

Reordering Constraints for Pthread-Style Locks

Hans-J. Boehm
HP Laboratories Palo Alto
HPL-2005-217
November 29, 2005*

threads, locks,
memory barriers,
memory fences,
code reordering,
data race, pthreads,
optimization

C or C++ programs relying on the pthreads interface for concurrency are
required to use a specified set of functions to avoid data races, and to
ensure memory visibility across threads. Although the detailed rules are
not completely clear[8], it is not terribly hard to refine them to a simple
set of clear and uncontroversial rules for at least a subset of the C
language that excludes structures (and hence bit-fields).

We precisely address the question of how locks in this subset must be
implemented, and particularly when other memory operations can be
reordered with respect to locks. Although our precise arguments are
limited to a small subset language, we believe that our results capture the
situation for a full C/C++ implementation, together with a literal (and
reasonable, though possibly unintended) interpretation of the pthread
standard. And they appear to have implications for other environments as
well.

The results appear to be surprising, and to not have been anticipated by
pthread implementors, in spite of their significant performance impact on
multi-threaded applications.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Reordering Constraints for Pthread-Style Locks

Hans-J. Boehm
HP Laboratories

Hans.Boehm@hp.com

Abstract
C or C++ programs relying on the pthreads interface for concur-
rency are required to use a specified set of functions to avoid data
races, and to ensure memory visibility across threads. Although the
detailed rules are not completely clear[8], it is not terribly hard to
refine them to a simple set of clear and uncontroversial rules for at
least a subset of the C language that excludes structures (and hence
bit-fields).

We precisely address the question of how locks in this subset
must be implemented, and particularly when other memory opera-
tions can be reordered with respect to locks. Although our precise
arguments are limited to a small subset language, we believe that
our results capture the situation for a full C/C++ implementation,
together with a literal (and reasonable, though possibly unintended)
interpretation of the pthread standard. And they appear to have im-
plications for other environments as well.

The results appear to be surprising, and to not have been antic-
ipated by pthread implementors, in spite of their significant perfor-
mance impact on multi-threaded applications.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Concurrent programming structures; D.3.4 [Program-
ming Languages]: Optimization

General Terms Languages, Performance

Keywords threads, locks, memory barriers, memory fences, code
reordering, data race, pthreads, optimization

1. Introduction
Due in large part to the rise of multi-core and hardware-multi-
threaded processors, explicitly parallel applications are increas-
ingly essential for high performance, even on mainstream desktop
machines. Multi-threaded applications are perhaps the most com-
mon way to achieve this, at least when it is not useful to simply
run multiple copies of the application. Multiple threads are also of-
ten used for structuring even uniprocessor applications to make it
easier to deal with multiple event streams.

Most multi-threaded applications are written in C or C++ with
the aid of a thread library. For the purposes of this paper, we will
assume that the thread library obeys the pthread[10] specification.
We believe that much of the discussion here is applicable to other
libraries, and even some completely different platforms, but the
issues there are often less clear.

[copyright notice will appear here]

The fundamental rule governing shared variable access under
Posix threads prohibitsdata races, i.e. simultaneous access to the
same location by multiple threads, when one of the accesses is a
write. The pthread specification states:

“Applications shall ensure that access to any memory
location by more than one thread of control (threads or pro-
cesses) is restricted such that no thread of control can read
or modify a memory location while another thread of con-
trol may be modifying it. Such access is restricted using
functions that synchronize thread execution and also syn-
chronize memory with respect to other threads. The fol-
lowing functions synchronize memory with respect to other
threads:

...,
pthread mutex lock(),

...,
pthread mutex trylock(),
pthread mutex unlock(),
pthread spin lock(),

pthread spin trylock(),
pthread spin unlock(),

...”

We believe that, aside from the specific synchronization func-
tions, this also reflects the intended programming model for some
other multi-threaded environments, e.g. Microsoft’s win32 threads.

All implementations of which we are aware ensure that the
above “synchronizing” functions contain memory fences (some-
times calledbarriers) to restrict reordering of memory operations
by the hardware. These implementations also ensure that these
functions are treated as sufficiently opaque in the compiler, so that
the compiler does not move memory references across calls in inap-
propriate ways. Compilers otherwise compile code as if it targeting
a single-threaded environment.

Thus compilers may aggressively rearrange code between calls
to these “synchronizing functions”, and between these calls even
shared variables may appear inconsistent. But this would only be
observable by client code if another thread were to simultaneously
observe such shared variables, which the above rule prohibits it
from doing.

This approach is fundamentally different from that used in
Java[17]. No attempt is made to ensure type-safety or security
for sand-boxed code. On the other hand, it has some, probably
significant, performance advantages[6].

As is pointed out in [8], this approach requires some more pre-
cision in the language specification to ensure correctness. For the
purposes of this paper, we will give more precise rules, which can
be viewed as refinements of the pthreads specification, and avoid
those issues. Furthermore none of the discussion here is dependent
on language features (e.g. bit-fields or atomic operations) which
might make those rules controversial and have made the develop-

1 2005/11/29

ment of a C++ memory model interesting[5, 4, 6]. Hence we simply
omit further discussion of such language features.

