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Abstract

To get good performance on a parallel system, distribution and scheduling of data and
computations are the critical issues. TStreams is a way of abstracting a program so as to
represent exactly those aspects relevant to distribution and scheduling, leaving out all other
details. We are interested in TStreams as a form on which to automatically produce good
mappings and also on which to specify and tune mappings by hand. However, the focus of
this paper is how to automatically generate TStreams.

1 Introduction and related work

TStreams is a new language for describing parallel computations. It describes what to compute
and when it can be computed. However, it distinguishes the expression of the potential parallelism
of the program from both

1. the lower-level serial details of the algorithm, and
2. the actual parallelism for a given target.

Precisely,

1. The user defines some high-level operations and specifies how they are used. The code for
executing each such high-level operation is written in a serial language rich in appropriate
control and data structures. TStreams, however, is not concerned with the implementation
of the high-level operator. It is only concerned with how the operator is used.

TStreams is not a general-purpose language. TStreams has a single data structure, a single
control structure and a single operation.

2. TStreams makes no assumptions about the target architecture (shared memory/distributed
memory/grid/web service/streaming) or the specifics of the configuration.

Other languages are based on a specific model and then incorporate additional constructs or
optimizations to deal with other models. For example, OpenMP (OpenMP Architecture Re-
view Board, 2000) is focused on shared memory systems, HPF (High Performance Fortran
Forum, 1997) on distributed memory systems and Brook and StreamIt (Thies et al., 2002)
on streaming systems.



TStreams represents all styles of parallelism (e.g., task parallelism, data parallelism, loop
parallelism, pipelined parallelism) in a uniform way. A program in TStreams form can be
mapped and scheduled for any particular target.

s:divide

i:cube

tag space t:cube of the i:cube items
and of the s:analyze steps

s:analyze

tag space t:divide of the
s:divide steps

Figure 1: Item spaces, step spaces, and tag
spaces in the recursive tree building phase
of an n-body problem. The (sole) item
space is represented by a rectangle, the two
step spaces are represented by ovals, and
the two tag spaces are represented by tri-
angles.

TStreams is a language. A user can write it directly
or it can be automatically generated by compilation
techniques. In this paper we introduce TStreams and
describe how to automatically generate it.

2 The elements of TStreams

We start by showing how to use TStreams to build a
dynamic tree. This is the first stage of programs that
solve n-body problems, which are important both
in astrophysics and computational chemistry. These
problems model how a large number of bodies, each
acting on the others, evolves in time. The complexity
can be reduced from O(n2) to O(n log n) by approx-
imating a group of distant bodies as a single body.
The computation starts by building a tree: the root
is the 3-dimensional cube containing all the bodies.
Cubes are recursively cut into 8 subcubes until no
subcube has more than one body in it. Here we
show how tree-building of this sort is represented in
TStreams.

For simplicity, we will consider the problem in 2 di-
mensions rather than 3, so that each cube (square,
actually) is divided into 4 subcubes—that is, the tree
has 4-way branching.

The algorithm is quite simple: We start with the root
cube. Each cube is analyzed to see if it contains
more than one body. If it does, then it is divided
into smaller cubes, and the process continues.

There are three basic elements of a TStreams program: step spaces, item spaces, and tag spaces,
which are sets of steps, items, and tags, respectively. These spaces are shown in Figure 1. The
individual steps, items, and tags are shown in Figure 2, which shows how the actual program
evolves in time.

Item spaces Data in the program is encapsulated into items. An item space is a collection of
items. In our example there is one item space—the space of cubes, and each cube is an
item.

Step spaces Computations in the program are represented as steps. A step space is a collection
of steps which share the same code but apply it to different data. In our example there are
two step spaces: the space of s:analyze steps (“s:” just reminds us that this is the name of a
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Figure 2: Items, steps, and tags in the recursive tree building phase of an n-body problem.

step) and the space of s:divide steps.
Tag spaces Tags are indices that are used to parametrize items and steps. Each item in an item

space has a distinct tag, and each step in a step space has a distinct tag. So an item can be
uniquely identified by specifying its name (that is, the name of its item space) and its tag;
and similarly for steps. A tag space is a collection of tags that parametrizes one or more
item spaces and/or step spaces. In our example, the tag of the root cube will be 〈0〉. The
four child cubes will have tags 〈0.0〉, . . . , 〈0.3〉, and so on.

