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1 Introduction

Let G be a multiplicative group of order v and D be a k-subset of Gj then D

is called a (v, k, Aj n)-difference set in G provided that the differences dd,-l for

d, d' ED, d # d' contain every nonidentity element of G exactly A times. The

parameter n = k - Ais included in the list of parameters for future convenience. See

[12] for results on difference sets. We shall consider (22d+2, 22d+t ± 2d , 22d ± 2d ; 22d )_

difference sets (known as Hadamard, or alternatively as Menon, difference sets). In

the abelian case, the existence question was completely answered by the following

theorem due to Kraemer [11], Jedwab [9], and Turyn [18].

Theorem 1.1 The abelian group G has a (22d+2, 22d+t ± 2d , 22d ± 2d , 22d) if and

only if the exponent of the group is less than or equal to 2d+2 •

The nonabelian case has also been studied, and there are both existence and

nonexistence results. McFarland [17] provided a construction that was generalized

by Dillon [7], and they both have applications in nonabelian groups. Davis [4]

showed how the constructions that solved the abelian groups can be generalized

into nonabelian cases. Davis and Smith [6] showed that the example in Liebler and

Smith could be extended to an infinite family of difference sets in groups of order

22d+2 and exponent 2d+3
, thus exceeding the exponent bound from the abelian case.

As for nonexistence, there are two known results. The first one is due to Turyn

[18].

Theorem 1.2 Let G be a 2-group of order 22d+2, and H a normal subgroup so that

G / H is cyclic. If IHI < 2d , then G does not have a Hadamard difference set.

The second result, generalized by Ma [16], is due to Dillon [7].

Theorem 1.3 Let G be a 2-group of order 22d+2, and H a normal subgroup so that

G/H is dihedral. If IHI < 2d
, then G does not have a Hadamard difference set.
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These are the only known nonexistence results. It would be interesting to know if

there are any other conditions that will exclude a 2-group from having a Hadamard

difference set. In the cases that have been exhaustively studied, namely the groups

of order 16 [10] and the groups of order 64 [8], these are the only types of groups

that have been ruled out.

The aim of this paper is to construct difference sets in groups similar to the

Liebler and Smith example of very high exponent. We will show that asymptotically

the exponent can be IGI:, where IGI is the order of G. Previously the highest

possible exponent was IGI~ asymptotically.

We will develop the representation theoretic point of view in the second section.

The third section introduces the family of groups that we will work with as well

as the representations associated to those groups. In addition to that, the third

section will cover a technical Lemma required to prove the construction. The fourth

section will give the difference set construction for the general group, and we will

prove that this construction works. The final section gives examples of difference

sets in a group of order 1024 and exponent 256 as well as a group of order 16,384

and exponent 2048.

2 Representation Theoretic Preliminaries

Consider the group ring Z[G]. If A is a subset of G, we will abuse notation by

writing A as a member of the group ring, A = I:aEA a. Similarly, we will define

the group ring element A(-I) = I:aEA a-I. If D is a difference set in G, then the

definition of a difference set immediately yields the group ring equation

DD(-I) = k -,x +'xG

Now consider a representation of G, call it <p. A representation is a homomor­

phism from G to the multiplicative group of m x m matrices over the complexes.
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The degree of the representation is m, the size of the matrices. We can always

choose our basis so that the representation is unitary; namely, the inverse of the

matrix ¢(g) will be the conjugate transpose (see [2]). This homomorphism can be

extended to a ring homomorphism from the group ring Z[G] to the ring of m x m

matrices, and we will use the notation ¢(A) = LaEA ¢(a). Note that G (the group

ring element that is the sum of the elements of G) is in the center of the complex

group ring C[G]. Thus for any irreducible representation ¢ of G, we have that

¢(G) is in the center of Mmxm(C), the ring of all m x m complex matrices. Hence

¢(G) is a scalar matrix. A representation ¢ is called nontrivial if there is an x E G

with ¢(x) =1= 1m , where 1m is the m x m identity matrix and m is the degree of

¢. When ¢ is a nontrivial irreducible representation for G and ¢(x) =1= 1m , then

¢(G) = ¢(xG) = ¢(x)¢(G) implies that ¢(G) = O.

To generalize this slightly, for any subgroup H of G the restriction of ¢ to H is

a representation of H. Let h E H generate a normal cyclic subgroup of H. Then

if ¢IH(h) =1= 1m and ¢ does not contain the trivial representation of H as a direct

summand, then we also get ¢(H) = O. We will use this property extensively in

section 4 by displaying an element h of a particular subgroup H. The existence of

h with the above property will ensure that the representation sum over the subgroup

will be zero. For more background on representation theory see [2].

If we apply an irreducible nontrivial representation, ¢, to the difference set

equation, we get

¢(DD(-l») = ¢(D)¢(D(-l») = ¢(k - A) + A¢(G) = n1m

This fact and the next theorem explain why we want to look at representation

sums over D.

Theorem 2.1 Let D be a subset of size k of a group G. Let S be a complete set of

distinct, inequivalent, nontrivial, irreducible representations for G. If ¢(D)¢(D<-l») =

n1m for all ¢ E S, then D is a (v, k, A; n)-difference set in G.
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Proof: Any subset D of G is completely determined by its image under the

regular representation. The regular representation decomposes as the direct sum

of a complete set _of distinct, inequivalent, irreducible representations for G. Since

D has size k, D satisfies the difference set equation for the trivial representation.

If in addition, D satisfies the difference set equation for all </J E 5, then D satisfies

the difference set equation for the right regular representation. Therefore D is a

difference set (see [13]). o

In the following sections, our strategy will be to use this result to build the

difference set a piece at a time. We will find a subset of the group which will give

us the correct representation sum for every representation of a certain degree, and

then we will show that the pieces put together have the correct representation sum.

3 Technical Lemma and Group

The groups we will be working with are semidirect products of two cyclic groups,

one of order 23t+2 and the other of order 2t • We call the group Gt and define it as

( I 23t+2 2t 1 22t+ 2+1)Gt = x,y x =y =l,YXy- =x .

In order to list the irreducible representations on this group, we need to establish

some notation. All irreducible representations are induced from characters on the

cyclic normal subgroup of order 23t+2 , so we need to list the characters of this

subgroup. Define F2u to be the character table of the cyclic group of order 2u
, where

a character of an abelian group is a linear (degree 1) representation. The rows of

the character table are indexed by the characters and the columns are indexed by

the group elements. We can think of this table being constructed inductively by

putting two copies of F2u-l next to each other to form the first 2u
-

1 rows of the

table. These represent the nonfaithful characters, and all of the faithful characters

will fill in the last 2u
- 1 rows.

