[ﬁﬁ HEWLETT

PACKARD

Security for a Connectionless

Peer-to-Peer Link

Graeme J. Proudler, Iris Harvey*
Mobile Communications Department

HP Laboratories Bristol
HPL.-96-90
June, 1996

security, cellular radio,
Internet, connectionless,
client-server

Internal Accession Date Onl

This document describes a protocol designed to
secure a connectionless communication channel
between a mobile computer and a server.
Specifically, the protocol checks that all messages
have been delivered in the correct order to the
correct destination, and a received message is the
message that was sent. The protocol provides
automatic authentication, integrity, and
confidentiality on a communication link between
two peers, specifically a mobile computer and a
server. The protocol is simplified by the fact that
key distribution is almost a null process because
only two entities are involved, and those entities
can at times communicate in a secure
environment. A prototype is being built using a
laptop PC with mobile phone as the mobile and a
PC with modem as the server.

*University of the West of lxz'ngland, Coldharbour Lane, Frenchay, Bristol, United Kingdom
© Copyright Hewlett-Packard Company 1996



Security for a connectionless peer-to-peer link

Graeme Proudler, Hewlett Packard Laboratories Bristol,
Filton Road, Stoke Gifford, Bristol BS12 6QZ, UK.
Direct line: +44 117 9228 753, Switchboard: +44 117 9799 910
Fax: +44 117 9228 924, email: gjp@hplb.hpl.hp.com

Iris Harvey, University of the West of England,
Coldharbour Lane, Frenchay, Bristol, UK.

Abstract
This document describes a protocol designed to secure a connectionless
communication channel between a mobile computer and a server’. Specifically,

e the protocol checks that all messages have been delivered in the correct
order to the correct destination, and a received message is the message that
was sent.

The protocol provides automatic authentication, integrity, and confidentiality on
a communication link between two peers, specifically a mobile computer and a
server. The protocol is simplified by the fact that key distribution is almost a null
process because only two entities are involved, and those entities can at times
communicate in a secure environment. A prototype is being built using a laptop
PC with mobile phone as the mobile and a PC with modem as the server.

1 Introduction

The desirability of communicating-portable-computers depends on the services
available and the cost of the communications. However, any shortcomings in
security are a barrier to popular use, and certainly restrict the applications that a
prudent user will use.

The scenario is of a mobile user calling a server using a communication path that
includes a cellular radio link and the PSTN or the internet. The path is a
real-time duplex connection, albeit with latency. The conversation between the
mobile and the server consists of a series of exchanges of messages. History teaches
us that the average user is not willing to pay high prices for security, and it can
be argued that the only commercially viable security system is one that provides
personal security for an individual who has decided that he must have security:

e A user or application developer using existing (insecure)- communication
systems is unlikely to want to modify an existing communication package.

1The protocol is (naturally) also applicable to connection-oriented channels.

1



Such a person will be more comfortable adding a security layer immediately
below his application, as this minimises the extra knowledge required. In
effect, this option forces the user who requires a secure application to
incorporate security into the application. The cost of security is then bourne
by the user, rather than by the rest of the network.

Happily, it turns out that a secure peer-to-peer non-time-critical link is one of the
simplest security situations. If the sole vunerability is the communication link,
there is no need to secure individual machines. If the connection is always
between a particular portable and a particular fixed machine, there is no difficulty
in distributing security keys. And if data is non-time-critical and rates are
relatively low, it is possible to run security processes on a standard processor.
This security process sits immediately below an application and above the
communication stack: the application sees it as the top of the communication
stack and the communication stack sees it as the bottom of the application. Since
the security process has become part of the communication stack, it follows that
the security layer includes an auxillary function: it must retain a copy of a
message until delivery of that message has been confirmed, in case retransmission
is required.

2 Peer-to-peer security

This protocol uses many standard security techniques and mechanisms which are
not explained here, and the interested reader is referred to [1] as an example of a
ITU standard that uses authentication, and [2] for a comprehensive introduction
to security in general.