These three elements are tied together by relations, of which there are two basic kinds:

Parametrization relations Each step space and each item space has a tag space that parametrizes
it. Thus, each step and each item has a tag that identifies it uniquely. Parametrizations are
represented in both Figures 1 and 2 by thin arrows.

Producer and consumer relations Steps consume items, and produce items and/or tags. Pro-
ducer and consumer relations (i.e., relations between step spaces and item spaces) are rep-
resented in both Figures 1 and 2 by thick arrows.
In general, steps have access to their tags, and they take in certain items as input and produce
items and/or tags as output. Other than that, they have no other information available to
them, and they have no side effects other than the explicit production of tags and items.



Figure 2 shows how the recursive subdivision works. At the start of the program, we have the
root cube and its tag. These two objects are shown lightly shaded at the top of the figure. The tag
belongs to the t:cube tag space, which was given that name because it parametrizes the cubes.

However, each cube needs to be analyzed, so this tag space also parametrizes the s:analyze step
space. So in addition to the thin arrow from the top tag to the root cube, there is also one from
that tag to an s:analyze step. That step needs the root cube as input. (How does the s:analyze step
know which cube to ask for? Answer: it knows its own tag, and it asks for the cube with the same
tag.) Assuming the root cube needs dividing, the s:analyze step produces a tag with the same value
(〈0〉), putting it into the t:divide tag space. That tag space parametrizes the s:divide step space.

So the first thing that happens in the program is that the medium-shaded s:analyze step executes
and produces a t:divide tag.

That t:divide tag in turn parametrizes a darkly shaded s:divide step. That step is ready to run
because it needs (in addition to its tag) only the root cube as input, and that cube is of course
available. (How does it know which cube it needs? The same way as before.) That step then
executes.

So that step executes and produces the four child cubes, each with its own tag. These new objects
are also darkly shaded.

Up to this point in the computation, the order of execution was completely determined. At this
point however, there are four possible ways that execution can continue, since there are four steps
that are ready to run. Note that we could schedule the execution of the steps in this program to tra-
verse the tree being built in a depth-first manner or a breadth-first manner or in parallel, or in many
other ways. The basic TStreams representation does not specify this order of execution. It simply
indicates which operations are needed and for each operation shows the conditions necessary for
it to be ready to run.

In this program, each step took as input an item whose tag has the same value as the step’s tag.
This is not the case in general. All that is required is that the step be able to compute from its own
tag the tags of any items it needs as input.

3 The value of TStreams

TStreams is architecture neutral. The items represent the data consumed and produced by compu-
tations. These are inherent in the algorithm. A step is ready to run when its tag exists and its input
items have been produced. How this is managed (e.g., by synchronization or communication) will
vary on different architectures, and is not represented in the TStreams form itself.

TStreams expresses all types of parallelism with equal ease. Data parallelism arises from distinct
step instances from the same step space. Task parallelism arises from distinct step instances of
distinct step spaces. Pipelined parallelism arises from a chain of producer and consumer step
spaces.

TStreams has one simple data structure, the tagged item; one simple operation, the tagged step;
and one simple control structure, the tag. These are used to represent the potential parallelism of
the program. We distinguish the expression of this potential parallelism from the code executed in
the steps and from the distribution and scheduling of the steps.



Notice that although we have talked here about parallelism, the identical abstraction is appropri-
ate for any reordering transformation, for example, optimizations for the memory hierarchy on
uniprocessors.

TStreams is functional in the following ways:

• The contents of each item is uniquely determined by its tag.
• Each step is conceptually atomic. Either it runs to completion or the program can act as if it

had never been executed.
• Each step has no side effects and always produces the same outputs from the same inputs.