Now let TJ be a primitive 28 root of unity, and let t < s - 2. For each
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j = 0,1, ... , t, form the number ring E&) = Z[7]2
J
). We induce an automor­

phism Uj of order 2t - j on E&) by 7](1j = 7]2--(t-
j
)+1. We use Uj to define an al­

gebra R t- j of 2t- j X 2t- j matrices generated by matrices B whose first row is

the vector (bo, bll . ", b2t-J_1) and whose (i, k) entry is b~~i' where k - i is read

mod2 t
-

j
, and bo,~, ... , b2t-J_1 E R~jl. For convenience, we will use the notation

m(bo, bI, ... , b2t-j_1) for the matrix B. If the matrix is of the form m(x, 0, ... ,0),

we will write it as m2t-j (x) for x E E&). Finally, the automorphism ur-J
-

1
on R~j)

will be denoted by 7"j.

Let Iii = (al,O, al,ll"" al,2u-1) denote the lth row of F2u. We then define El :=

m(al,O, al,I, ... , al,2u-1). By character orthogonality, EiEk = Oik2u Ek. We also note
-T

that Ei = Ei (as long as u ~ ~).

Set s = 3t +2, let j range from 0 to t, and set u = t - j. The ring Rt- j is the

image generated by Z[Gt] in the ring of 2t- j x 2t- j matrices under an irreducible

representation </> of degree 2t - j. The following three Lemmas display a method for

generating a possible image of a difference set under </>. The first Lemma constructs

an element of R~) which satisfies a number theoretic equation: the fact that such

an element exists is a crucial step in the construction of a difference set in Gt .

Lemma 3.1 Let 7] be a primitive 28 th root of unity. Let Al = III = 1, "Y1 = (AI +
7]2d1+l lld7]a1

• Also let 6 = J=I7]2
1

, and for k > 2, let ~k = J~k-1' Finally for

k 2:: 2 define the three quantities Ak = Ak-1 + ~kllk_l' Ilk = -Ak-1 + ~kllk_l' and

"Yk = (Ak + 7]2dk+1 Ilk)7]O,k for some integers ak and dk. Then as long as k ~ 1+2,

"Yk"Yk + hk"YkYJ = 2k
+l.

Proof: We show by induction that AkAk + Ilk Ilk = 2k. The k = 1 case is obvious,

so suppose that the claim is true for k - 1.
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and

So

The Lemma follows a similar argument, using the fact that Tj sends any odd

power of TJ to its negative. We only need k ~ 1+2 so that the kth root of TJ2 still

lies in Ro. o

In order to apply this Lemma, let s = 3t+2, 1= 2t+ j, k = 2t-2j -1, ak = 2j +1
,

d d . P 2·-k 21- k +2 Th h .an k = 23 -1. ut (k = TJ TJ • en t e expressIOn

2k - 1 _l

Ak = E (-l)qk(m)(r
m=O

defines a binary string qk whose mth entry is qk(m), where Ak is the element defined

in Lemma 3.1. Similarly

2k- 1_l

J1.k = E (-ly(m)(r
m=O

defines rk, where J1.k is the element defined in Lemma 3.1. Recursively ql = rl = 0,

q2 = 00,r2 = 10 and for k;::: 3,

i) qk(m) = qk_l(m/2), m = 0,2, ... , 2k- 1 - 2.

ii) qk(m) = rk_l((m -1)/2),m = 1,3, ... ,2k - 1 _1.

iii) rk(m) = 1 + qk-l (m/2) modulo 2, m = 0,2, ... , 2k- 1 - 2.

iv) rk(m) = rk_l((m - 1)/2), m = 1,3, ... , 2k - 1 - 1.

We now define two elements of Z[Gt ] whose representation sums have terms that

match "h from Lemma 3.1.

2k - 1 _l
A

2
t-J = X 2J +1 { E [(X23t+1-J )qk(m) + X2J+ 1- 1 (X23t+l-j yk(m)](x 2t+3+J +23+ 2J )m}

m=O
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and

21<-1_1
B2t-i = X-2i+1 { ~ [(X-23t+l-i )ql«m) +X-(23t+I-J+2i+I_1)(X-23t+l-i yl«m)]

m=O

Lemma 3.2 Let A2t-i and B2t-i be defined as above. Then A2t-i and B2t-i each

consist of 22t-2j-1 distinct powers of x. Moreover the exponent of any power of x

in A2t-i is congruent to 2j +l or 2i+2 - 1 modulo 23+2j J while the exponent of any

power of x in B2t-i is congruent to -2j +l or _(2i+2 - 1) modulo 23+2j.

Proof: Let ( be a primitive 23t+2th root of unity, and X a character of (x) so

that X(x) = (2
J =.". Then X(A2t-i) = 12t-2j-1 and X(B2t-i) = 12t-2j-1 TJ , as in

Lemma 3.1. By construction, 12t-2j-1 consists of 22t-2j-1 distinct roots of unity,

for our specific choices of s, 1and k. The moreover part is obvious by inspection.D

When 0 ::; j < t, a character X as in the proof of the previous Lemma induces

an irreducible representation 4> for Gt of degree 2t- j • By Lemma 3.1,

It is important to note that A2t-i and B2t-i denote subsets of Gt . The following

Lemma demonstrates that the combination of the representation values for A2"

and B2" together with matrices associated to the character table F2" will satisfy

a matrix equation. This matrix equation will be used in the next section to show

that certain subsets can be used to construct a difference set in Gt .-

Lemma 3.3 Let II< be as in Lemma 3.1. Let z generate the cyclic group of order

21.1 and let Xl be the lth character of C2", Let Ci = (1t-"yi
'

l< for i = 0,1, ... ,21.1-1­

1, ei E Z and Ci = (.,,2·-"Yi(,kti for i = 21.1-\21.1-1 + 1, ... ,21.1 -1, ei E Z. Ifu ::; ~J
2"-1

and S = ~ m2,,(c;)EiJ then SST = 22u+kI2".
i=O
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o

Proof: We freely use the orthogonality properties for the character table of a

group.