Instead we focus on another issue which really must be resolved
in order to correctly implement (our interpretation of) the current
pthread standard.

We ask the question of when memory operations may be re-
ordered with locking operations.

Part of this has an obvious answer: It is clearly not generally
acceptable to move memory operations out of critical sections, i.e.
regions in which a lock is held; doing so would introduce a data
race. But it is far less clear whether it is acceptable to move memory
operationsinto critical sections, which is the question we ask here.

This affects the implementation in two distinct ways:

1. The implementation may treat functions like
pthread mutex lock specially, and allow some com-
piler reordering around direct calls to them. Indirect calls may
still have to be treated as completely opaque.

2. It determines the memory fence (or memory barrier) instruc-
tions that must be included in the library implementations of
synchronization primitives.

We address this issue by looking at allowable compile-time
transformations of the source programs, mostly because it is eas-
iest to reason at that level. Nonetheless, we expect that the greatest
actual performance impact of this issue is on the library implemen-
tation of the locking primitives, primarily because memory fence
instructions are expensive on many current architectures.

In the next section, and in the appendix, we argue that the
performance impact of this issue on real applications can be large.

We then define a small multi-threaded language, which we
claim is sufficient for modeling C/pthread behavior. We define its
semantics to be consistent with the pthread definition.

Finally, we show that the rules for reordering memory op-
erations across locking primitives are in fact different from
what we believe most implementors would have expected.
In particular, a memory operation immediately following a
pthread mutex unlock operation may always be moved to just
before thepthread mutex unlock. But the corresponding re-
ordering of apthread mutex lock with a preceding memory op-
eration is not generally safe. More general movement into critical
sections is possible in the absence of thepthread mutex trylock
call.

We expect that a number of current implementations either do
not follow these rules, or add extra fences.1 Nor is it completely
apparent that they should, since these semantics appear to have
been largely accidental. On the other hand, an understanding of
these issues does seem to be essential to any revision of the current
rules.

2. Performance Impact
The impact of adding memory fences to lock implementations can
be substantial. In particularly bad cases:

• Program execution cost can be dominated by locking. One
example of such a program is given in [8]. Unfortunately, other
examples are regularly encountered in practice, though often as
a result of poor programming practices.

• The locking cost can be primarily determined by the number
of memory fences (or related instructions that have that effect)
in the lock implementation. Thus the cost of alock-unlock

1 This is based in part on discussions with the developers and implementors
of the standard, and in part on examination of the Linux/Itanium implemen-
tation.

operation pair can vary by roughly a factor of two depending
on whether a fence is needed in theunlock operation. This can
be true for spin locks on some common X86 processors.

We present an example of all of these, together with some
simple measurements, in appendix A.

Thus it appears critical to understand requirements for memory
fences before attempting to, for example, benchmark such multi-
threaded applications.

3. Foundations
Our arguments are generally insensitive to the specific non-
synchronization primitives we allow in our programming language.
But to keep the discussion as precise as possible, we will define a
specific programming language, modeled on the relevant aspects of
C.

Nothing here should be the least bit surprising to the reader.
Our only goals are to convince the reader that this could all be
completely formalized, if we chose to do so, and to establish the
terminology we use later.

Define a statement to be one of the following2:

v = r;
r = v;
r = E;

r = in();
out(r);

lock(lsubi);
unlock(lsubi);

r = try lock(lsubi);
while (r) S

S S

Here S denotes another statement,r denotes one of a set of
thread-local variables orregisters, which we will normally write as
ri, andv denotes one of a set of global variables (writtenvi). We’ll
assume that both kinds of variables range over integers, though
allowing other variable types does not impact our arguments.

The first two kinds of assignments simply copy variables be-
tween globals and registers. We’ll refer to the former as a store,
and the latter as a load operation.

The third form of assignment statement describes a computation
on registers. We do not precisely define the expressionsE that may
appear on the right sides of such assignments, but we assume that
all such expressions mention only register variables. Thus a real C-
language assignment would often correspond to one or more loads,
followed by a computational assignment, followed by a store.

The statementsr = in(); andout(r); read a value from an
input stream, and write a value to an output stream, respectively.

Thelock andunlock statements acquire and release a lock, re-
spectively. They correspond to the pthreadpthread mutex lock
and pthread mutex unlock primitives. They can operate on
locks li. In order to keep things as specific and simple as possi-
ble, we will require that threads may not reacquire a lock they
already hold.

Thetrylock statement behaves likelock and returns 1 if the
lock is not currently held. But if the lock is held, it simply returns
0 instead of blocking. It modelspthread mutex trylock, except
that we use a different return value convention to simplify matters
later. The presence oftrylock affects our results.

2 We do not explicitly consider condition variables. This is not a sub-
stantive restriction, sincepthread cond wait() can be treated as a
pthread mutex unlock() followed by apthread mutex lock(), to-
gether with a scheduler hint. And the other primitives can be viewed as
purely scheduler hints. While these scheduler hints are of critical practical
importance, they do not affect correctness.

