HEWLETT
%) cickaro
Collaborative Design Using Your

Favorite 3D Application

Ming C. Hao, Joseph S. Sventek
Software Technology Department

HPL-96-51

April, 1996

concurrent We describe an event-driven application sharing
engineering, (EDAS) technology which enables the collaborative
even-driver, design of artifacts using existing, 3D, graphical
collaboration, design applications. The basis of the technology is
application sharing the capture, multicast, and synchronization of

window system events among multiple copies of an
application executing on different workstations.
This capability is achieved without modification to
the applications or to the window system software.

Internal Accession Date Only

To be presented at and published in Third International Conference on Concurrent Engineering
(ISPE/CE96). Toronto, Ontario, Canada, August 26-28, 1996

© Copyright Hewlett-Packard Company 1996

Collaborative Design Using Your Favorite
3D Applications

Ming C. Hao and Joseph S. Sventek
Hewlett-Packard Research Labs, Palo Alto, CA

Abstract

We describe an event-driven application
sharing (EDAS) technology which enables the
collaborative design of artifacts using existing,
3D, graphical design applications. The basis
of the technology is the capture, multicast, and
synchronization of window system events
among multiple copies of an application exe-
cuting on different workstations. This capabil-
ity is achieved without modification to the
applications or to the window system software.

1.0 Introduction

The traditional serial development of a
product has been found to result in difficulties,
such as long development time and designs
that are difficult to manufacture. Industries,
like automobile and mechanical manufactur-
ing, recognize the importance of concurrent
team design. They are working towards new
direct engineering and virtual co-location strat-
egies. They want their designers and manufac-
turing engineers to work together on large
complex design problems.

However, it is not always possible to bring
geographically separated groups of designers
and engineers together. Attempts to use exist-
ing concurrent engineering tools between geo-
graphically-dispersed engineers have
encountered serious latency problems due to

insufficient bandwidth to support the sharing
of graphical output from CAD/CAM tools.
Users at separate workstations need to be able
to share the contents of the windows and com-
municate with their colleagues independent of
the available network bandwidth.

There are numerous collaborating systems
that have been designed to provide real-time
collaboration. One method uses a network to
distribute the graphic output of an application
to different displays. Another method uses a
pseudo-server to intercept and multiplex win-
dow messages from a server to applications.
However, most of them usually result in heavy
traffic load or demand for high network band-
width communication links.

FIGURE 1. An Interception scheme

Application
A
P‘D Workstation 3

~ P

\@ Workstation 4

==

Workstation 2

Workstation 1

As illustrated in Figure 1, a common
method is to share a window among multiple
workstations for the same application (client),
then to use a pseudo server to intercept exist-
ing application messages and pass them to
each user’s workstation. To the application, the

pseudo server looks like the real server. To
each user’s workstation, the pseudo server
looks like the client. The data exchanged
between the user application and the pseudo
server is identical to the data exchanged
between the pseudo server and the user work-
stations. It usually generates heavy network
traffic due to continual shipping of graphics
primitives and bitmaps among the participat-
ing workstations.

JVTOS [1, 2] uses a pseudo server to simul-
taneously share single-user applications on the
assumption of a high-speed network. SharedX
[3] extends the X window system to allow
application sharing by replicating the X proto-
col stream for each of the target windows.
Since the output protocol stream is relatively
high bandwidth, this scheme does not work
well for large numbers of targets or for high
bandwidth applications.

Another drawback to the pseudo server
scheme is that the user can only share the
graphics calls directed to the pseudo server.
Most 3D X Window applications use direct
hardware access (DHA) to display sophisti-
cated graphics. DHA allows applications to
bypass the X server to render graphics on the
displays.

To date, most application software needs to
be modified to support collaboration. Rohall’s
[4] CSCW infrastructure is designed to handle
heavy-weight data sets, such as large image
and video with good response time. However,
it requires modification to applications to use
special communication protocols. MMConf
[5] requires re-linkedit of the user interface
toolkit into the application before sharing.