Thus, re-executing a step can do no harm and so these properties support redundant execution,
speculative execution and demand-driven execution. In addition, they enable a trivial and trans-
parent checkpoint/restart capability and adaptivity to failure or variable resource availability.

A more complete discussion of TStreams and these issues can be found in Knobe and Offner
(2004).

4 Mapping TStreams to a specific target

In executing a TStreams program three decisions have to be made:

• the granularity (“how big”) of data and computations,
• the distribution (“where”) of data and computations, and
• the schedule (“when”) within each location.

The three decisions can all be made statically (i.e., compiled). This minimizes the overhead.
Although the result is less rigid than existing systems, it is more rigid than necessary. Alternatively,
the three decisions can all be made dynamically (i.e., interpreted). This approach is most adaptable
to platform changes and data dependent computation but incurs some overhead. So at the low-
tech end, it can be written by hand and interpreted immediately. At the high-tech end, it can be
automatically generated and automatically optimized for a specific target.

The current TStreams prototype is a hybrid system. The program is hand written. The granularity
and distribution are statically specified by the programmer. The schedule within an address space
is dynamic: a step may execute when it is ready.

5 Automatic conversion of a program into TStreams form

Here is an overview of the main phases required to convert a normal serial program into a TStreams
program. We assume here that we are given a single routine in a language that includes assignment
statements and DO loops with arbitrary bounds and strides.

1. While normal serial code is location-based, TStreams is value-based. The first and most
significant task is to transform the program program so it is value-based (Section 5.1).

2. Next, we convert this value-based serial program to a TStreams program (Section 5.2).

We will now examine each of these tasks in order.



S1: x = · · · S1: x1 = · · ·
S2: · · · = x · · · S2: · · · = x1 · · ·
if 〈condition〉 then if 〈condition〉 then

S3: x = · · · S3: x2 = · · ·
S4: · · · = x · · · S4: · · · = x2 · · ·

end if end if
S5: x3 = φ(x1, x2) ;; φ statement

S6: · · · = x · · · S6: · · · = x · · ·

Figure 3: A serial code fragment and its translation into SSA form.

5.1 Convert to a value-based form

In normal code, distinct values can be assigned to the same location. This gives rise to anti-
dependences and output-dependences. These dependences unnecessarily restrict the reordering
potential. We modify the program so that each location, i.e., array element, is assigned to at most
once. There are two possible ways that a given location can be assigned to twice:

1. Distinct statements can modify the same location. To solve this problem we convert the
program to static single assignment (SSA) form.

2. Distinct dynamic instances of a given statement can modify the same location. To solve
this problem we then convert the program from SSA form into dynamic single assignment
(DSA) form.

In the resulting program, each array element now holds at most a single value.

It will appear that there is significant overhead (both memory and computation) added as a re-
sult of these transformations. Much of this can be optimized away for any arbitrary ordering.
The remaining overhead can be used together with parallelism and locality concerns in choosing
the ordering and in choosing the granularity. In the discussion below we ignore the cost of the
overhead.

5.1.1 Static Single Assignment (SSA)

In SSA form, each static assignment statement assigns to a distinct name. We show here how to
transform a normal program into SSA form (Cytron et al., 1991). Consider the scalar code and its
SSA form in Figure 3.

First, the left-hand side variable in each assignment is given a unique name. The two assignments
to x (in statements S1 and S2) are now to variables x1 and x2. Some references are dominated
by a single assignment (e.g., the references to x in statements S2 and S4). These references are
renamed accordingly. The remaining references are not dominated by a single source assignment
but rather get their values from one of several assignments (e.g., the reference in S6). At places
where the control flow from two names meets, we insert a new assignment statement, assigning
to a new name, using a “φ function” to combine the values of the two previous names. That is,



x(:) = · · · x1(:) = · · ·
· · · = x(s2) · · · · · · = x1(s2) · · ·
if 〈condition〉 then if 〈condition〉 then

x(s3) = · · · x2(s3) = · · ·
· · · = x(s4) · · · x3(:) = 〈mostly values of x1 but reflecting

assignment to the element x2(s3)〉
· · · = x3(s4) · · ·

end if end if
x4(:) = φ(x1(:), x2(:))

· · · = x(s5) · · · · · · = x4(s5)

Figure 4: A code fragment with arrays and its translation into classic SSA form.

the statement S5 assigns to x3 either the value in x1 or x2, whichever is appropriate. Now the
reference in S6 can be converted to x3.

