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Abstract

This paper presents a technique for deblurring noisy images. It includes two processing blocks,
one for denoising and another for blind image restoration. The denoising step is based on the
theories of singular value decomposition and compression-based filtering. The deblurring step is
based on a double-regularization technique. Experimental results show that the combination of
these techniques is quite effective in restoring severely blurred and noise-corrupted images, without
prior knowledge of either the noise or image characteristics.
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1 Introduction

Image deblurring is a difficult problem even when there is exact knowledge of the blur degradation.
In this paper, we consider a linear space-invariant model for the blur, where the blur point spread
function (PSF) and the noise strength are assumed to be unknown. The most effective deblurring
technique known to the authors for this framework is the one recently proposed by You and Kaveh
[1]. This is an iterative technique which simultaneously estimates the blur PSF and restores the
image. In [1], the performance of this technique is shown for a few cases including one where the
blur PSF is a uniform function on a 3 � 3 support and the signal-to-noise ratio (SNR) is 30dB. In
this paper, we consider the case of a uniform 5 � 5 blur PSF and SNR’s as low as only 10dB. Our
approach for restoring such severely degraded images is still based on You and Kaveh’s technique.
However, we show that the performance of this technique is enhanced if it is preceded by an explicit
denoising step. This is in addition to the implicit denoising operation inherent in You and Kaveh’s
technique.

For the denoising step, we use a block-based, non-linear filtering algorithm based on the theories
of singular value decomposition (SVD) and compression-based filtering [3, 4]. The algorithm also
employs an efficient method for estimating the noise power from the input data with no additional a
priori information. A major characteristic of both the image deblurring and the denoising algorithms
is their ability to preserve edge details.

In Sections II and III we provide brief descriptions of the deblurring and denoising algorithms
employed in our proposed system. In Section IV we present experimental results and we compare
our scheme with that of You and Kaveh’s on images that are both severely blurred and noise
corrupted. Some concluding remarks are given in Section V.

2 The Deblurring Component of Our System

In this paper, we assume an image degradation model of the form

g(n) = (d ? f)(n) + w(n) ; for all n 2 Ω ; (1)

where n = (n1; n2) denotes the discrete coordinates for image pixels, f is the original image, d
is the unknown blur PSF, ? denotes the two-dimensional convolution, g is the observed (blurred)
image, w denotes the additive noise present in that image, and Ω denotes the rectangular support
both f and g. It is also assumed that the additive noise w is i.i.d. Gaussian and independent of both
f and d. In addition, since there is no loss of energy in the imaging system, it is further assumed
that the components of d are nonnegative real numbers that add up to one. That is,

X
n2D

d(n) = 1 ; (2)

where D denotes the unknown support for the blur PSF.

The goal in blind image deblurring is to find good estimates for both the blur PSF d and the original
image f , based on the observed image g in (1). Assuming that d is known, a solution to this
problem is given in [2]. In [1], You and Kaveh extend that technique to the blind restoration case
formulated above. In summary, their double regularization technique tries to minimize some cost
function for estimating f and d as f̂ and d̂, drawn from a “reasonable” set of solutions. This
set of solutions is defined by a regularization constraint that accounts for the fact that images are
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generally low bandwidth signals which do not exhibit much high frequency content, except in the
vicinity of edges and in textured regions. This assumption is particularly valid for photographic
blurs, where edges are absent. Hence, they use a second regularization constraint for the blur PSF
d. The imposition of these regularization constraints also reduces the search space for solutions.
Specifically, You and Kaveh’s technique tries to minimize the cost functional

L(d̂; f̂) =
1
2

X
n2Ω

h
g(n)� (d̂ ? f̂)(n)

i2
+
�

2

X
n2Ω

W (n)
h
(c ? f̂)(n)

i2
+



2

X
n2D

h
(a ? d̂)(n)

i2
; (3)

where a and c are the highpass filter regularization operators, W is a weight function, and � and

 are the Lagrangian multipliers, better known as the regularization parameters. If we ignore the
effect of W for the moment, the goal in the above minimization problem is to find an estimate
f̂ which makes the mean squared estimation error (the first term in (3)) small and yet would not
allow f̂ and d̂ to have too much high frequency content. In other words, the second and the third
summations in (3) are penalty terms for high frequency content in f̂ and d̂, respectively. The weight
function W makes it possible to allow high frequency content in f̂ in the high activity (edge and
texture) regions and to heavily penalize such content in low activity (smooth) regions.