2 2005/11/29

A program is a finite sequence of statements. Informally, the
ith statement describes the actions executed by theith thread.3 We
will assume that the register values used in the different statements
(effectively by the different threads) are disjoint.

We will assume that the individual sub-statements of a program
have associated labels, so that we can easily distinguish textually
identical sub-statements.

A thread actionis a pair consisting of a program statement label
and the value assigned, tested, read, or written, as appropriate, if
any.

Since every statement label is associated with a specific thread,
it also identifies the executing thread. Since there is generally no
ambiguity, we will normally fail to distinguish between a statement
and its label.

A statement generates sets of possiblethread executions, which
are possibly infinite sequences of thread actions. Specifically, all
statement types, except the last two, describe all sequences con-
sisting of a single action involving that statement. A composite
statement describes all possible concatenations of thread execu-
tions generated by its components, such that values assigned by
store statements, written by output statements, computed by ex-
pression evaluation statements, or tested by loops, correspond to
the values assigned to the input registers by the last prior assign-
ments in that thread execution, if there are such prior assignments,
and any possible input values if there are not.4

Hence the statementr2 = r1; r3 = 2 * r2 generates all
thread executions of the form

(r2 = r1, x), (r3 = 2 * r2, 2x)

with any value ofx.
In most cases, we will write sequences of thread actions (or

just actions) simply as comma-separated lists of sub-statements,
and leave the value components either implicit, or to be discussed
separately.

We refer to the property that retrieved register values match
assigned register values asregister-consistency.

Similarly, the execution of a while loop consists of alternating
thread actions corresponding to the while loop (which reflect the
tests) and thread executions generated by the loop body, such that
the values of all loop tests except the last are nonzero, the last is
zero, and again values read from registers are consistent with those
written by the execution.

4. A Basic Semantics of Multi-threaded Programs
The definitions we use here are similar to those used by others,
notably Adve’s[1, 3] definition of Data-Race-Free-0.

A sequentially consistent program execution[13] or just pro-
gram executionof a programP is an interleaving5 of finite pre-
fixes of thread executions generated by the statements making up
P , such that

• Registers or global variables which are read or tested prior (in
the interleaving) to being assigned a value are treated as holding
the value zero. (In the case of registers, this is equivalent to
insisting that this holds for each thread execution.)

3 This is admittedly a very simplistic view in that it does not allow dynamic
thread creation. But that again appears to have no bearing on our results.
4 We technically allow infinite thread executions, but the reader may ignore
that fact. We will not allow infinite program executions, since they are
composed of finite prefixes of thread executions.
5 More formally a sequence consisting of all the actions in each prefix, such
that the ordering of the actions in each prefix are preserved

• The value associated with every other load of a global variable
is the value associated with the last prior store to that global
variable.

• For a given lockli, lock(li) and unlock(li) actions must
alternate in the program execution, starting with alock(li)
action. For this purpose,ri = try lock(li) is treated as
lock(li) if the operation succeeds, i.e. if the associated as-
signed value is zero.

• For a givenlock(li), the immediately followingunlock(li)
action must be executed by the same thread, i.e. it must corre-
spond to a sub-statement of the same statement in the program.

• A ri = try lock(li) value succeeds, i.e. has an associated
zero value, if and only if there are either no prior operations on
li, or the last preceding operation onli is unlock(li).

We refer to the first two conditions (with the first restricted to
globals) asglobals consistency, and the last three aslock consis-
tency.

The input read by a program execution is the sequence of values
associated within statements in the execution. The output gener-
ated by a program is the sequence of values associated without
statements in the execution.

Two thread actionsconflict if they both access the same global
variable, at least one of them is a store (implying the other must be
a load or a store), and they are performed by different threads, i.e.
the statements in the actions correspond to different threads.

A (sequentially consistent) execution has adata raceif and only
if it contains two adjacent conflicting operations.

A programP has a data race on inputI, if it has an execution
with a data race which reads inputI.

A programP may generate outputO on inputI if

1. It has a data race onI, or

2. There is an execution ofP on I which generatesO.

We intentionally allow programs to have any effect whatsoever,
i.e. produce any output, for inputs on which they have a data race.

This represents a reasonable interpretation of the pthreads[10]
rules. We have interpreted the pthreads restriction on simultaneous
access to mean the absence of a data race under a sequentially
consistent program execution. The pthreads notion of a “memory
location” is taken to mean a single global variable in our simple
scenario.

The pthreads statement that locking operations “synchronize
memory with respect to other threads” is more problematic, as is
pointed out in [8], since it doesn’t even clearly prohibit the compiler
from introducing reads and writes of unrelated variables between
locking calls, which is clearly unacceptable. Hence that statement
has been reinterpreted here to mean that data-race-free programs
should behave as expected, i.e. as though the execution were se-
quentially consistent. If anything, this is a stronger restriction than
pthreads, and thus allows fewer reorderings. But it will become
clear below that our main negative results holds for any reasonable
interpretation of the Pthread rules.

