describable to the user (when user assent is

required before enacting the service)
One key role of a service description is to provide meta-
knowledge that the agent will use to inform such decisions. A
WSDL service description describes the type signature of
operations. For example, the above query-expansion service
takes a query string argument, and produces a new query string.
It has string • string as a type signature. However, this
type signature applies to many other string manipulating
operations, so knowing the type signature alone of an operation is
insufficient meta-knowledge to determine whether the operation
is relevant to the current goal. Post-conditions in the service
description can make the description more precise. The query-
expansion service might perhaps state, as a post-condition, that
the returned string is a moreGeneralQuery than the input
string, assuming there is a suitable ontology in which levels of
query generality are defined. This is the kind description that
might be provided by an OWL-S semantic web service
description. However, this still leaves open the issue whether
generalising a query is a relevant and useful tactic to offer to the
user. Such strategic knowledge does not fit conveniently into the
OWL-S 1.1 framework. Our current approach is to encode
strategic knowledge directly into the BDI agent’s knowledge
base.

An earlier anonymous reviewer of this paper suggested that
encoding the strategic knowledge in the agent's KB simply
introduces a knowledge acquisition bottleneck into the design
process. This is a fair criticism, but serves to underline a
fundamental difficulty. The semantic web services descriptions
cannot express context-dependent knowledge. A given web
service might be useful to one user, given his or her goals and
preferences, but (relatively) useless to another user with similar
goals but whose context is different. The process of mapping
from high-level goals to services to invoke must draw on
knowledge of both the service capability and the user's context.
In order to remain general, the web service description cannot be
too specific to any given user's goals. This remains an area where
additional research is required.

Atomic web services

Composite web services

Agent Intentions, goals,
strategies

Plans

Operations

Representations needed

Figure 2: outline Nuin architecture

We note that the Web Services Modelling Ontology (WSMO)
[27] includes the concept of a wgMediator, which is claimed to
encode the mapping between a goal and a web service. However,
the details of the definition, use and semantics of mediators are
unclear in the current version of WSMO, so we have not
investigated this further.

4.2 Integrating web services in BDI agents
A goal of BDI architectures is practical reasoning: an attempt to
achieve effective computational performance in autonomous
systems by balancing consideration of how to act with acting.
BDI agents commit to a course of action, represented by an
intention, based on their current beliefs about the world and their
current goals. In order to be able to react to the changing state of
the world, it is important that a BDI agent be able to adopt new
intentions, and drop or modify existing ones if they are no longer
relevant.
In a typical BDI architecture, such as PRS [28] or AgentSpeak(L)
[29], the agent’s starting state includes a plan library, which the
agent uses to control its behaviour, rather than utilising planning
from first-principles. In typical practical reasoning approaches,
an intention is either the intention-to perform a given plan, or the
intention-that the post-conditions of a given plan become true.
In reactive planning, a complete plan to achieve a given goal is
not constructed a priori and then executed. Instead, a library of
general pre-defined (i.e. defined at compile time) plans is
provided to the agent, and the agent performs one or more of
these plans in response to its perceptions of the environment.
Thus the agent reacts to actual conditions of the world. There are
two principal advantages of reactive planning: it is
computationally more efficient, since a large search-space does
not have to be explored, and it does not require the planner to
have available a symbolic model of the possible effects of actions
and the initial state of the world. By contrast, first-principles
planning [30] approaches require full knowledge of the initial

world-state and of the changes that will be brought about by
performing a given action. The initial-state requirement can be
mitigated to some extent by explicitly planning information-
gathering steps into the plan [31], but it remains the case that
planning from first principles is computationally expensive ([30],
§3.4).
Given that a BDI agent will select a course of action based on its
environment (determined by incoming messages or sensed
percepts), a key issue in BDI approaches is what the agent should
do if it determines that it has more than one possible course of
action. In PRS, the interpreter only proceeds once there is exactly
one relevant plan to follow. If more than one plan is relevant at a
given step, the interpreter treats this as a problem that can be
solved by a meta-level evaluation of the choices. This recursion
continues until a single course of action has been selected. In
AgentSpeak(L), Rao abstracts this plan-selection problem into
pre-specified evaluation functions, which select a single event to
process, or a plan to adopt, given multiple choices. While the
evaluation functions encapsulate the abstract requirement, Rao
does not offer a practical solution to the representation of
evaluation functions.