The cost functional defined in (3) is quartic in its variables, the samples of f̂ and d̂. To avoid this
complication, an alternate minimization approach was used in [1]. In each iteration, f̂ is first kept
fixed and L(d̂; f̂) is minimized over d̂. Then, d̂ is kept fixed at the value just found and L(d̂; f̂) is
minimized over f̂ . Each of the two subproblems solved in each iteration is quadratic in its variables
and is solved with the conjugate gradient method, which is iterative itself. It is also necessary to
impose the non-negativity and range constraints on both d̂ and f̂ , as well as the constraint (2) on d̂.
These constraints are enforced after each subproblem has been solved, and not within the iterations
of the conjugate gradient method. Yet another aspect of the problem is the uncertainty about the
blur PSF support D. You and Kaveh start with a conservative large support. As the algorithm goes
through its iterations, one observes that the samples of d̂ on its outer layers gradually vanish, and
one can prune D accordingly. For pruning, we used a strategy similar to the one described in [1].

The method described above works reasonably well, except for two well known problems; (a) con-
vergence to local minima and (b) lack of a good way of determining the values of the regularization
parameters � and 
. You and Kaveh propose a way of setting these parameters [1]. However, as
they have pointed out in their paper, these values are meant to be used as guidelines only and not
as exact values. The values we used are described in more detail in Section IV.

3 The Denoising Component of Our System

You and Kaveh’s method includes an implicit denoising scheme, however, under severe noise
degradation, we expect that an explicit noise filtering scheme should improve the overall perfor-
mance of their algorithm. One of the major drawbacks of conventional filtering techniques is that
they tend to blur the original image or they require some prior knowledge of the image or noise
characteristics. In [3], the authors describe an efficient non-linear filtering scheme, based on the
theories of singular value decomposition and compression-based filtering [4].

The main steps of this SVD-based filtering algorithm are:

1. Divide the noisy image g into non-overlapping blocks.
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2. Perform SVD on each block, set to zero the singular values that are smaller than a threshold
�, and reconstruct a filtered-version of the original block using these new singular values.

Given an m� n block B, the SVD of B is given by

B = UBΣBV
t
B; (4)

where UB and VB are orthogonal matrices and

ΣB = diag(�1; �2; :::; �n) (5)

is a diagonal matrix. The diagonal elements of ΣB are called the singular values of B. Given a
threshold �, let Σ0

B = diag(�
0

1; �
0

2; :::; �
0

n), where �
0

i = �i if �i > � and �
0

i = 0 if �i � �. Then, the
filtered block B

0

is defined as B
0

= UBΣ0

BV
t
B.

The effectiveness of this algorithm depends on the accuracy of the estimate of the threshold �. In
this paper, we estimate � using the following compression-based calibration scheme [3, 4].

1. Apply the filtering algorithm for various values of the threshold �.

2. Compress each filtered image using a lossless compression algorithm, such as lossless JPEG.

3. Plot the compressed size as a function of �. Let �� be the knee-point of the plot. Use � = ��

as the threshold on the SVD filtering algorithm. If S denotes the compressed size of a
filtered image, the knee-point is defined as the point at which the second derivative d2S

dlog(�)2 is
maximum.

Note that for a set of noisy images obtained under the same noise conditions, the calibration scheme
has to be performed only once for a typical image in that set. A more detailed example is given in
the next section.

4 Experimental Results

We performed two sets of experiments with two blurred and noise-corrupted images involved in
each set. First, we tried to deblur the images with the deblurring algorithm of Section II alone.
Then, we deblurred the same images by first passing them through the denoising algorithm of
Section III and then applying the deblurring algorithm of Section II to the denoised images. The
blurred images were obtained by artificially blurring the Cameraman image shown in Figure 1. This
is a 256� 256, 8-bit, gray-scale image, and it is commonly used in image deblurring experiments.
We used the blur PSF

d(n) =

(
0:04 ; if jn1j � 2; jn2j � 2
0 ; otherwise

;

and we further corrupted the blurred images with additive white Gaussian noise. The signal-to-noise
ratio (SNR) for the two test images was 20dB and 10dB. The SNR is defined as

SNR = 10 log10

�2
d?f

�2
w

;
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Figure 1: The original Cameraman image.

where �2
w denotes the variance of the noise and �2

d?f denotes the variance of the blurred image.