Note that, as in the pthreads case, this allows the implementation
a large degree of freedom in reordering load and store operations
executed between lock operations. Any thread that could observe
such reordering would introduce a data race, and would thus render
the program semantics undefined.

Although we have made frequent reference to Lamport’s defini-
tion of sequential consistency, and have used it to define the notion
of a data race, our actual semantics are far different from those ad-
vocated by him.

3 2005/11/29

5. Allowed Reorderings
The central question we now wish to answer is: Under what cir-
cumstances can load and store operations be moved into a critical
section?6

As mentioned earlier, we will address this in terms of “com-
piler” transformations on the source program. In our setting this
has the large advantage that we can avoid discussion of the more
complicated memory visibility rules that are likely to apply at the
hardware level, and reason entirely in terms of sequentially consis-
tent executions and absence of data races.

The following lemma is straightforward, and basically outlines
our proof approach:

LEMMA 5.1. Consider a program transformationT such that ev-
ery programP is transformed to a programT (P), such that

1. T preserves data-race-freedom. More precisely, ifT (P) on
input I contains a data race, then so doesP on inputI.

2. WheneverT (P) is data-race-free on inputI and ET (P) is
a sequentially consistent execution ofT (P) on I, there is a
sequentially consistent executionEP of P on I that generates
the same output.

Then the transformation preserves meaning, i.e. the transformed
programT (P) can generate outputO on inputI only if the original
programP can.

Proof
If T (P) has a data race on inputI, then so canP on inputI.

Hence both have undefined semantics, and can generate any output
whatsoever.

Now consider the case in whichT (P) on I does not have a
data race and generatesO. There must be a sequentially consistent
executionET (P) which readsI and generatesO. Thus there must
be an executionEP of P on I that generatesO. Thus the original
program could generate the same output.•

We will show that transformations preserve data-race freedom
by showing how to map an execution of the transformed program
which contains a data race to a corresponding execution of the
original program with a data race.

As we stated earlier, it is easy to show via simple examples that
transformations which move memory operations out of a region
in which a lock is held do not generally preserve meaning. For
example, the program section

Thread1:lock(l1); r1 = v1; unlock(l1);

is clearly not in general equivalent to

Thread1:lock(l1); unlock(l1); r1 = v1;

since the latter introduces a race when run concurrently with

Thread2:lock(l1); v1 = r1; unlock(l1);

while the former does not. Thus we must in general both prevent
the compiler from performing such movement, and insert memory
fences to prevent the hardware from doing so.

Here we first show that it is unnecessary to prevent movement of
memory operations into a critical section past theunlock() call.

In order to do so, the following lemma will be helpful:

6 We will adress purely the correctness issues associated with such trans-
formations. Moving operations into a critical section sometimes also neg-
atively impacts performance and fairness, particularly if adjacenet critical
sections are combined. The lock may clearly be held longer than the pro-
grammer intended as a result of such transformations.

LEMMA 5.2. Recall that thread actions consist of pairs, the second
component of which is the value assigned, read, written, or tested.

Consider an executionE of P on I, and another sequence of
thread actionsE′ which differs fromE only in that two adjacent
thread actions have been reordered, and the two actions satisfy the
following conditions:

• If one of them is a load, expression, or input statement, then the
other action is not a load, expression, input, output, or while
statement that mentions (i.e. alters or depends on) that register.

• If one of them is a store statement, then the other may not be a
load or store statement on the same global variable, i.e. the two
actions do not conflict.

• If one of them is alock, unlock, or trylock statement, then
the other action is either not a lock operation or applies to a
different lock.

Then the resulting sequence remains register, globals, and lock-
consistent, i.e. all values associated with thread actions inE′ may
remain unchanged. If the exchanged actions correspond to different
threads, thenE′ is also an execution ofP on I.

Proof
It follows from the first assumption that the resulting sequence is

register-consistent, and from the second that it is globals-consistent.
Based on the last assumption, we know that the sequence of op-
erations performed on any single lock is unaffected, and thus the
resulting sequence is lock-consistent.

If the exchanged operations correspond to different threads,
thenE′ also remains an interleaving of the same thread executions,
and hence an execution ofP on I. •

Note that the above lemma deals with reordering actions in
executions, not statements in programs. In particular, if we reorder
two actions corresponding to the same thread, it is quite possible
that the corresponding program reordering, if it even exists, would
introduce a data race.

THEOREM 5.3. A transformation which alters the input program
P only by reordering a program section

unlock(l); memop;

to

memop; unlock(l);

wherememop is a load or store statement, preserves meaning.

Proof
Consider a sequentially consistent executionET (P) of T (P) on

input I. Assume that whenever it contains an instance ofmemop
that was generated by the above transformation, it also contains the
correspondingunlock(l). (Any execution violating this constraint
can be extended to one that satisfies it simply by adding theunlock
action.)

We define a corresponding executionE′
P of the originalP ,

which will help with the rest of the proof, as follows:
ET (P) contains some number of subsequences of the form

memop, Eother, unlock(l)

corresponding to the movedmemop, where memop and
lock(l) are performed by the same threadt, andEother represents
the actions performed by other threads between the two operations.