2"-1 2"-1
SsT = 'E m2,,(Ci)Ei 'E Eim 2"(Ci)

i=O i=O

2"-1

= 2u 'E m2"(Ci)Eim 2,,(cd
i=O

2"-1 2"-1
+m(;:Y;JI:j 'E XI(ZO), ... ,;:Y;jl?T

2t
-

1 'E XI(Z2"-1 ))]
1=2"-1 1=2,,-1

2U[ (2U-1 - ° °2u
-

1
-Tj ° 0)+= m Ik Ik' , ... " Ik Ik , , ... ,

(2u
-

1
-7"j Tj ° ° 2U

-
1

-
Tj ° 0)]m Ik Ik' , ... , ,- II< Ik' , ... ,

= 2Um2,,(2U-1bk'l< +bk'ktj
)

- 22u+k 1- 2"

The last equality comes from the first Lemma.

Note that A = (1 + J=I)S satisfies AA
T

= 22u+kH12",

Finally in this section, we define a complete set of distinct, inequivalent, irre-

ducible representations for our groups Gt . In this instance, all of our representations

are induced from linear representations of K := (x).

To begin we let 'T/ be a 23t+ 2th root of unity. When a linear character of K

sends x to an odd power of 'T/, the resulting induced representation ¢ is of degree

2t . We can define ¢ simply by presenting the images of x and y. All irreducible

representations of degree 2t are in the set

{( )21+11 ( ) () () 22t+2+I«2i+1) (<1>2',0= ¢ ¢x =m2t 'T/ ,¢Y ='T/ mO,l,O, ... ,O),

k = 1, ... , tj i = 0,1 ... 2t
-

k
- 1, i = °when k = O}

where °::; f ::; 23tH - 1, and ¢21+1 denotes replacing 'T/ by .,,21+1. Up to replacing

b _22t+2+k(2i+1) talc ,J.,( ) (0 1 ° 0) Al ,J.,' • 1 t tY Y x Y we can e or Y = m , , , ... , . so or IS eqUlva en 0
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¢21+1 whenever TJ21+1 = TJCTO for any power e. Since TJCTo = TJ22t+2+1, we have that

the first 22t+1 values of f run through all the inequivalent representations in this

set. Thus cI>2t,O contains 22t+1 distinct, inequivalent representations. These cover

(2t)222t+1 = 241+1 dimensions of the group ring.

In general, there will be 2; conjugacy classes of irreducible representations of

degree 2t-;. We will use two subscripts to decribe each class of irreducible repre­

sentations. The first subscript will be the degree of a representation. The second

subscript will indicate which conjugacy class the representation belongs to. The

second subscript, b, will have values ranging from °to 2; - 1. For convenience we

will write b = 2° f3 where °~ Q ~ j - 1 and f3 E {I, 3, ... ,2;-0 - I}. We make the

convention that the b = 0 case corresponds to Q = j and f3 = 1. When a linear

character of K sends x to an odd power of TJ2i the resulting induced representations

will have degree 2t-;. These representations are in the sets

i = 0,1, ... ,2t-;-1 - 1, 0 ~ Q ~ j - 1, f3 E {I, 3, 5, ... ,2° - I}, n = 0,1.}

cI>2 t- J ,O = ((¢)2 f +11¢(x) = m2t-i (TJ 2i ),

¢(y) = (TJ22t+2+i(2i+(l+n»)m(0,1,0, ... ,0)

i = 0,1, ... ,2t-;-1 -1,n = 0, I},

where 0 ~ f ~ 231+1-; - 1 for each cI>2t-i,b.

As before, the inequivalent representations in these sets use the first 221+1 values

of f. Thus, each set uses up (2 t -;)2 .221+1 = 24t+1- 2; dimensions of the group ring,

and there are 2; classes. The degree 2t-; representations collectively account for

24t+1-; dimensions of the regular representation, half as many as the degree 2t - j +1

representations.
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Lastly, when j = t we get the linear representations for Gt which are defined by

for 0 ::; m ::; 22tH - 1,0 ::; 20L (:J ::; 2t - 1, (:J = 1,3, ... ,2t - OL
- 1.

By theorem 2.1 if we can find a subset of Gt so that each representation sum

times its conjugate transpose is 24t times the identity, then the subset will be a

difference set. By the results in this section, namely the Lemma above, if we can

get the representation sums to be 0 on most of the subset and something similar

to S on the remaining part for every representation, then we will have the proper

sums. That is the subject of the next section.

4 Construction

Recall that Gt = (x, YIX 23t
+2 = y2

t = 1, yxy-l = X22t+
2+t) and define the subgroup

Ht = (X
22t

+
1
,y). We will define a subset of Gt with the property that every coset

of Ht intersects the subset in 22t elements with one exception which has empty

intersection. This subset will be the difference set in Gt . We will show that it is a

difference set by using representation theory as well as the Lemmas proved in the

previous section.

4.1 The Nonlinear Pieces

In this subsection we use Lemmas 3.2 and 3.3 to help build the pieces of our

difference set which correspond to conjugacy classes of nonlinear irreducible repre­

sentations for Gt . First, we list the pieces. Next, we prove that the union of the

pieces is a set. Finally, we show that the representation sums are correct.

For the single conjugacy class of irreducible degree 2t representations for Gt we

set k = 2t -1 in Lemma 3.1. We also select a2t-l = 2 and d2t- 1 = O. Set h = 2t +1.

Then the degree 2t piece of our difference set is

11



2t - 1 _1 2t - 1 _1

D2t,0 = (1 + X
23t )[A2t L (X2h)i(X-22t+3iy) +B2t L (X2h)i(X-22t+2(2i+l)y)]

i=O i=O

To see that D 2t,0 is a set, notice that the expressions A2t and B2t consist of

distinct powers of x which lie in distinct cosets of Ht . These obviously won't

overlap. So suppose there are elements from different cosets which are the same

group element. Because all of the subgroups are generated by elements of the form

X-22t+3iy (the X-
22t

+
2
(2i+l)y case is similar) and the powers of y must be the same,

the two elements are of the form (X22t+1)i(x-22t+3iy)i and (X22t+1)i'(X-22t+3i'y)ix23tk

where 0 ~ i, i' ~ 2t - 1 - 1, k = 0,1. Matching the exponents of x, we get that

22t+ 1i - 22t+3ij - 22t+1i' +22t+3i'j == 0 mod 23t . This implies that (i - i')(l- 4j) ==

omod 2t-1, so i = i'. Thus, the elements were not really distinct (they are from

the same coset). Note that there are 2t - 1 cosets in each sum making up D2t,0, each

with 2t elements. The total is multiplied by (1 +X
23t

), so there are 22t elements in

each coset x k Ht where k == ±2 and ±3 (mod 8).

