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CHARACTERIZING AND ESTIMATING BLOCK DCT IMAGE COMPRESSION
QUANTIZATION PARAMETERS

Ramin Samadani

Imaging Systems Laboratory

ABSTRACT

This paper describes an algorithm for estimating quan-
tization matrices from raster images previously compressed
with JPEG. First, the space of commonly used quantization
matrices is statistically characterized using over 15000 im-
age files. The insights from this characterization are used to
design the algorithm. The two stage algorithm first applies
a new sequential estimation process to determine some in-
dividual Q matrix entries, and then applies shape-gain vec-
tor quantization to recover complete quantization matrices.
Low average absolute error values are found for 124 im-
ages not used during training. In addition, the estimated
Q matrices work well when applied to compression artifact
reduction.

1. INTRODUCTION

Once an image is decompressed, explicit information about
its compression parameters is lost. The compression para-
meters are useful, however, to: 1) set parameters for com-
pression artifact reduction; 2) avoid loss during recompres-
sion; and 3) potentially determine the camera model used
during image capture. For example, the cropped original
image in the top of Figure 2 contains compression artifacts.
The middle image shows results of artifact reduction [1],
using the known, true compression parameters. The bottom
image shows almost indistinguishable results using com-
pression parameters estimated as described below. The re-
sulting artifact reduction is very similar for all the 124 im-
ages tested.

Q matrices are equivalent, when transformed by column-
scanning, to q vectors, with components qi, i ∈ {0 · · · 63}.
Known methods for estimating qi start by re-applying 8x8
forward DCT transforms to non-overlapping image blocks.
The resulting coefficients di(k), for image blocks k, are,
ideally, multiples of the true qi. Prior work estimated in-
dividual qi values by applying maximum likelihood estima-
tion [2], or other objectives [3], to histograms of di(k). As a
first step, this paper estimates qi values using a new sequen-
tial method without complete histogram calculation, shown
in the top left and the top right dashed block of Figure 1.
With any of these methods, the qi cannot be estimated for
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Fig. 1. Flowchart for the method for the Y component. For
the color components, a similar algorithm may be applied
with simple modifications that test different possible sub-
samplings.

some i, because the di(k) quantize to zero throughout the
image. An extrapolation is needed to recover all the qi. To
my knowledge, no previously proposed methods recover en-
tire vectors q when a number of different types of quantiza-
tion matrices are candidates for the compression.

Here, a brief overview of the algorithm is given, with de-
tails desribed in later sections. Figure 1 shows the flowchart
for the method for the Y component. The first steps up to
and including the forward 2D DCT occur once for each 8x8
block. The processing in the dashed box on the top right of
the figure occurs for each of the 64 DCT coefficients: updat-
ing the counts and values of a sparse data structure, deciding
based on the magnitudes of the counts, whether to form an
estimate for the qi value or to continue processing. After
this loop, a variable that counts the number of coefficients
estimated so far is checked against a constant. If there are
not enough coefficient estimates, the processing continues
at a new image block. If there are enough coefficient esti-
mates, the second and final step conducts a vector quantiza-
tion decoding. The estimated qi values from the first step are



Fig. 2. Image of a fire near a residential neighborhood. Top
shows portion of original image with compression artifacts.
Middle shows reduced artifacts with known compression
parameters. Bottom, indistinguishable to middle, shows re-
duced artifacts with estimated compression parameters.

shape matched against previously generated VQ codebooks
of q vectors (these previous codebooks were generated us-

ing the LBG vector quantizer design algorithm on several
thousand JPEG q vectors). The closest match is normalized
and returned as the final q vector estimate.

Section 2 covers the characterization of quantization ma-
trices, which provided insights during the design of the al-
gorithm. Then, the first stage of the algorithm, the new se-
quential method for estimating individual estimates qi, is
described in Section 3. Section 4 describes the second stage
that uses shape-gain VQ to estimating the entire quantiza-
tion vector q. Finally, Section 5 describes experiments val-
idating the approach.

2. CHARACTERIZING QUANTIZATION
PARAMETERS
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Fig. 3. The relative residual energy as a function of num-
ber of singular vectors used to approximate the space of q
vectors.