Note that if Eother contains an action that conflicts with
memop, then by repeated application of lemma 5.2 the action se-
quenceE′

T (P) constructed fromET (P) by movingmemop to just
before the first conflicting access is also a valid execution ofT (P)
onI. (The condition on registers is automatically satisfied since we

4 2005/11/29

are exchanging actions of different threads.) ClearlyE′
T (P) con-

tains a data race, and consequentlyT (P) allows a data race. Thus
such a conflict is impossible in the absence of a data race forT (P)
on I.7

We defineE′
P to be ET (P) with each such subsequence re-

placed by

Eother, unlock(l), memop

If T (P) on I does not allow a data race then, by the above
observation, no action inEother can conflict withmemop. Since
E′

P can be obtained fromET (P) by repeatedly exchangingmemop
with an adjacent action, by lemma 5.2 the resulting action sequence
is register-, globals-, and lock-consistent. The actions of the trans-
formed threadt appear inE′

P in an order that is generated byP ,
since only the actions corresponding to the exchanged statements
are changed. The order of actions performed by other threads is
unchanged, as is the corresponding program. HenceE′

P is a valid
execution ofP with the same input and output asET (P), and we
have satisfied the second condition of lemma 5.1.

We now show thatT preserves data-race-freedom. Assume
T (P) on the given inputs allows a data race. LetET (P) be the
shortest execution exhibiting this data race, but again including
theunlock(l) if it includes thememop from a transformed code
section. (Note that this is likely to be an “incomplete” execution.)

Let E′
P be as defined above.

There are two cases:

1. ET (P) ends with theunlock(l) of a transformed section of
code and the race is contained in a sequence

prev action, memop, Eother, unlock(l)

If the race is contained entirely inEother, thenE′
P is an execu-

tion of P that preserves the race.

Otherwise, assume again that the thread executingmemop and
unlock(l) is t.

If there is a race betweenprev action andmemop, we instead
considerE′′

P , in which the original

prev action, memop, Eother, unlock(l);

in ET (P) has been replaced by

unlock(l), prev action, memop

This corresponds to first removing the actions inEother and
then performing theunlock(l) action earlier. The first step
generates another valid execution ofT (P), since the actions
in Eother are the final ones for their respective threads in
ET (P), and their removal cannot violate lock-consistency. By
lemma 5.2, and the fact thatprev action andmemop must be
memory operations, performing theunlock(l) earlier leaves
the action sequence consistent, and the original values associ-
ated with the actions remain valid.8

Since the resulting sequence contains the actions oft in an
order consistent with the originalP , and the other threads’

7 It is also worth noting that if we allowed the transformed code to be
executed by multiple threads, the relevant subsequences ofET (P) cannot
overlap, since that would correspond tol being held by multiple threads at
the same time. Thus the arguments would still apply.
8 The same could not be said if we had not droppedEother , since it may
containtrylock(l) calls. That does not matter, since we only have to
exhibitanexecution with a data race.

actions were not reordered, this gives us an execution ofP that
preserves the data race.

HenceE′′
P is an execution ofP that exhibits the same race as

ET (P).

If the first race is betweenmemop and the first operation in
Eother, a similar argument applies for the execution ending in

prev action, unlock(l), memop, first action of Eother

2. ET (P) ends with an unrelated race. In that case,E′
P already

preserves the race.

Thus races are always preserved byT . •
A similar result holds for moving memory operations into the

locked region past the initiallock, but only in the absence of
trylock:

THEOREM 5.4. A transformation which alters the input program
P only by reordering a program section

memop; lock(l);

to

lock(l); memop;

where memop is a load or store statement, and only when
there are no occurrences oftrylock(l) in the program, preserves
meaning.

Proof
We apply an argument similar to the above. Given an execution

ET (P) of T (P) on I, we again define a corresponding execution
E′

P of P , which has the same behavior in the race-free case, and is
used as a basis for the proof that race-freedom is preserved.

The executionET (P) contains some number of subsequences

lock(l), Eother, memop

corresponding to the transformed code, wherelock(l) and
memop are executed by threadt and the actions inEother cor-
respond to other threads. DefineE′

P to beET (P) with each such
sequence replaced by

Eother, memop, lock(l)

This remains register-consistent, since no operations on regis-
ters or globals were moved in the action sequence.

It also remains lock-consistent:

• If Eother contained alock or unlock operation on the same
lock, the original execution would not have been lock-consistent.

• We have assumed that there are notrylock operations on the
same lock.9

ClearlyE′
P is a valid execution ofP with the same input-output

behavior asET (P).
It remains to be shown that data-race-freedom is preserved.
Again consider a shortest executionET (P) of T (P) on I, sub-

ject to the constraint that if the execution contains the transformed
memop, then it also contains the corresponding lock. If the race ei-
ther does not involvememop, or involves the previously executed
action, then it is present in the executionE′

P of P , constructed as
above, and we are done.