Our goal of the concurrent engineering col-
laboration work at the Hewlett-Packard

Research Laboratory is to solve these prob-
lems, namely:

o work well over a typical spectrum of net-
work bandwidths

« require no change to existing application
and window systems

» support real-time 3D rendering

2.0 Our Approach

In a non-collaborative setting, once a user
has started a 3D, graphical design application,
all interactions between the user and the appli-
cation occur through the delivery of events by
the window system to the application; exam-
ples of user actions which cause events to be
delivered include button press, button release,
key press, key release, pointer motion, window
resizing, and window creation.

Rather than use a pseudo server scheme to
intercept window messages, our technology
captures such user-generated events targeted at
an application configured for collaborative
use. After the capture, they are processed and
multicast to all of the applications running on
the different workstations.

This approach assumes that if an identical
set of applications are started in the same ini-
tial state and process an identical sequence of
events, then the applications will continue to
be in an identical state after processing each
event.

Workstation 1 Workstation 2

2, capturing

L
Pro/ENGINEER 1

""""" Pro/ENGINEER 2

-
.. -~
st

4, synchronizi

|
| Pro/ENGINEER 3 |

FIGURE 2. A new approach

Consider the example illustrated in Figure
2. EDAS allows engineers/designers using
ProEngineer, a popular CAD application, to
concurrently design a mechanical bolt in real-
time from different workstations. Unlike a
pseudo-server which replicates all graphical
output among the applications, this mechanism
replicates only the input events among applica-
tions. Our mechanism provides application
sharing through multiple, synchronized
instances of shared applications. The current
EDAS includes: (1) event mapping: to map the
corresponding window tree structure of each
application; (2) event capture: to capture user
interactions on the window, such as mouse
motion, a button press, or a key press; (3)
event multicasting: to multicast input events
from a single application window to some
group of existing applications running on dif-
ferent workstations; (4) event synchronization:
to maintain a consistent view among the col-
laborating applications.

3.0 The EDAS Architecture

In this section we describe the application
sharing design based on EDAS. EDAS is a
mechanism which is built on a multiple client-
server model. Figure 3 illustrates the overall
architecture. It contains the four basic compo-
nents:

1. Event mapping

2. Event capture

3. Event multicasting

4. Event synchronization

These components have the following char-
acteristics:

 built on the window hierarchy structure of
the applications

« forces one single input source for easy syn-
chronization through follow control

» separates application program data, execu-
tion, and control

Workstation 1
Display Serverl

Window 1/ Win DataArea
{event 1) d1 /{:lw}, d1/w2

1/wn

A~y
\\
Capl

Application

Win DataArea
dl/wl, d2/w2
e i

Session Mgr

4. Synchronize

Workstation 2

Display Server 2

Win DataArea | | window 2
d2/wl, d2/w2 {event 17)
.. d2{wn R

/A WI

=

/ r

/. (Pplicaﬁon 2)
Agent

LY -

Workstation n

Server n
Win DataArea
dn/wl,dn/w2
. dn/wn

\ 47
pplication n
&=

Window n|

FIGURE 3. Architecture OverView

This mechanism separates private input
events from the shared ones. To achieve fast
response time, EDAS replicates application
program data and execution on each site. For
easy synchronization, EDAS uses a floor con-
trol mechanism to guarantee that a determinis-
tic event stream is sent to the shared
applications for processing

After input events are captured, EDAS ana-
lyzes the events, puts them in proper execution
order, and multicasts them to each shared
application. As needed, EDAS slows down the
event processing to synchronize multiple
views. EDAS employs an agent on each
remote workstation to: (1) retrieve and send
the local application window hierarchy array
for mapping; (2) maintain event consistency
among shared applications; (3) multicast
incoming events; (4) mediate environmental

differences to allow for different window
sizes, key codes, colormaps, etc.

In Figure 3, the EDAS’s main functions
include: (1) mapping the local shared applica-
tion window hierarchy data arrays from work-
stations 1-n to a global window hierarchy data
array; (2) allowing users to enter the shared
application window; (3) capturing user’s win-
dow input events, such as event 1 at window 1,
event 17 at window 2...; (4) mediating the
incoming events as needed; (5) synchronizing
motion events as needed; (6) multicasting the
events to windows 1-n to execute some func-
tions.

Each of these components is described further
in the following sections.

3.1 Event Mapping

By using the window hierarchy structures
and not window attributes, we incorporate a
means to automatically map a window in one
site to a window in other sites under the same
window hierarchy. EDAS communicates with
each agent residing at different workstations to
construct various instances of the 1-1 parent-
child window mapping.