Characterization of the quantization matrices that are
used, in practice, is needed. Over 15000 JPEG files, mostly
consisting of digital camera images, but also of JPEG files
typically found on computer disks, were studied. From these
files, 1142 unique q vectors (files originating from the same
source often have the same q vector), for the luminance
channel, were extracted and used to form a 64 by 1142 ma-
trix M . Then, the singular value decomposition, USV T =
M , was computed. Figure 3 shows the relative residual

energy, ‖M̂−M‖
‖M‖ , when estimating M using an increasing

number of singular vectors (arranged in decreasing order of
corresponding singular value magnitude). The figure shows
that the first singular value accounts for about 90% of the
energy in representing this space. Interestingly, inspection
found the first singular vector to be remarkably similar to
the JPEG default quantization matrix [4]. Note, however,



that there is also energy in some of the remaining singular
vectors.

With the knowledge that the first few singular vectors
contain most of the energy in representing Q matrices, and
the additional knowledge that manufacturers often control
compression ratio by scaling the Q matrices, it is natural to
apply shape-gain vector quantization [5] (which separates a
normalization gain α from a shape) to the estimation. This
will be described in Section 4. First, however, the next sec-
tion describes the first stage of the algorithm, the sequential
estimation of individual q vector entries.

3. INITIAL SEQUENTIAL ESTIMATION

To estimate an unknown q, initial estimates of individual qi

are first found using the method shown in the top left and
the top right dashed block of Figure 1. The initial estimate
vector, q̂1, has valid estimates for only a subset of compo-
nents.
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Fig. 4. Reconstructed DCT coefficients as a function of
sequential block number. The top right shows a sparse
data structure may be sufficient for estimating the q values.
The bottom shows that only a fraction of an image may be
needed to estimate the q values.

Review of Figure 4 provides motivation for use of a
sparse data structure that does not store an entire DCT co-
efficient histogram, and for the ability to estimate sequen-
tially. The top left of the figure shows the values of a re-
constructed DCT coefficient (on the y axis) as a function of
sequential block number. The top right of the figure expands
the vertical scale, showing that the reconstructed coefficient

values cluster at multiples of the true qi value, and that not
all these horizontal lines are needed to estimate qi, so that
a sparse data structure that can track peaks may be used in-
stead. In addition, examining the bottom plot of the figure
shows that there is enough information to estimate the qi

value even by analyzing only a fraction of the blocks from
the image, suggesting the use of a sequential algorithm.
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Fig. 5. This sparse data structure, contains nine storage lo-
cations (V0, V1 and V2 are implicit and need not be stored)
versus the thousand that would be needed when storing en-
tire histograms (for each of 64 coefficients).

Figure 5 shows the sparse data structure used, one for
each of the 64 DCT coefficients, meant to track the maxima
of the probability distribution function (pdf) for the given
coefficient. The structure has six cells, each cell with a
value and a count. The first three values are hardwired to
values 0, 1, and 2 and are processed specially by the deci-
sion rule (if v2 > v0 it is assumed that q = 1 or q = 2 and
additional rules distinguish these two cases). These special
values handle the specially difficult case of fine quantiza-
tion when the true qi value is very small. The other values,
v3, v4 and v5, float: they may take any values that occur in
the data stream. A replacement rule updates the data struc-
ture at each block. If the current data value occurs in the
table, its count is incremented. Otherwise, the current data
value and the count value 1 replaces the cell with the small-
est count. In practice, this procedure finds and keeps the
maximum non-zero value of the pdf, which because of the
statistics of DCT coefficients of images, most of the time
corresponds to an estimate of qi itself.

The decision rule in the case of large qi picks the maxi-
mum value. With this sparse structure approach, the qi value
is estimated without storing or processing the 1000 element
histograms for each coefficient, making the method fast in
software and efficient in hardware storage.

4. SHAPE VQ FOR THE FINAL ESTIMATION

Given the first stage estimates of some of the q vector en-
tries, the second stage recovers the complete q vector.

First, based on the insight from Section 2 that a few of
the singular vectors have energy, during training, normal-
ized q vectors were input to the LBG algorithm [5], to gen-
erate five representative, normalized codeword vectors, cj ,
j ∈ {0 · · · 5}.



After the completion of the first stage of the algorithm,
the initial subset of estimates q̂1 are used to form final es-
timate, q̂f . The shape-gain decoding shown at the bottom
dashed block of Figure 1, applied to q̂1, is now described.