If memop conflicts with the next actionnext action in ET (P),
then we instead consider the executionE′′

P of P in which

9 If we just movedmemop to the beginning of the new execution, this
part of the proof would go through even withtrylock. But E′

P would be
less useful in reasoning about preservation of data-race-freedom, and that
argument would only go through in the absence oftrylock.

5 2005/11/29

lock(l), Eother, memop, next action

is replaced by

Eother, memop, next action, lock(l)

Sincenext action must be a load or a store executed by a
different thread, this remains valid for the same reasons as above,
and preserves the race.•

6. Disallowed Reorderings
In Theorem 5.4, we assumed that there are notrylock operations
on the lock in question. We now show that this assumption is in fact
essential, and the theorem does not hold without this assumption:

THEOREM 6.1. There exist programs involving trylock for which
the above is not safe.

Proof
Recalling that our version oftry lock returns a nonzero value

on success, i.e. if it acquires the lock, consider the following pro-
gram:

T1: v1 = 1; lock(l1);

T2: r1 = try_lock(l1);
while (r1 /* was unlocked */) {

unlock(l1); r1 = try_lock(l1);
}
r2 = v1; out(r2);

Although few would defend this as good, or even reasonable,
programming style, it is data-race-free.T2 can only readv1 after
the loop terminates. This can only happen onceT1 acquires the
lock. Hence this program has sequentially consistent semantics,
and thereforer2 iand the output are guaranteed to be1.10

Now consider this program after it has been transformed as in
Theorem 5.4. Thus we now have for the first thread:

T1: lock(l); v1 = 1;

The resulting program clearly has a data race, and hence com-
pletely undefined semantics.11 •

Note that the same applies if the loads and stores ofv1 are
interchanged, so that we are transforming

T1: r2 = v1; lock(l1); out(r2);

to

T1: lock(l1); r2 = v1; out(r2);

while the second thread assigns 1 tov1 after waiting for the lock
to be acquired by the first thread.

With our semantics the same race would be introduced.12

Note that this transformation clearly fails to preserve the mean-
ing of this example under any reasonable interpretation of Pthread
rules. Unlike our positive results it does not really rely on very pre-
cise semantics.

10Posix does not guarantee memory “synchronization” when a function
fails, as the finaltry lock call does. But the example could easily be made
Posix conforming by adding alock(l2); unlock(l2); immediately
after thewhile loop, wherel2 is otherwise unused.
11Even if we guaranteed sequentially consistent execution, the transformed
program would clearly still not preserve meaning, since it would allow the
case in which the output is zero.
12With sequentially consistent semantics, this would again allow an output
of zero, where the original does not.

7. Related Work
Much has been published about hardware memory consistency
models (cf. [2, 9]). Probably the closest to our work in that arena
is the development of the Data-Race-Free-0 synchronization model
by Adve and Hill[1, 3], which we previously mentioned.

However that work addresses the issue at a lower level. By
viewing synchronization operations as generic memory operations,
and not as locking operations that provide very restricted kinds of
access to special lock locations, the kinds of issues discussed here
do not arise.

Another thread of work has focused on compiler optimizations
that allow removal of memory fences while preserving a sequen-
tially consistent programming model for the programmer, a much
stronger guarantee than is made by other us or pthreads. See for ex-
ample [19], [12] and [15]. This work addresses compiler analysis
techniques to minimize memory fences in specific programs, but it
does not address the questions addressed here, dealing with cases
in which reordering is always safe, or fences are needed in generic
library routines.

The closest related work at the programming language level ap-
pears to be that by Manson, Pugh, and Adve on the Java memory
model.[18, 17, 16]. Among other things, they prove the safety of
a large set of compiler reordering transformations under the Java
model. (See theorem 1 of [17].) However, the model and proof
methodology are different. In particular, the Java model allows re-
ordering of memory operations with monitor entry, in contradiction
to our Theorem 6.1. The cause is that Java’s notion of a data race is
different from ours, and the equivalent of the example used in the
proof of Theorem 6.1 in fact has a has a Java data race,13 and hence
the programmer is not allowed to expect sequentially consistent se-
mantics.

8. Conclusions
We have shown that if we take the pthreads specification at face
value (except for necessary adjustments to prohibit compiler-
introduced races), high performance implementations must exhibit
an asymmetry:

• In the general case, they cannot allow any reordering
of memory operations acrosspthread mutex lock() or
pthread spin lock(). This will generally imply that on ar-
chitectures on which atomic memory updates do not completely
inhibit reordering (e.g. Itanium, Alpha, PowerPC, see [14]),
a suitable memory fence (affecting both loads and stores) is
needed.

• On the other hand, pthread mutex unlock() and
pthread spin unlock() do not require such conserva-
tive treatment. On architectures that do not allow mem-
ory operations to be reordered with a following store
(e.g. most X86 processors), it is acceptable to implement
pthread spin unlock() with an ordinary store instruction,
as is often done.

It is completely unclear to us whether this was intended or
an accident. It comes about as a result of programs that essen-
tially invert the sense of a lock, by usingtrylock as in the
proof of Theorem 6.1. There are strong arguments for discour-
aging such programs. Supporting them by significantly penalizing
pthread mutex lock(), which tends to be both pervasive and
performance-critical in multi-threaded code, in order to support
this idiom, appears to be a questionable trade-off.