For j = 1, ... ,t -1 Gt has 2i conjugacy classes of irreducible representations of

degree 2t - i. There will be a piece of the difference set for each. Let D2t-J ,b denote

the piece of the difference set which corresponds to the conjugacy class of cI>2t-J,b'

Let A 2t-J and B 2t-j be as in Lemma 3.2 where a2t-2i-1 = 2i +l and d2t-1-2i = 2i -1.

Finally let h = 2t + 1 as above. Then

2t - 1-j -1
+x-2J+3+Q~B

2
H( L (X2h)i(x-22t+2-U-Q)(2j-Q+1i+(~+2j-Q»y, y2t- Q))]

i=O

D ( 23t-J)
2t-J,0 = 1 + x
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The union of these pieces will make up most of the difference set. Of course

it must be shown that the union will be disjoint so that we build a set and not a

multi-set.

We first argue that the sets D2t-J ,b and D2t-i' ,b' will not intersect if j :f= j'. By

Lemma 3.2 the subset D2t-i,b intersects all cosets of H t in Gt which are labeled by

powers of x whose exponents are congruent to ±2i +1 + 2H3 b or ±(2H2 -1) + 2i+
3 b

modulo 23+2i , and similarly for j'. Without loss of generality say j < j'. Then

none of exponents for the coset labels for D2t-i,b are zero modulo 2i'+1 while all of

them are zero for D2t-j',b" Thus these pieces must be disjoint.

The next Lemma shows that D2t-i,b and D2t-i,b' are disjoint if b:f= b'.

Lemma 4.1 Let 0 ::; j ::; t -1 and b :f= b'. The sets D2t-i ,b and D2t-i ,b' are disjoint.

Proof: Suppose that there is an element 9 in the intersection of D 2t-J ,b and

D2t-i b" Write b = 20./3 and b' = 20.'/3'. It suffices to consider the case where,

2t + 2 - j + min{a,a'} < 2j + 3. Otherwise D 2t-J,b will only intersect those cosets

of Ht labeled by powers of x whose exponents are congruent to 2i +3b mod 22i+3 , and

D2t-J,b' will intersect cosets labeled by powers of x whose exponents are congruent

to 2i +3 b' mod 22H3 . The two cosets are disjoint, so D2t-i,b and D2t-i,b' are disjoint

in this case.

So consider the powers of x mod 22i+3 . Since 2j +3 ::; 2t +1, the only terms we

need worry about are the terms x 2J+3b (resp.b') and X
22t

+2-ibk (resp. b'k') where k

(resp. k') is the power that appears in expressing the first generator of a subgroup
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in the sum for D2t-j,b (resp. b'). Our concern is that two of these describe the same

element g. If so, then

Now since j ~ t - 1, j + 3 ~ 2t + 2 - j. The right hand side of the above

congruence is 0 mod 22t+2-j+min{0,o'}, so b == b' mod 22t- 2j-1+min{0,o'}. Because

2t - 2j -1 ~ 1, we have b == b' mod 21+min{0,0'}. Without loss of generality a ~ a'.

So b' = 2°(3 + r21+0 for some r. This implies that b' is divisible by 2° but not by

21+°. By our convention for writing the subscripts b, we see that a = a'.

So since b:f b' it must be that (3 :f (3'. Continuing under the assumption that 9

is an element in both sets, we now compare the powers of y appearing in g. Use k

and k' as the powers of the first generator of the subgroups where 9 exists. Because

a = a', the second generators must be y2t
-

O
• Thus yk+2t- O

/ = yk'+2t- O

/', for some

I, I'. So k == k' mod 2t - o
.

Now read the powers of x modulo 223+3 • We get

23+3+°((3 - (3') == 22t+2-j+O((3k - (3'k') (mod 223+3).

Say 2a ll((3 - (3') where 1 ~ a ~ j - a-I < t - a. Since k - k' == 0 (mod 2t - O
),

k - k' == 0 (mod 2a). Thus (3k- (3'k' == (3(k - k') == 0 (mod 2a). Furthermore

j ~ t - 1 implies 2t + 2 - j + a + a ~ j + 4 + a + a. Then 23+3+0((3 - (3') is not

congruent to zero modulo 2j+4+0+a while 22t+2-j+O((3k - (3'k') is congruent to zero

modulo 23+4+a+ a
• This contradiction demonstrates that 9 cannot exist. 0

The next Lemma shows that there is no internal overlap.

Proof: Each subgroup used to build D 2t-j ,b has order 2t+i . There are 2t - j-l

subgroups attached to each of A2t-J and B21-j. The factor (1 + x 23t- j
) doubles the
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number of elements from the rest of the expression, so there are 2 . 2t+i . 2t- i - 1 •

(IA2t-JI + IB2t-J1) = 22t (IA2t_jl + IB2t-jl) elements in the expression. To prove the

Lemma, we must show that there are no duplicated elements.

Suppose that there is an element 9 E Gt that appears twice. We consider the

case that 9 appears in the A2t-j piece twice, (the other cases are similar), so that

we can write

h ad a' . Awere x an x appear III 21-j.

Equate the exponents on y to see that k =k' mod 2t - 0I
• Write k - k' = 2t - 0I8

for some 8. Then the two expressions for 9 imply

The right hand side of the previous equation is in Ht . Therefore the left hand

side is in H t . Thus a = a'.

Next write i - i' = 2Pc, where 0 ~ p ~ t - j - 2, and 2PII(i - i') so that c is odd.

We examine the exponents of x in the expressions for 9 modulo 22t+2+p. Because

2t +2 + p ~ 3t - j the term (1 + x
23t

-
j

) at the beginning of D2t-i,b is of no concern

here. Also, the case j = t - 1 has one subgroup in each part of the block so there

is no chance of intersection there. Therefore we are interested in those values of j

between 0 and t - 2. (The j = t case comes later.)