It can be argued that the important security services required by the user are
confidentiality, authentication, and integrity.

e Confidentiality renders the data unintelligable to an unauthorised person. It
requires the use of algorithms such as DES etc. and careful choice is
required in order to meet export controls.

e Authentication provides evidence of the identity of the peer at the other end
of the communication path. Challenge/response mechanisms are often used
to prove that the peer is ‘on-line’.

e Integrity proves that the data has not been altered enroute. Integrity of
individual messages can be established using checksums based on one-way
‘hash’ function (which have the advantage of having no export restrictions).
Integrity of streams of messages can be determined by sequentially
numbering messages and checking that they are delivered in order. This
checks that messages are not repeated and that none are missing.

2



All of these services (and others) generally require the use of encryption and
hence a mechanism to distribute encryption keys. This is in general an expensive
and complicated process. But in this case the secure link is between just two
points, which are both under the control of the user and can be in physical
proximity when keys are exchanged, and key distribution is simple.

The protocol uses a hierarchy of encryption keys, to minimise the number of times
that a human must establish ‘trust’ between two machines by loading the same
key into both. In this case, the password is used to securely communicate session
keys which securely communicate user data. This is the minimum number of keys
that are required, and security could be increased if more keys were available (for
instance, different session keys could be used for transmit and receive).

The server keeps a record of its secure communications. This is called the audit
process, and is vital for security management.

Individual messages are built using encryption to provide confidentiality, a hash of
an entire message to provide evidence of message integrity, and encryption of that
hash to provide message authentication. The protocol (described next) is
designed to provide stream integrity, and deals with messages which are repeated,
missing or out-of-order.

3 The protocol

The protocol can simultaneously operate in both directions, so it does not matter
which peer initiates a conversation, or even if both peers begin talking at the
same time. It is built around two distinct states: the challenge state and the data
state. A machine enters the challenge state when it is necessary to prove that a
peer is on-line, and not a recording. User data is not sent during this time. A
machine enters the data state when it is satisfied that messages are from a peer
which is on-line. A machine therefore switches between these states.

The protocol ensures delivery in the correct order by use of specific
acknowledgement messages or data-bearing messages from the peer that indicate
reception of a message, and whether it was accepted or not. If the peer receives a
message out-of-order, the security service will receive an acknowledgement to a
later message before the acknowledgement to an earlier message. The security
service therefore repeats the missing message and all messages after the missing
message. It can safely do this because the peer has a mechanism for detecting
out-of-order messages, and will ignore them (apart from sending an
acknowledgement in reply)2.

The ability to detect out-of-order messages is a natural consequence of the
necessity to provide protection against replay attacks. The method is basically

2Note that if an acknowledgement was lost, and not the message, the only undesirable effect
is the unnecessary retransmission of data.



just keeping track of a sequence number: a peer keeps a count of the sequence
number of the last correctly received data-bearing message, and checks that
received messages are processed in strict order.

3.1 Protocol details

The protocol requires a random number for initialising encryption of each
message, a random number for the challenge process, and a random number as
part of the sequence number. It uses the same random number for all three
purposes.

o Initilisation Vectors are random numbers which are combined with a key in
the encryption algorithm, so that changing the Initilisation Vectors causes
the use of different sequences of the keystream even though the key may not
have changed. IVs are sent with every message.

o Challenge processes ‘prove’ that a peer is on-line (ie. received messages are
not old genuine messages). A unit invents a random number and sends it to
the supposed peer. Then, if an incoming message passes authentication and
integrity tests and contains that random number, the message must have
come from a unit which is on-line and has the encryption keys which form
the basis of the trust between the peers. So the message is accepted as
coming from the peer unit.

¢ Sequencing schemes that count messages have difficulties when the counter
wraps-around or it becomes necessary to reinitialise the counter. One
solution is to prefix each sequence number with a random number, so the
sequence number counts the number of times that a particular prefix has
been used in the transmission of a data-bearing message.

To achieve this, the sequence number is preset everytime that the prefix is
changed, and incremented everytime after a new data-bearing message is
sent. When the sequence number is about to roll over to zero, the prefix is
always replaced and the sequence number is preset.

However, when the prefix changes, a receiver must check that this has been
done by a valid source. This is done by challenging the source. Only one
challenge is necessary to check that a new prefix came from a valid source
— afterwards the sequence number is sufficient to detect replays.