13There is no ”release” operation in the example, and hence there can be
no ”happens before” ordering between the store and the load, eventhough
there are intervening synchronization operations.

6 2005/11/29

If we do want to support the existing specification, this raises
the possibility of link-time optimizations to take advantage of the
absence oftrylock in many programs.

As it stands, this asymmetry cooperates well with spin lock im-
plementations on processors with atomic exchange or compare-
and-swap instructions which include a full memory fence: The
fence is needed exactly where it is implicitly included, and not re-
quired where it would be expensive. It works less well on proces-
sors for which atomic memory updates do not completely enforce
memory ordering.

A. Cost of Fences in Locks: Measurements
In order to illustrate the performance impact of memory ordering
constraints on locking, we measured a very lock-intensive program,
with a variety of lock implementations. We use gcc as the compiler
in all cases. It does not move memory references past locks. How-
ever, we can adjust the memory fences used by the lock implemen-
tation.

Our test program is one that copies 10 million characters from
one file to another, one character at a time. In order to minimize
time spent in the OS kernel and on disk accesses, we copy from
the /dev/zero pseudo-file on a Linux system to a file on/tmp,
on machines with enough memory that no actual disk access was
required. The resulting program is cpu-bound, with little time spent
in the OS kernel.

We measured 8 variants of this simple program. The first four
of these are included to allow the reader to calibrate our results.
The latter four demonstrate the impact of allowing no reordering of
memory operations across synchronization primitives.

Unsafe The file copy is implemented using the Posix
getc unlocked() and putc unlocked() primitives.
The result is not thread safe. Attempting to run multiple copies
of this program concurrently on a multiprocessor is extremely
unlikely to result in a file of the right length, and, unlike
the other variants, running multiple copies often results in a
segmentation faults.

Default The file copy is implemented using the Posixgetc() and
putc() calls. These each acquire and release a lock.

Mutex We call getc unlocked() and putc unlocked(), but
explicitly ensure thread safety by acquiring and releasing a
Pthread mutex around each of them. We use separate locks for
the input and output files. This is similar to whatgetc() and
putc() use internally.

Spin Identical to the preceding one, except that we use Pthread
spin locks instead of mutexes. In the contention-free case, these
generally perform better, largely because the lock release can be
implemented more cheaply. However they tend to be less robust
in the presence of contention.14

None Identical to “Spin”, except that we use custom spin locks
implemented with our atomic operations library[7]. We add no
extra fences. Memory operations are only constrained to not
move out of the critical section. This appears to suffice for
all reasonably designed code. It corresponds to the guarantees
provided for Java locks[11], for example.

Lock Identical to “None”, except that we add a full memory fence
to the lock implementation.

Unlock Identical to “None”, except that we add a full memory
fence to the unlock implementation.

14 In our experiments, the mutex-based solutions were generally better and
much more predictably in very high contention situations, as expected.

��������������

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

 0

 500

 1000

 1500

 2000

 2500

UnsafeDefault Mutex Spin None Lock Unlock Both

1GHz Itanium 2

Figure 1. Msecs to copy 10MB on 1GHz Itanium 2

��������������

���
���
���
��� �����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

UnsafeDefault Mutex Spin None Lock Unlock Both

2 GHz Pentium 4 Xeon

Figure 2. Msecs to copy 10MB on 2GHz Pentium 4 Xeon

Both Identical to “None”, except that we add a full memory fence
to both the lock and unlock implementation. Thus the hardware
is also prevented from moving any memory operationsinto the
critical section.

All experiments were done on Linux machines using a recent
NPTL threads implementation and a 2.6.12 kernel. We give results
for two different machines:

Pentium 4 Xeon The results are presented in figure 2 and figure 4.
This is a 2 GHz dual processor “hyperthreaded” machine,
on which both atomic memory update instructions (required
for pthread mutex lock(), pthread mutex unlock() and
pthread spin lock(), but not pthread spin unlock())
and fences are expensive, and hence dominate the runtime. The
atomic memory update operations also act as a fence, and hence
adding a fence requirement only affects the unlock operation. It
would not affect the time required for mutex operations, but it
vastly increases the cost of releasing a spin-lock, thus roughly
doubling the cost of the file copy with spin-locks.15

Itanium 2 The results are presented in figure 1 and figure 3. This is
a 1 GHz four processor machine. Both atomic memory updates
and memory fences are much cheaper. Atomic memory updates

15Note that some X86 machines, including some from the same vendor,
provide much less expensive atomic update and fence primitives.

7 2005/11/29

��������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

 0

 5000

 10000

 15000

 20000

 25000

Default Mutex Spin None Lock Unlock Both

2 x 1GHz Itanium 2

Figure 3. Msecs to copy 10MB/thread in 2 threads on 1GHz Ita-
nium 2

��������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

 0

 5000

 10000

 15000

 20000

Default Mutex Spin None Lock Unlock Both

2 x 2 GHz Pentium 4 Xeon

Figure 4. Msecs to copy 10MB/thread in 2 threads on 2GHz Pen-
tium 4 Xeon

never include a full memory fence, and thus we need to add
instructions to prevent reordering of memory operations around
these instructions, and hence around locks. However, the time
required to execute the memory fence instructions is highly
context dependent.