Since Q ~ j, t - Q ~ t - j, which combined with p ~ t - j - 2 implies that

t - Q > p. Thus k == k' mod 2P• Also i == i' mod 2P, so ik == i'k' mod 2P• Therefore
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(ik-i'k') == 0 mod 22t+2+p. Thus by equating exponents of x in the two expressions

for 9

We first consider the case b =f O. This forces a < j so that 2t +2 - (j - a) ~

2t + 1 + p. Divide both sides of the previous congruence by 22t+2-(j-o) to get

Since (3 and c are odd, this implies that k-k' == 2j - o-I+P mod 2j - o+p
• Since p ~

t- j -2, we have that j -a+p ~ t-a-2, so k-k' == 2j-o+l+P+c'2j-o+p mod 2t- o,

for some c'. However this contradicts the fact that k - k' == 0 mod 2t - o
. This

establishes the Lemma for b =f O.

When b = 0 we adapt the previous arguments to reduce to the case where 9

appears twice in

Now viewing the exponents of x in two expressions for 9 modulo 23t- j
- 1 shows that

k = k'. Thus we obtain

23t-j-n+l(i _ i') == 23t-j-n+2[(2i + l)m - (2i' + l)m'] mod 23t- j- n+2+p

where p is as above. We argue as before to show that im == i'm' mod 2P by using

the exponents on y in the two expressions for 9 and restrictions on m.

Then because m - m' is at most divisible by 2n - 2 we get that m - m' ==

2P-
1 mod 2P(p ~ 1) But now n > n - 2 ~ p which implies that m - m' is not zero

modulo 2n . Examination of the exponents of y in the two expressions for 9 shows

that m - m' must be zero modulo 2n . So again we reach a contradiction.

Finally when p = 0 the above argument leads to the contradiction that 1 _

omod 2.

As a consequence of Lemmas 4.1 and 4.2 we have
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t-12i -1
Corollary 4.1 The set P := L L D2t-i,b intersects a coset of Ht in either 22t

j=O b=O

elements, or not at all. Moreover the cosets of Ht which P misses are exactly those

labeled by powers of x where the exponents are congruent to 0, ±1 and 2t+1 modulo

2t+2.

Proof: The choices of a2t-2j-1 and d2t-2j-1 yield the fact that the powers of

x appearing in A2t-i and B2t-i are congruent to ±2i+1, ±2j+2 - 1 modulo 23+2j ,

O~j~t-l.

For the cosets which P intersects nontrivially there are two cases. Namely

2t +2 - j + a ~ 2j +3 or 2t +2 - j +a + s = 2j +3 for s ~ 1.

In the first case, D2t-i,b fills each coset x k H t with 22t elements where xk appears

. 21+3+Q {jA. -21+3+Q {jB
In x 2t-1 or x 2t-1'

In the second case, each subgroup used to build D2t-i,2Q {j is partitioned among

28 cosets x k1 H t, ... ,xk•H t , where all the xk's appear in x2i+
3
+

Q

,8A2t-1 or they all

appear in X-
21

+3+
Q

,8B2t-i. This is also true for D2t-i,2Q (,8+r2 i - Q -.) for 0 ~ r ~ 2" -l.

Since the D's do not overlap, each coset xk Ht intersects P in the proper number of

elements in this case.

Collectively P intersects each coset x kHt in 22t elements where x k appears in

X
21+

3
+

Q

{j A 2t-1 or x-2J+3+
Q

{j B 2t-i. The cosets of Ht which do not intersect Pare

precisely those listed in the final claim of the Corollary. o

We now prove that any nonlinear irreducible representation applied to P will

give the proper representation sum. The next Lemma shows that whenever a

nonlinear irreducible representation is applied to P, it sums to zero except on its

corresponding piece.

Lemma 4.3 Let </J E ~2t-i,b be a nonlinear irreducible representation for Ct. Then

Proof: 1) First we show that if j =I- j', then </J(D2t-i l ,b') = O.
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If j < j' then each subgroup in the definition of D 2t-J' .b' has an element of the

r (221+2-(3' -a')(21-3'-a'i+,8') )21- a ( 21- a )-1 231+2-i' (21- i '-a' i+,8') Th' 1 t .lorm X y Y = X • IS e emen IS

mapped by ¢J to m21-i(() where (is a primitive 2i'-ith root of unity. By the special

fact mentioned prior to Theorem 2.1, the sum of a representation over a subgroup

is zero whenever there is an element of this form. Hence ¢J is zero on D21-J'.b"

If j > j', then there are two cases two consider.

First if j = j' +1, then ¢J(1 +x3t
- i') = (1-1)121-J = O. So ¢J(D21-i',b') = 0 since

(1 + X
3t

- i ') is a factor of D 21- J ',b"

Second, if j ~ j' + 2, then we consider cosets of two subgroups used to define

D21- i , ,b' which are indexed by i and i' where i - i' = 2t - i . (j ~ j' + 2 implies

t - j ~ t - j' - 2 so we can do this.) For the subgroups involved the second

generators are the same, so if> maps those generators to the same matrix. The

fi . b 221+2-U'-a')+U'-a'+1)+I-i 231+3 -J Th' 1rst generators dIffer y X = X • IS group e ement

is mapped to the identity matrix by ¢J, so ¢J takes the same value on the first

generators. Since ¢J takes the same values for both generators of the subgroups, the

sum over the two subgroups must be the same. The coset representatives of the

subgroups differ by X
23

l+
1
- i . This group element is mapped to -1m by ¢J, so the

representation sum of the two cosets collectively is zero.

All subgroups are paired in this manner. The sum of the cosets of the subgroups

over ¢J is zero, which implies that the sum of D2l-i' ,b' over ¢J is zero.

2) Now suppose that j = j' and b =I b'. Write b = 2°{3 and b' = 2°'{3'. Let

b d fi ~1+2-i+a(2J-a+l +,8)K =< h, 9 > e a subgroup used to e ne D 21-i.b', where h = x- • y

and 9 = y2
1

-
a

• There are three cases to consider.

a) If 0: > 0:', then ¢J(h21
-

i
) = m21-J((), where ( is a primitive 2i - O 'th root of

unity. Using the special fact prior to Theorem 2.1, this implies that ¢J(K) = 0, so

¢J(D2l-i ,b') = O.

b) H 0: < 0:', then ¢J(g2a'-a-l) = (_l)n12l-i for some odd n. Surmning over the

powers of gin K we get ¢J(K) = 0, so again ¢J(D21-i,b') = o.