All references to the original variable are now dominated by exactly one assignment and this
assignment assigns to a unique name.

This example contained only scalar variables. Classic SSA deals with arrays as well, but unfortu-
nately, classic SSA form is not quite adequate for our needs for two reasons:

• Our φ functions may be executed. But classic φ functions are not honest functions. How is
the φ function in statement S5 supposed to know which of its two arguments to return?

• Classic SSA provides no support for the kind of massive reordering of assignments to array
elements required for parallelism.

Instead we rely on Array SSA (Knobe and Sarkar, 1998). First we provide some terminology.
The term local iteration space is typically used to compare two statement instances within a loop
nest. In this case, the two instances are taken from the same loop nest. In Offner and Knobe
(2003) we have introduced a concept called global iteration space, which we use to compare two
instances within the same program. Global iteration space is a single totally ordered data structure
that includes for each executed statement both the lexical position of that statement in the program
and its point in its local iteration space. So at any dynamic assignment, we can record the value
〈now〉 which is the current point in global iteration space.

Figure 5 contains the Array SSA code corresponding to the code in Figure 4.

We keep track of when each modification from the original program occurred according to the
global iteration space in the original program via an assignment of 〈now〉 to the auxiliary vari-
able τx2(s3)

1. The φ function that combines the values from two assignments is now an honest
function, defined as follows: The meaning of

x4(:) = φ(x1(:), τx1(:); x3(:), τx3(:))

1The prefix τ stands for “time”. There are actually two versions of time that are important. In Offner and Knobe
(2003) they are denoted by the prefixes τw and τv. The τ in these examples is τw.



is
for each j

x4(j) =

{

x1(j) if τx1(j) > τx2(j)

x2(j) otherwise

x1(:) = · · ·

τx1(:) = 〈now〉

· · · = x1(s2) · · ·

if 〈condition〉 then
x2(s3) = · · ·

τx2(s3) = 〈now〉

x3(:) = φ(x2(:), τx2(:); x1(:), τx1(:))

τx3(:) = max(τx2(:), τx1(:))

· · · = x3(s4) · · ·

end if
x4(:) = φ(x3(:), τx3(:); x1(:), τx1(:))

· · · = x4(s5) · · ·

Figure 5: The code fragment with arrays
translated into Array SSA form.

Notice that now the assignments to x1 and x2 can
be reordered. The actual order of computation in
the new program can differ from that in the origi-
nal program. All we have to do is remember when in
the original program each value was assigned. The
τ variables are used to remember these times, and
the φ functions use the τ variables in the reordered
program to pick out the value that would have been
assigned last in the original program.

5.1.2 Dynamic Single Assignment (DSA)

Array SSA eliminates overwriting of an element by
two lexically distinct assignments. But overwriting
can still occur by distinct instances of a given assign-
ment. For example, an assignment to x(i) within
a loop on j will result in overwriting. Here we
describe the algorithm we use to create DSA form

(Knobe, 1997; Offner and Knobe, 2003) from array SSA form.

The basic idea is to modify the dimensionality of each object (i.e., each SSA name) to exactly the
dimensions that matter. This might involve both adding and removing dimensions. We call these
dimensions the contributing dimensions of the object.

Nothing else in the program is changed in this process. The dynamic control flow of the program
is left invariant. Only the memory locations referenced may be changed.

We need another data structure in order to compute contributing dimensions for objects—the valid
iteration subspace of each expression in the program. The valid iteration subspace of an expression
is the set of loop indices of the loops containing that expression that cause that expression to vary.
So if we can show that an expression is invariant with respect to some loop index, that index is not
in the valid iteration subspace of that expression.

The algorithm for computing contributing dimensions can be thought of as a set of data flow
equations that relate the contributing dimensions to the valid iteration subspace on both sides of
each assignment statement.