We report the times required for a single thread to perform the
copy in a multi-threaded context, i.e. when run from a thread other
than the main one. This is representative of the (hopefully typical)
low contention case. The reported measurements are averages of
three runs, but variations are very low.

We also give measurements for two threads performing the
same copy operation concurrently. Both our test machines had at
least two processors, so this results in more lock and cache-line
contention than one would hope for in a real application. The exact
contention level is probably dependent on instruction timing and
accidents of compilation. As a result we also observed significant
variation in the measurements between runs, exceeding 10 percent
in one case, but less for the last four variants.

Note that the scale on the y-axis varies appreciably across the
different graphs.

In all cases, we see that added fences have a substantial impact
on the performance of at least some locking primitives. In the X86
case, the effect is limited to spin locks, since mutexes implicitly

provide the fence semantics. On Itanium, we expect that the effect
on mutexes is similar.16

Acknowledgments
This question arose out of discussions with many others, including
Bill Pugh, Doug Lea, Peter Dimov, Alexander Terekhov, and David
Butenhof, among others, as a result of our effort to specify seman-
tics for multi-threaded C++. Jeremy Manson explained to me why
the Java memory model can claim sequentially consistent seman-
tics for race-free programs, even though Java now also supports a
“trylock” primitive. The use of file copy as a simple lock bench-
mark was suggested by a mailing list discussion with Nick Ma-
claren. Doug Lea and David Butenhof provided useful feedback on
earlier drafts.

References
[1] S. V. Adve. Designing Memory Consistency Models for Shared-

Memory Multiprocessors. PhD thesis, University of Wisconsin-
Madison, 1993.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29(12):66–76, 1996.

[3] S. V. Adve and M. D. Hill. Weak ordering—A new definition.
In Proceedings of the 17th Annual International Symposium on
Computer Architecture (ISCA’90), pages 2–14, 1990.

[4] A. Alexandrescu, H.-J. Boehm, K. Henney, B. Hutchings, D. Lea,
and B. Pugh. Memory model for multithreaded C++: Issues.
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/
2005/n1777.pdf.

[5] A. Alexandrescu, H.-J. Boehm, K. Henney, D. Lea, and B. Pugh.
Memory model for multithreaded C++.http://www.open-std.
org/JTC1/SC22/WG21/docs/papers/2004/n1680.pdf.

[6] H. Boehm, D. Lea, and B. Pugh. Memory model for multithreaded
C++: August 2005 status update.http://www.open-std.org/
JTC1/SC22/WG21/docs/papers/2005/n1777.pdf.

[7] H.-J. Boehm. The atomicops atomic operations package.http:
//www.hpl.hp.com/research/linux/atomic_ops/.

[8] H.-J. Boehm. Threads cannot be implemented as a library. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 261–268, 2005.

[9] K. Gharachorloo. Retrospective: memory consistency and event
ordering in scalable shared-memory multiprocessors.International
Conference on Computer Architecture, 25 years of the international
symposia on Computer architecture (selected papers), pages 67–70,
1998.

[10] IEEE and The Open Group.IEEE Standard 1003.1-2001. IEEE,
2001.

[11] JSR 133 Expert Group. Jsr-133: Java memory model and thread spec-
ification.http://www.cs.umd.edu/~pugh/java/memoryModel/
jsr133.pdf, August 2004.

[12] A. Krishnamurthy and K. A. Yelick. Optimizing parallel programs
with explicit synchronization. InSIGPLAN Conference on Program-
ming Language Design and Implementation, pages 196–204, 1995.

[13] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs.IEEE Transactions on Computers,
C-28(9):690–691, 1979.

[14] D. Lea. The JSR-133 cookbook for compiler writers.http:
//gee.cs.oswego.edu/dl/jmm/cookbook.html.

16The standard NPTLpthread spin unlock implementation on Itanium
contains a redundant fence instruction, which may explain its relatively
poor performance in the low contention case. It’s unclear why the difference
disappears in the high contention case.

8 2005/11/29

[15] J. Lee, D. A. Padua, and S. P. Midkiff. Basic compiler alogrithem
for parallel programs. InPrinciples and Practice of Parallel
Programming, pages 1–12, 1999.

[16] J. Manson, W. Pugh, and S. Adve. The java memory model (expanded
version). http://www.cs.umd.edu/users/jmanson/java/
journal.pdf.

[17] J. Manson, W. Pugh, and S. Adve. The java memory model. In
Conference Record of the Thirty-Second Annual ACM Symposium
on Principles of Programming Languages, pages 378–391, January
2005.

[18] B. Pugh. The java memory model.http://www.cs.umd.edu/
~pugh/java/memoryModel/.

[19] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory.ACM Transactions on Programming
Languages and Systems, 10(2):282–312, April 1998.

9 2005/11/29