18



c) When a = a' but f3 =1= f3', write f3 - f3' = 28p, where p is odd. By the restrictions

on f3 we get that 0 :$ 6 :$ j - a - 1. H we apply ¢ to x_22t+2-(j-a)(2J-a+li+,6I)y, we

get

Raise this matrix to the 2t
- i th power to make it a diagonal matrix. The j,j entry

will be TJ- 23t
+2+

a
+6-JP. Since 6 :$ j - a -1, 3t + 2 + a + 6 - j :$ 3t + 1. As in the

previous cases, this combined with the special fact prior to Theorem 2.1 implies

that the representation sum over K yields zero, so ¢(D 2t-J ,bl) = O. o

o

The last Lemma of this section shows that the remaining representation sums

are correct.

Lemma 4.4 Let ¢ E cI>2t-J ,b be a nonlinear irreducible representation for Gt . Then

-t 4
M:= ¢(D2t-J,b) satisfies MM = 2 tI2t-i.

Proof: It suffices to show that M corresponds to 2i (1 +yCl)S where S is as

in Lemma 3.2, with k = 2t - 2j - 1.

First, by construction ¢(A2t-i) = m2t-i({2t-2i-l). Similarly we see that ¢(B2'-i) =

m2'-J ({2t-2i-l Ti). Next, the elements x2i+3+a,6x22t+lk correspond to the numbers

(TJ 2·-
t
)Yi. Third, ¢(1 + X 3t- i ) = (1 + J=T)I2t-i. Finally, each subgroup K of Gt

used in the definition of D2t-i ,b gets mapped by ¢ to 2i Em for some m. Moreover
. t .

each 2J Em has a subgroup K as pre-image in D2t-i,b, m = 0,1, ... ,2 -J - 1.

4.2 The Linear Piece

In this section we define the part of the difference set which corresponds to the

linear representations for G t (i.e. those of degree 1).

We begin with some remarks on the behavior of the characters. First, when

m is odd, Xm,Q,,6(x
22t

+
1

) = -1 and when m is even, Xm,Q,,6(X
22t+l) = 1. Second,
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the linear representations of Gt which are not principal on Ht fall into conjugacy

classes. These classes are indexed by their shared kernels when viewed as characters

of H t .

For convenience we set p(m) to be the remainder of m after dividing by 2. The

kernel of Xm,o,{3 restricted to H t is denoted by Kp(m),o' For a =5 t-I this is the group

generated by x22t+ly2t-a-P<m) and y2
t
-

a
. When a = t, we have Kl,t = (X22t+

2
,y),

and Ko,t = Ht .

For each (p(m), a) =I (0, t) we define a subset Ap(m),o' This is the piece of our

difference set which corresponds to the conjugacy class of linear representations

indexed by Kp(m),o'

These subsets are defined as

A _ K ""' j.2t+2+a i+(2i-l)j.u.l,o - 1,0 L..J x y
0~i,j~2t-a-l_l

and

A _ K ""' j.2t+2+a i+(2-2i)j.u.O,o - 0,0 L..J x y .
0~i,j~2t-a-l_l

These are referred to as K-matrices in the literature [3]. We note that Ao,t is defined

to be empty (if we chose it to be H t , then the corresponding subset would be the

complement of a Hadamard difference set as defined in the introduction).

The coset representatives xj·2t+ 2+ayi+(2i-l)j form a (22t-2-20, 2, 22t-2-20, 22t-3-20)

relative difference set in the quotient group (x 2t+2+
a

, y) / Kp(m),o relative to (y2
t
-
a
-

1
Kp(m),o)'

This leads to the following Lemma concerning linear representation sums of the

Ap(m),o's.

Lemma 4.5 Let X := Xm,o,{3 be a linear representation for Gt which is not principal

on H t . Then

if p(m) = p(m') and a = a'

otherwise.
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Proof: We prove the last part of the Lemma first.

1) To begin with let us suppose that p(m) =1= p(m'). We show the argument for the

case where p(m) = 0 and p(m') = 1. The case where p(m) = 1 and p(m') = 0 is

similar.

22t+1 2t- a '-1 If ' hThe first generator of K p (m'),OI' =. K 1 ,OI' is x y a ~ a, t en

X(X
22t+1) -_ 1 but X(y2t- a'-1) -I. 1. S' .. I L' d thT 0 X IS nonprmclpa on Ll. p (m'),OI' an ere-

fore X(6 p(m'),OI') = O. If a> 0', then X is principal on K p(m'),OI" The corresponding

representation on the quotient group (X 2t+
2
+

a
', y) / K I,OI' is principal on the forbidden

subgroup (y2
t
-

a
'-1 K 1,OI')' Therefore

X( L xj·2t+2+a yi+(2-2i)j) = O.
O~i,j:52t-a-l_l

t a'
2) Secondly, let us suppose that p(m) = p(m') and a < a'. Then X(y2 - ) =

.,.,23t+2+a-a' (J • . This is a primitive 201
'-

OI th root of unity. So X is nonprincipal on

K p (m'),OI" Thus X(6p(m'),OI') = O.

3) Next, let us suppose that p(m) = p(m') and a > a'. If p(m') = 1, then

X(x22t+ly2t-a'-1) = -1. Therefore X(K1 ,OI') = X(6 p(m'),OI') = O. If p(m') = 0,

then X is principal on K o,OI" We now consider the corresponding representation

on the quotient group Gt!K o,OI" In particular we focus on the restriction of the

correspondirig representation to the subgroup (x2t+2+a,y)/Ko,OI" Since a > a', X

is principal on (y2
t

-
a

' -1). So the fact that we have a relative difference set in the

quotient group implies that the representation sum will be zero. (This corresponds

to saying that the representation sums to zero down a column of the K-matrix.)

4) Finally,. if p(m) = p(m') and a = a', then X is by construction principal on

K p (m'),OI" Moreover the corresponding representation on the quotient group in this

case is nonprincipal on the forbidden subgroup. The existence of our relative dif-

ference set assures us that X(6 p(m'),OI') has the proper modulus. o

Our difference set D will be the union of P from Corollary 4.1 and shifts of the

subsets 6 p(m),OI' It remains to be shown that this union will be disjoint. We must
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also prove that X(P) = 0 for any linear representation of Gt that is nonprinicipal

on H t and that 4>(~p(m),or) = 0 for any nonlinear irreducible representation 4> and

any subset ~p(m),or' That is the subject of the following two Lemmas.