Further, since a source needs to know which of its messages have been
delivered, the prefix and sequence number of the last message received at a
unit must be echoed back to the source in data-bearing messages or specific
acknowledgement messages.



This particular protocol uses the same random numbers as prefixes, challenges,
and initialisation vectors in an attempt to minimise the number of fields in a
transmitted message. The protocol causes the random numbers to always change
in pairs, and each message contains a pair of numbers which are simultaneously
the transmit prefixes for both directions of a link, the challenges for both
directions of the link, and the initialisation vectors for both directions of the link.
Each node therefore determines a random number in every message on the link,
no matter who transmitted that message. This allows each node to determine
whether a received message is part of the current sequence of messages.

When a prefix is changed, messages with that prefix will be ignored by the
receiver until the prefix has been validated, and sending ordinary data messages is
pointless until that is done. This particular scheme therefore does not attempt to
send normal data when a prefix is changed, and enters a separate protocol to
ensure that both ends of a link are satisfied with the new prefix. The challenge
protocol involves associating a pair of prefixes: one from received data and the
other from transmitted data. When a machine changes its transmit prefix or
receives a changed prefix it must build another pair, such that neither of the new
prefixes appears in the old pair.

A forced exchange of ‘challenge reply’ messages is necessary because a transmitter
has to find out the last correctly received message at the destination. The
transmitter needs this information because it must retransmit any old messages
(which used the old prefix) which have not been correctly recetved at the
destination. However, any retransmitted messages must be sent using the new
prefix and new sequence numbers (otherwise they will be rejected), which means
that any duplicates of old messages resent in error will not be detected. The
‘challenge reply’ message is the first message containing an echo of a new prefix ,
and hence is the first message that is trusted by a receiver. Subsequent data
bearing messages will also be trusted, but cannot indicate that the previous
correctly received message used an old prefix (the message would be rejected).
Hence the ‘challenge reply’ message is used to indicate the last correctly received
message received with the previous prefix, by sending the old prefix and sequence
number in the ‘data’ field of the ‘challenge reply’ message.? If a machine changes
its transmit prefix, it is therefore necessary for a machine to repeatedly send
‘challenge’ messages until it receives an acceptable ‘challenge response’ message.
The challenge protocol to achieve this has the following rules:

1. if a machine has changed its transmit prefix for whatever reason, repeatedly
send challenge messages* containing

31f there is no ‘last correctly received message’ with the previous prefix, the ‘challenge reply’
sends the new prefix and a zero sequence number in its ‘public data’ field.

4T, is the new prefix of the source of this message, Rg is the prefix last received at the source
of this message.



To= new, Rg=0

until a challenge reply is received.

2. for every challenge received, send a single challenge reply. A valid challenge
reply is defined by

Tp= new, R,= new,

o if the T prefix received in the challenge is an unassociated prefix:

— if an unassociated local prefix already exists, associate the T prefix
with that local prefix and send a challenge reply using those
prefixes.

— if an unassociated local prefix does not already exist, create a new
unassociated local prefix, associate the T prefix with that local
prefix and send a challenge reply using those prefixes. Enter the
challenge state and send ‘challenge’ messages using the new local
prefix until a ‘challenge reply’ is received.

o if the T prefix received in the challenge is an associated prefix, send a
challenge reply using those associated prefixes.

The system can now return to transmission of normal data. The sequence number
is one in the first data-bearing message after a change of prefix, and thereafter
incremented everytime that a new data-bearing message is sent.

If both peers maintain these prefixes and sequence numbers between connections,
the challenge/response mechanism will operate only when a sequence number rolls
over. If a machine chooses to change the random number in its sequence ID
(perhaps because it does not remember state between connections), the
challenge/response mechanism will operate when a new connection is initiated.
Thus a machine does not have to remember this extra state information, but pays
a price in the form of extra messages for the challenge/response protocol.

References

[1] Recommendation X.509 ‘The Directory - Authentication Framework’, ITU.

[2] Bruce Schneier ‘Applied Cryptography’, second edition (1996), Wiley.