We will illustrate the way the algorithm works by considering the code in Figure 6.

Initialization There are some things we know immediately.

Consider the valid iteration subspaces of the expressions on the right-hand side of S1 and S2 in
Figure 6. We can determine syntactically that the first is [] and the second is [ i] .



do i = 1, 10
S1: w3(i) = 2

S2: x7(i) = 2 ∗ i

S3: y5 = h(i)

end do

do j = 1, 10
S4: · · · = w3(j) + · · ·

S5: · · · = x7(j) + · · ·

S6: · · · = x7(2) + · · ·

S7: · · · = y5 + · · ·

end do

Figure 6: Code fragment with
many kinds of array references.

Further, suppose that the array h in statement S3 is input to
the routine and is not modified in the routine. We conserva-
tively assume that the values in the array are not all identical.
Therefore the dimension of h is really needed to hold all of the
values in the array. So the dimension of h is contributing.

Thus we have initialized the valid iteration subspaces of the
right-hand sides of S1 and S2 and the contributing dimensions
of the array h in S3.

Valid iteration subspace of LHS: The valid iteration sub-
space of the left-hand side of an assignment statement is the
same as that of the right-hand side, since both sides have equal
values at equal times and therefore depend on the same set of
loop indices. So once we have computed the valid iteration
subspace of the right-hand side of an assignment statement,
we can just propagate it automatically to the left-hand side.

In particular, the valid iteration subspace of w3(i) in S1 is [] ,
and the valid iteration subspace of x7(i) in S2 is [ i] .

Contributing dimensions of LHS: Now consider the left-hand side of the assignments in the
first loop.

S1: Since the valid iteration space of this expression w3(i) has just been found to be [] , we
can see that w3 really needs no dimensions whatsoever. That is, its value does not vary with
respect to any loop indices. So it has no contributing dimensions. (Of course this example is
quite simple. We could really do constant propagation here. But the same kind of reasoning
would allow us to say that a 2-dimensional array really had 1 contributing dimension, for
instance.)

S2: The valid iteration space of x7(i) is [ i] . So the dimension of x7 is really needed. That is,
the dimension is contributing.

S3: Right now we cannot compute the set of contributing dimensions of y5 because we don’t
yet know the valid iteration subspace of the corresponding right-hand sides.

However, we will see below that the valid iteration subspace of the right-hand side of S3
is [ i] . When we arrive at this, we can deduce that y5 must have a contributing dimension
reflecting that it varies with i. So one has to be added.

In this particular code fragment, the addition of the new contributing dimension amounts
to scalar promotion. However, the same reasoning is used to add additional contributing
dimensions to arrays when needed.

Contributing dimensions of RHS references: The contributing dimensions of the right-hand
side references in the second loop are taken directly from the contributing dimensions determined



at their definition. This is not actually a propagation: the contributing dimensions are a property
of the object itself and not of any particular reference. So we see that w3 is a scalar. The first
dimension of x7 is contributing. For y5, we added a dimension which is contributing.

Valid iteration subspace of RHS expressions: Consider the right-hand side expressions.

S3: Since the dimension of h is contributing, we must assume that its value changes with its
subscript. Therefore i is in the valid iteration subspace of the expression h(i). (This is the
information we promised above.)

S4: Since we know that w3 has no contributing dimensions, it does not vary with j. Therefore
the valid iteration subspace of the expression w3(j) is [] .

S5: The dimension of x7 is contributing. This means that the values along that dimension may
vary. As we execute different iterations of the loop on j, we are addressing different loca-
tions along that dimension. Therefore the values of the expression x7(j) vary as j varies so
its valid iteration space is [ j] .

S6: However, even though the values of x7 vary along its first dimension, the reference x7(2)
always retrieves the same value as j varies so the valid iteration space for x7(2) is [] .

S7: Since y5 has a contributing dimension, we have to add a dimension to its reference. That
dimension has a subscript which in this case is i. We’re not going to explain here how such
subscript expressions are derived—this is explained in Offner and Knobe (2003). (All we
will say here is that τv variables, mentioned in the earlier footnote, are used in constructing
this subscript. In principle they could be complex.) When this is done, we do in fact find
that y5 has a valid iteration subspace of [i] .