With Nuin, we have decided not to adopt the recursive approach
of PRS, since in our experience it creates conceptual (and
debugging) difficulties for the agent programmer. We have
allowed for variable evaluation functions in the interpreter
architecture, following AgentSpeak(L), but this is also
unsatisfactory in general. We would like the agent’s choice of
action to be, at least in-part, determined by the agent’s current
mental state (i.e. current beliefs, desires and intentions). This is
not well-defined if the decision procedure is contained within the
interpreter. Indeed, Rao’s evaluation functions in AgentSpeak(L)
do not take the agent’s current mental state as a parameter. We
do define in the agent script language actions for modifying the
current mental state, for example adopting or dropping a goal or
intention.

The general problem, then, is how to define strategic knowledge
that the agent can use both to select its own course of action, and
to converse with the user in terms that match the user’s
conceptualisation of the domain. Our current experimental
approach is to utilise a structured goal language, in which
strategic knowledge is encoded into a declarative goal structure.
EaGLe [32] is one example approach. Like EaGLe, we define a
small number of goal refinement operators (for example: all sub-
goals, any sub-goal, sequence of sub-goals, perform a plan).
These goals are stored in an RDF knowledge base, which can
then be augmented by the user. For example, the agent may
presume to achieve goal g by sub-goals g0, g1 and g2 in order. A
given user may override the reduction of g as g2 then g0,
ignoring g1. This is only a rather crude first step, but will allow
us to explore the, and refine, the user's ability to influence the
agent's behaviour through entering a dialogue around such
strategic choices.
One particular reason for using an RDF representation to encode
and store the goals themselves is to permit the use of semantic
web technologies to allow goals, or goal strategies, to be shared.
We have not yet investigated this in detail, but one way to at
least mitigate the knowledge acquisition problem alluded to
above, would be to allow users in a community to share
strategies. In particular, sharing strategies that map the pre- and
post-conditions of newly introduced services to general goal
conditions, perhaps related to a shared upper ontology, would
help an agent community quickly integrate new capabilities.
With this in mind, the use of URI's for symbols, and other RDF
modelling commitments, becomes especially valuable.
Whether or not this particular approach is shown to work
effectively, we argue that the current semantic web services
approaches, on their own, lack a standard means to allow an
agent to relate its intentions in pursuit of stated user goals to the
capabilities of services. We don't argue necessarily that either
OWL-S or WSMO should be extended to cover this need, just
that there is a currently unmet requirement.

4.2.1 Interleaving planning and acting
Reactive planning, as exhibited by practical-reasoning agents,
mixes planning with acting. The changes to the world state,
combined with the agent’s current intention set, determine the
choice of next action. Reactive planning uses libraries of pre-
defined plans, which are activated by the agent’s perceptions of
its environment.
While the reactive planning approach has some advantages, it
does suffer from a significant drawback when actions have side-
effects. The Nuin interpreter allows chronological backtracking
through side-effect free actions, but it does not permit any
backtracking through actions that have side-effects. For internal
actions, the side-effecting nature of an action is part of the action
description. For web-services, it is not clear, a priori, whether an
operation is safe to repeat or backtrack through. For example, the
operation of determining the weather forecast for a certain city is
probably idempotent, but booking a plane ticket is not. By
definition, REST-style web services using the HTTP GET

method should be idempotent1. In general, however, idempotency
is not known. We currently understand that neither OWL-S nor
WSMO allow for action idempotency to be specified in a service
description.

For some actions, it may be possible to specify a compensation
action, to perform if the agent wishes to reverse some partially-
completed action. This might mean, for example, cancelling a
non-committed transaction in a transactional system. In general
reversing an action is a difficult and open research question. It
does suggest, however, that some applications, even if
predominantly using a reactive planning approach, may require
some online planning to plan ahead before committing to a
course of action.