The window system automatically invokes
each corresponding application to execute the
incoming input events from EDAS. In some
situations, we may wish to do the mapping
interactively. In this case, the user of the appli-
cation may bring up his or her windows and
invoke an EDAS Map-Window function. The
user would use mouse clicks to connect
together those shared windows. Once this
mapping exists, it can be processed by EDAS.

3.2 Event Capturing

Today, as soon as the user types a character
or presses a button on a window, the window
event is delivered by the display(server) to the
appropriate application (client), the owner of
the window [6, 10]. Input events are private to
the application. All events occurring on a win-
dow will be sent directly to the application.

To share existing applications, EDAS
explores a new event capturing mechanism [7]
instead of interception. The input events are
captured when the user enters the mouse into
the shared window. Events from the mouse,
key, and button will be sent to EDAS rather
then the normal client who would have
received them. EDAS processes the events and
then multicasts them to the shared application
windows to execute some function concur-
rently.

3.3 Event Multicasting

After analyzing the captured input events,
the EDAS [7] orders or groups them if neces-
sary and sends the shared input events to the
target application windows. Applications auto-
matically trigger their own event handlers to
execute received events. Events are processed
just as they would be if the window events had
been directly entered into the application win-
dows.

The key functions are:

» Grouping: to allow users to select the input
event distribution scope.

o Ordering: to sequence events from multiple
sources into a proper execution order.

e Multicasting: to distribute events to the
appropriate targets.

Figure 4 illustrates the EDAS basic muti-
casting function flow.

FIGURE 4. Multicast user events

multicasting

applications

In the sharing of multiple applications
simultaneously, EDAS provides different
“contexts” for the user to dynamically select
the multicasting scope. This becomes useful
when certain application instances are not
allowed to execute concurrently by all shared
applications. For example, the “save” function
is not allowed to be executed by all shared
applications in a central repository environ-

ment. Alternatively, there may be many con-
texts, each containing the application instances
that are functionally related to one another. A
given application may belong to more than one
context or no context.

3.4 Event concurrency control and
synchronization

With a replicated execution approach,
EDAS synchronizes multiple copies of a
shared application running on each site. The
need for synchronization arises due to the mis-
match of processing speeds of various proces-
sors. Our synchronization mechanism employs
motion event compression and a two-phase
protocol. EDAS ensures that all shared appli-
cations are in a consist state before processing
the next incoming event. In case of out of syn-
chronization, EDAS allows users to easily re-
synchronize the application in local mode.

4.0 Session Management

To start a concurrent engineering design
session on a running application, only the col-
laboration initiator requires EDAS, all other
participants’ workstations need to run an agent
and be connected by a network.

We provide a concurrency control window
{ccw) on each participant’s screen. The ccw
provides an OSF/Motif look and feel user
interface which controls the application shar-
ing.

A participant needs to acquire the floor
before sharing. It identifies the participant cur-
rently providing input events to the session.
Input events from other participants are inhib-
ited. Only one participant may have the floor at
a time. Participants can take turns with the

“token”, which allows each participant to
manipulate the 3D model as needed.

We also provide a shared cursor to enhance
the collaboration. With a shared cursor, the
movement of the floor holder’s cursor are visi-
ble to other participants.

Figure 5 illustrates the display of the floor
holder at workstation 1. There are 12 copies of
a shared CAD/CAM application running on 12
workstations. From the ccw window, the floor
holder can dynamically select a subset of cop-
ies of the application to concurrently execute
some functions. For example, during an engi-
neering design session, the floor holder selects
applications 2, 6, 11 to construct a bolt. After-
wards, the floor holder selects applications 7,
10, 12 to design a brake. All participating engi-
neers within the selected context can view and
change the rendering as needed in each design
and review process.

FIGURES5. A concurrent design session
Floor Holder Display 1

2 A

/ EDAS
O O/O \O O
O O O O

a group of workstations

5.0 Examples

EDAS is an on-going experiment in
Hewlett-Packard Research Laboratories. We
built a series of increasingly powerful proto-
types to demonstrate and evaluate the key
technology in the X Window system. Our

experience with the sharing of unmodified 3D FIGURE 6. Concurrent Rotating

CAD/CAM applications has been promising.
The response time is almost instantaneous.

workstation 1 workstation 2

Here is a partial list of the applications that
have used this technology for sharing among
different X Window workstations.