The result of this transformation is what we call weak dynamic single assignment form: it is pos-
sible that a location will be assigned to more than once but in such a case it will always receive
the same value. (The assignment S1 when changed to a scalar is still within the i loop and so
is such a case.) The complete algorithm for transformation to weak DSA form is in Offner and
Knobe (2003). That report addresses loop nests with multiple indices, arrays with multiple dimen-
sions, arbitrary subscript expressions, reductions, and more. Conversion of weak dynamic single
assignment to strong dynamic single assignment is fairly straightforward and we do not discuss it
further.

5.2 Transform to TStreams

A program in DSA form, can then be transformed into a TStreams program. This is actually very
straightforward, because such a program is already essentially in TStreams form, as follows:

First assume the granularity of computation is a single assignment, as in Figure 7. Each static
assignment in the program becomes a step space and each static array name becomes an item
space. Tag spaces are derived from array bounds and from loops and conditional clauses control-
ling execution of any basic block. Tag spaces derived from array bounds are used to parametrize



the corresponding item spaces, and similarly for parametrizations of step spaces. Each consumer
relation relates a step space corresponding to an assignment statement with the item spaces corre-
sponding to the data objects on its right-hand side. Producer relations similarly deal with left-hand
sides.

a(i, j) ∗ b(i) + 2

x items

tag space of
step and x items

a items b items

Figure 7: A step corresponding to the
assignment statement

x(i, j) = a(i, j) ∗ b(i) + 2

Dynamically each array element is an item, each ex-
ecution of an assignment is a step and each point in
an iteration space or a data space is a tag. The items
referenced on the right-hand side and left-hand side of
the assignment become the input and output items of
the step.

Since the granularity of computation is a single assign-
ment, each step has multiple input items, a single out-
put item and some internal unnamed temporaries.

At this point there is a tag space for each basic block
and for each item space. In fact, however, some of
these tag spaces can be immediately shown to be iden-
tical; this can lead to more efficient code.

We can, for instance, relate the tag space of a step (say,
an assignment within loops on i and j and controlled

by a Boolean condition) with the tag space of the item it produces, say x3. By construction, the tag
space parametrizing the step space corresponding to the assignment is identical to the tag space
parametrizing the item space corresponding to the array defined by the assignment. The tag spaces
of the items referenced on the right-hand side may on the other hand not be the same, as we see in
the assignment statement in Figure 7.

In any case, we see that the tag space created for a basic block parametrizes each of the steps
(assignments) in the block and also the items defined by any step in that block.

In addition, it naively appears that each basic block will have a unique tag space. However, distinct
points in the program may have identical control structures. For example, blocks before and after
an IF statement will have the same tag space.

Next, suppose we consider a coarser granularity of computation: say each basic block is a single
step. The step now has multiple input items and multiple output items. Further, some of the
temporaries may be unnamed (that is, not visible as items at the TStreams level) if their only use
is within the block.

At a still coarser grain, we can consider an innermost loop as a step space. It is parametrized by
a tag space that corresponds to the loops enclosing it. We could also consider the two innermost
loops as a step space; in this case its tag space would have one fewer dimension. We could also
defer such decisions, leaving open the question of where the TStreams/step code boundary is to
be. This decision could be made either later in compilation or at run-time. In this way, without
making any target specific decisions, we can transform a program in DSA form to a hierarchical
variant of TStreams. In such a program a step at one level looks like a TStreams program at the
level below.



6 Future work

The current TStreams prototype implementation runs on a network (which may be heterogeneous)
of Linux (or really any kind of Unix) based workstations. MPI and C++ are required; in particular,
the programmer writes in C++.

We are considering a number of possible directions for future work:

• Automatic analysis of distribution and scheduling. based on array SSA and DSA form.
• Hierarchical variants of TStreams.
• Using TStreams for domain-specific language construction.
• Using TStreams as a base for adaptive systems.
• Introducing speculation and demand-driven models of execution into TStreams.
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