5. Discussion
A central hypothesis of our work is that explicitly referencing
goals and intentions provides a more cogent and flexible
foundation for human-assisting agent dialogues. Deliberative
agents provide the representational tools to store and manipulate
such mental attitudes, and this distinguishes a software agent
from a complex web service.
Nevertheless, web services are being increasingly deployed as
units of active behaviour on the web. Our work has shown how a
BDI-style agent, using a reactive planning approach, can mediate
between the representations of the user’s and the agent’s mental
attitudes, and the operational semantics of the web service.
Crucial to this mediation is the provision of knowledge about the
web-services to be invoked. Current semantic web service
descriptions provide some, but not all, of the necessary
knowledge. The particular issue that we found is the need for
strategic knowledge, which can assist the agent to make, or
suggest to the user, decisions about choices of which service to
invoke.
In contrast with web-service composition techniques based on
planning, reactive planning requires fewer runtime
computational resources and does not require a complete model
of the symbolic effects of actions and the world’s initial state.
However, reactive planning does risk over-commitment to
ultimately non-viable courses of action, which can be
problematic if the actions themselves are side-effecting on the
world. We anticipate, therefore, that some agent applications will
always require the ability to plan ahead in time and consider
future courses of action without performing actions. Attempting
to use reactive-planning for web service selection has highlighted
that the current semantic web service descriptions do not provide
a means to describe side-effects, or failure recovery actions.
We have experimented with explicitly encoded meta-knowledge,
added directly to the agent's knowledge base, to assist the process
of mapping between the user's (highly context-dependent) goals
and the (context independent) semantic descriptions of service
capabilities. Once strategic knowledge is a first-class object in
the agent's knowledge base, we can enlist the user's assistance to
adjust the agent's strategy either by directly modifying strategy

1 Though this is not always the case; the web service API

provided by Amazon.com is RESTful, but includes side-
effecting operations.

parameters, or by updating the original goal. We view this as a
crucially important aspect of human-agent interaction, and our
current approach is just a preliminary step. As they encoded in
RDF/OWL, we could in principle allow such strategic knowledge
to be shared among members of a community. We have not fully
investigated this yet, but it is one possible approach to mitigating
the arguably high cost of acquiring strategic knowledge.

6. Conclusions and future work
There seems little doubt that web services will be part of the I.T.
systems landscape for the foreseeable future. Current web
services approaches and standards provide much of the general
infrastructure currently handled by agent platforms. We conclude
that agent software should evolve to concentrate on higher-level
capabilities that integrate web-service components into highly
flexible solutions to better meet user needs in the face of
increasingly complex computational systems. In our view, the
essential role of software agents in this scenario is to encapsulate
user’s intentions. An essential element of this evolution will be
determining the mechanisms by which strategic knowledge about
the uses of a given web service, relative to user goals, is encoded
and made available.
Our future work will investigate better means of adding strategic
knowledge into the agent platform, to allow the agents to make
more automated decisions. We will also add support for directly
utilising semantic web service descriptions in OWL-S

7. REFERENCES
1. Wooldridge M. & Jennings N. "Intelligent Agents: Theory and

Practice". Knowledge Engineering Review. Vol. 10:2. 1995.
pp. 115-152.

2. Zimmermann O, Tomlinson M, Peuser S. Perspectives
on Web Services Springer, 2003.

3. Foundation for Intelligent Physical Agents (FIPA).
Specification index. 2004.
http://www.fipa.org/specifications/ind
ex.html

4. Booth, David , Haas, Hugo, McCabe, Francis,
Newcomer, Eric, Champion, Michele, Ferris, Chris, and
Orchard, David. Web Services Architecture. (W3C
Working Group Note) 2004.
http://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/

5. W3C. Simple Object Access Protocol (SOAP) 1.1. 2000.
http://www.w3.org/TR/SOAP/

6. Kantor, P. B. , Boros, E., Melamed, B., & Me•kov, V.
"The Information Quest: A Dynamic Model of User's
Information Needs". In: Proceedings of tthe 62nd
Annual Meeting of the American Society for Information
Science. American Society for Information Science.
1999. pp. pp. 536-545.
http://aplab.rutgers.edu/ant/papers/qu
est/quest.htm

7. Fielding R. & Taylor R. N. "Principled Design of the
Modern Web Architecture". ACM Transactions on
Internet Technology. Vol. 2:2. 2002. pp. 115-150.

8. Christensen, E., Curbera, F., Meredith, G., &
Weerawarana, S. Web Services Description Language
(WSDL) 1.1. 2001.
http://www.w3.org/TR/wsdl

9. Singh M, Huhns M. Service-Oriented Computing Wiley,
2004.

10. Burdett, D. & Kavantzas, N. WS Choreography Model
Overview (working draft). 2004.
http://www.w3.org/TR/2004/WD-ws-chor-
model-20040324/

11. W3C. W3C Semantic Web Activity. 2001.
http://www.w3.org/2001/sw/

12. Pretschner, A. & Gauch, S. "Ontology Based Personalized
Search". In: Proceedings 11th International Conference
on Tools with Artificial Intelligence. TAI 99. IEEE
Computer Society. pp. 391-398.