Lemma 4.6 Let 4> E cI>21-j,b be an irreducible representation for Gt of degree 2t - i,

where 0 :s; j < t. Then 4>(~p(m),or) = 0 for any ~p(m),or'

P f E h b K . h 1 2
21

+
2 h "'( 2

21
+

2
)roo: ac su group p(m),or contams tee ement 9 = x ,were 'I' x =

m21_J(7]221+2+J). Since j < t this is a diagonal matrix with entries which are prim­

itive 2t
- i th roots of unity. By the special fact prior to Theorem 2.1, this implies

that the representation sum over the subgroups is 0 for each Kp(m),or' This implies

the Lemma. 0

Lemma 4.7 Let X := Xm,or,{3 be a linear representation for Gt which is nonprincipal

on H t . Also let D21- J ,20'(3' be a subset associated to a conjugacy class of irreducible

nonlinear representations for Gt as in subsection 4·1. Then either X( D21- j,20'(31) = 0

or for some (3",X(D21-j,201{3' + D21-j,2ol{3") = o.

Proof: The proof naturally breaks into cases.

1) If p(m) = 1, then the argument will be similar to that for the previous Lemma.

If j = t - 1, then x(1 + X
221

+
1

) = 0 and we're done. So suppose that j < t - 1.

For a fixed ci and (3', X is either principal on each of the subgroups used to define

D21-J,201{3' or it is principal on none of them. When X is nonprincipal on each

subgroup, then clearly X( D21- J,20'(31) = O. If X is principal on each -subgroup, the

image of any subgroup under X is its size 2t+i. In this case X(X221
+

1
) = -1. The

sum over the subgroups is zero under X, so X(D21-j,201{3') = o.
2) Suppose that p(m) = O. Since X is nonprincipal on H t , X(y) =I 1. As before X

is either principal on all the subgroups defining D21- J,20'{3' or nonprincipal on them

all.
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a) If x is nonprincipal on a subgroup, that subgroup maps to zero. So D2t- J ,2Q '/3'

would map to zero.

b) If X is principal on all of the subgroups, each subgroup under X gets sent to 2t+j.

Moreover X(X 22'+1) = 1. We turn our attention to X22J+3s where 0 $; s $; 22(2-j-1)_1.

These group elements are the powers of x which separate elements of A2t-j and

B2t-J. There are now three cases to consider.

i) If X( X22
i+

3
) =I: 1 then X(A2t-j) = X(B2t-j) = o. So X(D2t-j,2Q'/3') = O.

ii) If X( X
22J

+
3

) = 1 and 2j + 3 $; 2t + 2 - j + 0.', then the first generator of every

subgroup used to define D 2t-j,2Q'/3' will get sent to X(y) =I: 1. Thus the subgroup

will go to zero under X.

iii) If X(X 22J+
3
) = 1 and 2j + 3 > 2t + 2 - j + 0.', then the only subgroups which do

not map to zero under X are those for which X(X22t+2-j+Q') = X(y)(=I: 1).

Note that since j $; t - 1, that j + 3 + 0.' < 2t + 2 - j + 0.'. Therefore

X(X
2j

+
3
+

Q
') =I: 1. Let s be the power of this group element which gets mapped to

-1 under X. (This group element is the separator for the elements appearing in

A 2'-J and B 2t-j for any subset D 2t- j ,2Q'w as w varies.) Let (3" satisfy (3' - (3" = s

(read modulo 2j - O
').

Next consider the behavior of X on the subgroups used to define D 2,-j,2Q'/3'" The

first generator of a subgroup here differs from a first generator of a subgroup for

D b 22t+2-J+Q's S' ( 2j+3+Q'S) d .,. ,
2t-J,2Q'/3' yx . mcexx =-lan 2t+2-J+a >J+3+a

we see that X(X22t+2-J+Q'S) = 1 The second generators of any subgroup have the

same image under X because 0.' has been fixed. Therefore for any subgroup used

to define D 2t- j ,2Q'/3' there is a corresponding subgroup used to define D 2t- J,2Q'/3"

which has the same image under X. Thus the fact that (3' - (3" = s implies that

o

Next we describe how to shift the subsets ~p(m),o to insure their disjointness

from P and subsequently to insure that the representation sums will be correct for
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all linear representations of Gt which are principal on H t .

The conclusion of Corollary 4.1 says that the cosets of H t m Gt which are

labeled by powers of x whose exponents are congruent to O,±I, and 2t+1 modulo

2t+2 do not intersect P. We shift the ~p(m),o'S to fill each of these cosets with 22t

elements of the difference set, with one exception which is empty. We can do this

b 1 . l' A b A b 21+1 A b 1 A b 21+ 2+1 A b -1 dy mu tIp ymg ~o.o Y1, ~1.0 Y X ,~O.1 YX ,~1,1 Y X ,~O,2 YX ,an
0-3

~1.2 by X-I+2
1
+

3
• Finally, for 3 $ a $ t set <;0 = L: 2t+2+i and multiply ~p(m),o by

i=O

1+ ( )21+0+1 + d 1+ ( ')21+0'+1 +Lemma 4.8 Ifp(m) =I- p(m') ora =I- a', then x- p m ~o~p(m),o an x- p m ~o' ~p

have empty intersection.

Proof: We show only the case where p(m) = p(m') = 1. The other cases are sim­

ilar. Also without loss of generality we take a < a'. The set x-I+p(m)21+0+1+~0~p(m),0

contains elements from the cosets of H t whose representatives are powers of x whose

exponents are

for 0 $ j $ 2t - 1- 0
- 1. For the second set these exponents are

for 0 $ j' :S 2t - 1- o ' - 1.

The nonzero part of the first set modulo 2t+0 +I is -1 + <;"0 which clearly cannot

equal -1 + <;"0' (modulo 2t+o+1). So the two sets never lie in the same coset of H t

in Gt . Therefore they are disjoint. 0

The previous Lemma shows that, after these shifts, only the coset of H t labeled

by X-I+221+1_21+2 has trivial intersection with all of the sets we have defined for

t ~ 3. Every other coset of Ht in Gt intersects the union of our sets in exactly 22t

elements. This proves the main theorem of this paper.
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Theorem 4.1 The set

[
2t+l 1+2t+2 -1 _1+2t+3 i\D := P + ~O,O + X ~I,O + X~O,1 + X ~1,1 + X ~O,2 + X ,ul,2+

1 t
+ E E X-l+p(m)2t+a+1

+';a ~p(m),Q]

p(m)=OQ=3
is a (24t+2,22t(22t+l _1),22t (22t _1),24t ) Hadamard difference set in Gt .