« ProEngineer Pro/ENGINEER 1

sharing of 3D modeling/rotation/assembly
« ICAD
sharing of high data volume CAD applica-

tions workstation4
« PDGS g h

sharing of mechanical parts engineering
+ World-Wide-Web (Netscape Browser)
sharing of HTML (Hypertext Markup Lan-

guage) and 3D graphics
+ Runner
sharing of 3D interactive graphics (Star- , .
base ti rough DHA) graphics (FIGURE 7. Sharing 3D rendering
* Video Player workstation 1 workstation 2
share of real-time video presentation

(MPEG files)

EDAS ~

Figure 6 and Figure 7 show examples of 4
engineers concurrently designing a brake and
an automobile together using the Pro/Engineer
and Car Runner at different sites.

5
workstation 4 v\;(\)rkstation 3

Car Runner

Car Runner

6.0 Conclusions

EDAS employs new underlying design
mechanisms not found in current 3D concur-
rent engineering products. Most software col-
laboration research prototypes and products
support file/image/store-forward sharing.

EDAS has been used to support collabora-
tive CAD/CAM 3D modeling among multiple
workstations. Its event-multicast design center
permits it to be usable over a variety of net-
work bandwidths (tested as low as 56 kbps).

In summary, EDAS meets the criteria on
application sharing architectures[8, 9]. With
the separation of program execution and con-
trol, EDAS achieves the fast response time
through replication. With the direct sharing of
user interactions, EDAS resolves sharing of
3D rendering issues. With a single user input
source and two-phase protocol, EDAS main-
tains a consistent view among shared applica-
tions. In addition, EDAS provides high
security without intensive encryption since
only events are shipped, not the data. EDAS is
a simple and significant technology to support
real-time, 3D concurrent engineering.

Acknowledgment

Thanks to Mary Loomis and Chris Hsiung
from HP Labs for their encouragement and
suggestions, and to Allen Karp, Milon
Mackey, Charles Young, Dongman Lee, Jerrie
Andreas, and Daniel Garfinkel for many tech-
nical suggestions and discussions.

References

[1] Thomas Gutekunst, Daniel Bauer, et al, “A
Distributed and Policy-Free General Purpose
Shared Window System”, IEEE/ACM Trans-
actions on Networking Vol3, No. 1, Feb. 1995.

[2] Thomas Gutekunst-and Bernhard Plattner,
“Sharing Multimedia Applications Among
Heterogeneous Workstations”, Second Interna-
tional Conference on Boadband Islands, 1993
Elsevier Science Publishers B. V.

[3] John R. Portherfield “Mixed Blessings”
and “HP SharedX”, HP Professional Volume 5
Issue 9. September, 1991.

{4] Stephen Zabele, Steven L. Rohall “High
Performance Infrastructure for Visually-inten-
sive CSCW Applications” CSCW 94, Chapel
Hill, NC.

[5]Terrence Crowley, Paul Milazzo, Ellie
Baker, Harry Forsdick, and Raymond Tomlin-
son, “MMConf: An Infrastructure for Building
Shared Multimedia Applications” CSCW 90,
Los Angeles.

[6] Adrian Nye, “Xlib Programming Manual”
O’Reilly & Associates, Inc. July, 1992.

[7] U. S. Patent pending on “A Mechanism to
Control and Use Window Events Among
Applications in Concurrent Computing” and
“A Mechanism to Sense and Multicast to a
Plurality of Exisiting Applications for Concur-
rent Execution in a Distributed Environment”
Hewlett-Packard, Oct, 1994 and May, 1993.

[8] M. Sobolewski, et al, “Functional Specifi-
cations for Collaboration Services”, Proceed-
ings of 3rd IEEE Workshop on Enabling
Technologies: Infrastructure of Collaborative
Enterprises, Apr. 1994,

[9] Daniel Garfinkel, Randy Branson, “A
Comparison of Application Sharing Architec-
tures in the X Environment” Xhibition 91.

[10] Communications of ACM, Special Sec-
tion on “Graphical User Interfaces: The Next
Generation”, Apr. 1993, Vol. 36, No. 4.