13. Wooldridge M . Reasoning About Rational Agents MIT
Press, 2000.

14. Negroponte N. Agents: From Direct Manipulation to
Delegation. In: Bradshaw J., ed. Software Agents. AAAI
Press , pp. 57-66, 1997.

15. Breese JS, Heckerman D & Kadie C. "Empirical Analysis
of Predictive Algorithms for Collaborative Filtering".
Proceedings of the 14th Conference on Uncertainty in....
1998.

16. Greenwood, D. & Calisti, M. "An Automatic, Bi-
Directional Service Integration Gateway". In: Proc.
Workshop on Web Services and Agent-Based Engineering
(WSABE'2004). 2004.
http://www.agentus.com/WSABE2004/progr
am/7.pdf

17. Good, N., Schafer, J. B., Konstan, J., Borchers, A.,
Sarwar, B., Herlocker, J., & Riedl, J. "Combining
Collaborative Filtering With Personal Agents for Better
Recommendations". In: Proc. 16th National Conference
on AI (AAAI-99). AAAI Press, 1999. pp. 439 – 446.

18. Sirin, E. & Parsia, B. "Planning for Semantic Web
Services". In: Proc. Workshop on Semantic Web
Services: Preparing to Meet the World of Business
Applications. 2004.
http://www.ai.sri.com/SWS2004/final-
versions/SWS2004-Sirin-Final.pdf

19. Horrocks I. Reasoning With Expressive Description
Logics: Theory and Practice. In: Andrei Voronkov, ed.
Proc. 18th Int. Conf. on Automated Deduction (CADE-
18). Springer Verlag, pp. 1–15, 2002.

20. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., &
Traverso, P. "Planning and Monitoring Web Service
Composition". In: Workshop on Planning and
Scheduling for Web and Grid Services. 2004.
http://www.isi.edu/ikcap/icaps04-
workshop/final/pistore.pdf

21. Gibbins, N., Harris, S., & Shadbolt, N. "Agent-Based
Semantic Web Services". In: Proc. Twelfth International
World Wide Web Conference. ACM, 2003.
http://eprints.ecs.soton.ac.uk/7278/

22. Dickinson, I. Nuin: the Jena Agent Framework. 2004.
http://www.nuin.org

23. Rao, A. & Georgeff, M. "BDI Agents: From Theory to
Practice". In: Proc. First Int. Conf on Multi-Agent
Systems (ICMAS-95). 1995.

24. Singh M. Multiagent Systems: a Theoretical Framework
for Intentions, Know-How, and Communications
Springer-Verlag, 1994.

25. World Wide Web Consortium (W3C). The Resource
Description Framework (RDF). 2004.
http://www.w3.org/RDF/

26. Miller G. "WordNet: an on-Line Lexical Database".
International Journal of Lexicography. Vol. 3:4.

27. Lara, R., Roman, D., Polleres, A., & Fensel, D. "A
Conceptual Comparison of WSMO and OWL-S". In:
European Conference on Web Services (ECOWS 2004).
2004.
http://www.uibk.ac.at/~c703225/papers/
conceptualcomparison.pdf

28. Georgeff, Mike and Ingrand, François. Research on
Procedural Reasoning Systems (Final Report – Phase 2).
SRI International. 1990.

29. Rao, A. "AgentSpeak(L): BDI Agents Speak Out in a
Logical Computable Language". In: Proc. 7th European
Workshop on Modelling Autonomous Agents in a Multi-
Agent World (MAAMAW '96). Springer-Verlag, 1996. pp.
42–55.

30. Ghallab M, Nau D, Traverso P. Automated Planning :
Theory & Practice Morgan-Kaufmann, 2004.

31. Kuter, U., Sirin, E., Nau, D., Parsia, B., & Hendler, J.
"Information Gathering During Planning for Web Service
Composition". In: Proc. Third International Semantic
Web Conference 2004 (ISWC2004).
http://www.mindswap.org/papers/ISWC04-
Enquirer.pdf

32. Sycara, K., Lewis, M., Lenox, T., & Roberts, L.
"Calibrating Trust to Integrate Intelligent Agents into
Human Teams". In: Proc. 31st Annual Hawaii
International Conference on System Sciences. IEEE,
1998. pp. 263 – 268.