Proof: Let </> be any representation from our complete list of distinct, inequiv­

alent, irreducible representations for Gt .

If </> E ~2t-j,b is nonlinear, then </>(D) = </>(D2t-j,b) by Lemmas 4.4 and 4.7.

</>(D2t-J,b) satisfies the difference set equation under </> by Lemma 4.5.

If </> = Xm,Q,13 is nonprincipal on H t , then by Lemma 4.8 </>(P) = O. Lemma 4.6

implies that I</>(D)I = 1</>(~p(m),Q)1 = 22t as required.

Finally, if </> = Xm,Q,13 is principal on Ht , then </>(D) has proper modulus because

D intersects every coset of Ht in 2 2t elements with one exception, so the character

sum has modulus 22t .

In all cases the representation sums are correct. Therefore by Theorem 2.1 D

is a difference set. o

Note that the order of the group Gt is 24t+2 and the exponent is 2 3t+2. Asymp­

totically, this demonstrates that the exponent of the group can be at least I G Ii
as claimed in the abstract.

5 Examples

5.1 t=l

When t = 1, G1 = (x,ylx32 = y2 = 1,xyx = X
17

) the modular group of order 64.

In our construction of a (64,28,12)-difference set in this group we use HI = (x8 ,y).

We get
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Note here that LlO,1 is empty, and that I D n x1HI 1= O. This is similar to the

difference set found by Liebler and Smith [15].

5.2 t=2

When t = 2,

G ( I 256 4 1 -1 65)
2 = x,y x = y = ,yxy = x

and

For the degree 4 part of the difference set

So

For the degree two part of the difference set

and

So

and

The linear part of the difference set is
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X
31

(X
64

,y) + X
I7

(X
32

y,y2) +X(X
32

,y2).

Note that AO,2 is empty, and that ID n Xl5H2 1 = o.
So D = D4,o + D2,o + D2,1 + L.

5.3 t=3

When t = 3

and

H3 = (xI28
, y)

For the degree eight part of the difference set

+X
1458

+ X
435

+ X
lOlO

+ X
2035

+ X
I098

+ X
I099

+ X
l674

+ X
l675

+ x362
+ X

363

+X1962 + XI963 + Xl242 + Xl243 + Xl818 + Xl819 + Xl530 + X l531 + Xl082 + XI083

X
302

+ x301
+ X

590
+ X

589
+ x l038

+ X
I037

+ X
950

+ X
l973

+ X
374

+ X
l397

+ X
1686

+X
661

+ x 86
+ x l109

+ x 806
+ x l829

+ x 230
+ x l253

+ X
518

+ x l541
+ x966 + X

l989

D8 ,o = (1 + X 512 ){A8 [(y) + XI28(X-512y) + X256(X-I024y) + X 384 (X- 1536y)]+

B8 [(X- 256y) + XI28(X-768y) + X 256 (X- 1284 y) + X384(X-1796y)]}

A 4 = x 4
+ X

519
+ x

324
+ x 839

+ x
676

+ x
679

+ x 484
+ x 487

B4 = X
2044

+ X
lOl7

+ X
l724

+ X
697

+ X
l372

+ X
857

+ x l564
+ x lO49

D4,o = (1 + X256){A4[(XI02\y) + XI28(X-512y,y2)]+

B4 [(X- 256y,y4) + XI28(X-768y,y4)]}
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D 4,1 = (1 + X256){X16 A 4 [(X- 128y) +X128(X-640y)]+

X 2032B4 [(X- 384 y) + X128(X-896y)]}

D 2,0 = (1 + X128){A2(X512,y) +B 2(x- 256
y,y2)}

D 2,1 = (1 + X128){X32 A 2 (x-64 y) + X- 32B 2(x- 320
y)}

D 2,2 = (1 + X
128

){X 64 A 2(x- 128
y, y4) + X-

64B2(x- 384
y, y4)}

D 2,3 = (1 + X
128

){X
96

A 2(x- 192
y) + X-

96B2(x- 448
y)}

x 159
.6.1,3 = X

31
(X

256
, y)

x 2047.6.0 ,2 = X63 (X128, y2)

X
63~1,2 = X

95
(X

128
y, y2)

X.6.o,l = x(x128
,y4)(1 + Y + X

64
y 2 + x64

y)

X 33 .6.1,1 = X33(X128y2, y4)(1 + y + X 64
y 7 + X64

y 2)

.6.0 ,0 = (X128)(1 + y + y2 + y3 + X32y2 + X32y + X32 + X32y7 +

X 64
y 4 + x64 y + X64

y 6 + X 64
y 3 + X 96

y 6 + x96 y + X 96
y 4 + X 96

y 7)

X16~I,O = X16(X128y4)(1 + y + y2 + y3 + X 32
y 7 + X 32

y 2 + X 32
y 5 + X 32+

X 64
y 6 + X64

y 3 + X64 + X 64
y 5 + X96

y 5 + X 96
y 4 + X 96

y 3 + X 96
y 2)

The coset x95H 3 does not intersect any of the sets listed above.

Here follows the intersection pattern of D with cosets of H3 1abeled by the powers

of x, xo, ... , X
127

• Each entry signifies which part of the difference set intersects the

coset. A negative sign indicates that the part of the difference set which interescts

the coset comes from a B2t-j part. The subscript denotes the conjugacy class. So

-41 in the position labeled by x j will denote that a coset representative of H 3 x j

appears in the B4 piece of D4 ,1.
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C t o 15 d 64 79ose s x , ... , x an x , ... , x

100 101 S S 40 -S -S 40 20 -41 S S -41 -S -S 20

100 101 S S 40 -S -S 40 22 f-4 1 S S -41 f-S -S 22

C t 16 31 d 80 95ose s x , ... , x an x , ... , x

110 -23 S S 41 I-S -8 41 -23 -40 S S -40 -S -S 113

110 -21 8 8 41 1-8 -8 41 -21 -40 8 8 1-40 -8 -8

C t 32 47 d 96 111ose s x , ... , x an x , ... , x

100 101 8 8 40 -S -8 40 21 -41 S 8 -41 -8 -8 21

100 101 S S 40 -8 -8 40 23 -41 S S -41 -8 -S 23

Cosets x 48 , ... , X 63 and X 112 , ... , x 127

110 -22 S 8 41 -8 -8 41 -22 -40 8 8 -40 -8 -8 112

110 -20 8 8 41 f-8 -8 41 -20 f-40 S 8 -40 -8 1-8 102
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