A diagonal weight matrix, W , with

wii =
{

1 if qi initial estimate exists
0 if qi initial estimate does not exist

(1)

accounts for the fact that not all the qi have initial estimates.
Given initial estimate, q̂1, for a given a codeword cj , the
modified shape-gain distortion is defined by,

D(q̂1, αcj) = {(q̂1 − αcj)T W (q̂1 − αcj)}, (2)

The value of α at the minimum cost may be shown to be,

α∗
j =

cT
j Wq̂1

cT
j Wcj

. (3)

With these value for α, the final estimate q̂f = α∗
kck

is given by the codeword k with minimum D(q̂1, α
∗
kck) in

Equation 2.

5. RESULTS

The Q matrix estimation was applied to 124 images that
were not used for training, and for which the true Q ma-
trices were known. Statistical results are shown in Figure 6.
The top of the figure shows averages of the absolute errors
(absolute difference between estimate and true qi) for each
of the 64 Q matrix coefficients estimated. The bottom of the
figure shows the estimated standard deviation of the mean
absolute error, computed using the bootstrap method.

For illustration, examples of the estimation applied to
two previously compressed images are now presented. For
the first image, the known true Q matrix, shown on the top
of Figure 7, is similar to the default JPEG table. The results
of the first step of the estimation are shown in the middle of
the figure, with zeros representing values without estimates.
The bottom of the figure shows the final estimate, Q̂f , that
is very close to the original. The second example, shown in
Figure 8, shows the result for a known true Q matrix that
is constant. In this example, the true Q matrix is exactly
recovered.

As previously mentioned, compression artifact reduc-
tion was conducted using both the known Q matrices and
the estimated ones, with very similar results in all cases.
Also, the same approach was used to characterize the quan-
tization matrices of the color components as well, with the
added complication being the unknown subsampling factor
of the color components.

µ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.96 0.39 0.40 0.31 0.26 0.26 0.67 0.67
0.34 0.35 0.32 0.43 0.31 0.51 0.44 0.70
0.31 0.43 0.30 0.27 0.26 0.71 0.91 0.32
0.32 0.54 0.23 0.47 0.66 1.04 0.65 0.39
0.21 0.22 0.63 0.40 0.49 1.25 1.24 0.80
0.26 0.26 0.74 0.46 0.84 0.83 1.30 0.71
0.72 0.52 0.61 0.99 1.25 1.35 1.09 1.10
0.51 0.82 1.11 0.85 0.96 0.77 1.22 1.02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

σ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.10 0.05 0.05 0.04 0.04 0.09 0.14 0.16
0.04 0.04 0.04 0.05 0.05 0.19 0.16 0.11
0.04 0.05 0.04 0.05 0.08 0.15 0.19 0.08
0.04 0.05 0.04 0.06 0.13 0.30 0.20 0.07
0.04 0.04 0.08 0.15 0.17 0.37 0.31 0.13
0.04 0.06 0.16 0.14 0.20 0.31 0.33 0.21
0.12 0.19 0.23 0.26 0.32 0.39 0.37 0.27
0.22 0.32 0.32 0.29 0.34 0.26 0.29 0.26

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 6. The top shows the average of the absolute error for
124 images, and the bottom shows the standard deviation
(computed using bootstrap) of the average absolute error.
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Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39

12 18 28 32 41 52 57 46
25 32 39 44 52 61 60 51
36 46 48 49 56 50 52 50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̂1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 6 5 8 12 20 26 0
6 6 7 10 13 29 0 0
7 7 8 12 20 0 0 0
7 9 11 15 26 0 0 0
9 11 19 28 0 0 0 0

12 18 28 0 0 0 0 0
25 32 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̂f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39

12 18 28 32 41 53 57 47
25 32 39 44 52 61 61 51
36 47 48 50 57 51 52 50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 7. First example: Original Q, initial estimate Q̂1, and
final estimate Q̂f .

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̂1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 30 30 30 30 30 30 0
30 30 30 30 30 30 0 0
30 30 30 30 30 30 0 0
30 30 30 30 30 0 0 0
30 30 30 0 0 0 0 0
30 30 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̂f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 8. Second example: Original Q, initial estimate Q̂1,
and final estimate Q̂f .