Following the calibration scheme described in the previous section, each of the blurred and noisy
images was filtered for various values of the threshold � between 0 and 200. In all cases, we used an
8 � 8 block size. For SNR = 20 db, Figure 2 shows a plot of the normalized size of the compressed
filtered image as a function of �. Also shown is the second derivative of the curve with respect to
log(�).

From Fig. 2, there are two knee-points; one at � = 35 and one at � = 125. The first one was expected
from the theory of compression-based filtering [3], and denotes the point by which most of the
noise has been removed. After this point, the increase in compression is less obvious, indicating
the start of removing image information. We believe that the second knee-point is due to the blur
in the original image. At this point, there is enough loss of image information so that the original
blur plays no additional role in the compressibility of the filtered image. Therefore, we ignored
the second knee-point and selected �� = 35 as the filtering threshold. Using a similar approach, for
SNR=10 dB, we selected a filtering threshold of �� = 100.

In all cases, the deblurring algorithm was ran with an initial supportD = f�4; : : : ; 4g�f�4; : : : ; 4g
for the blur PSF. This is larger than the actual support size for the blur PSF, since, in practice,
the original size is considered unknown. A first estimate of the size of D can be obtained by
inspecting the blurred image in the vicinity of an edge separating two regions of almost constant
pixel intensities. If computations are not too excessive, then it is advisable to start the algorithm
with a slightly larger support size than this first estimate.

For both regularization operators (the highpass filters c and a) we used the Laplace filter

2
64

0 �1 0
�1 4 �1

0 �1 0

3
75 :

This is actually one of the two filters suggested for this purpose in [1]. Following [2, 1], we used a
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Figure 2: Size of compressed filtered image versus �, and its second derivative. SNR = 20db.

weight function of the form

W (n) =
1

1 + ��2(n)
; for all n 2 Ω ; (6)

where �2(n) is the local variance of the blurred image g at pixel n. This variance is high in the
edge and texture regions and low in smooth regions.

In (6), You and Kaveh use � = 1000=�2
max, where �2

max is the maximum value for the local variance
�2(n). We found experimentally the � value at which max(W (n))

min(W (n))
= 2,000 is a good choice. This

choice yields a restored image that has fairly sharp edges and yet it is not grainy in areas where it is
supposed to be smooth. The local variance at pixel location n was computed over a 3� 3 window
centered at n.

The results of our experiments are shown in Figures 3 and 4 for the two cases of 20dB SNR and
10dB SNR, respectively. Each of these figures shows: (a) the original blurred and noisy image,
(b) the image obtained by applying only the denoising algorithm to the image in (a), (c) the image
obtained by applying only the deblurring algorithm to the image in (a), and (d) the image obtained
by applying the deblurring algorithm to the denoised version of the blurred image; that is, the image
in (b). In all cases, the deblurring algorithm was run for 50 iterations, even though the results were
equally good after 20 iterations. In the conjugate gradient algorithm, in order to find the best f̂ for
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a given d̂, we restricted the number of iterations to ten. To find the best d̂ for a given f̂ , instead
of using the conjugate gradient method, we used the direct method of (a) differentiating the cost
function L(d̂; f̂) with respect to d̂, (b) setting these derivatives to zero, and (c) solving the resulting
system of linear equations for d̂. Table 1 shows the values of the regularization parameters used
to obtain each deblurred image. As expected, we had to use larger �’s (i.e., larger degrees of
regularization) for noisier images.

Image in Regularization Parameters
Figure � 


2(c) 103 108

2(d) 2 108

3(c) 104 3 � 108

3(d) 10 3 � 108

Table 1: Regularization parameters used for obtaining the four deblurred images.

In all cases, the deblurring algorithm was able to estimate the blur PSF very accurately and the
pruning of the blur PSF support D took place as predicted. In fact, the algorithm converges to the
right size for D very fast. Regarding the output images from the deblurring algorithm, from Figs.
3 and 4, images 3(d) and 4(d) are perceptually better than the images 3(c) and 4(c), respectively.
Therefore, we conclude that denoising does indeed improve the deblurring process when the blurred
images are very noisy.

5 Conclusions

Noise in images may significantly affect the performance of even the best of the deblurring
algorithms. In this paper, we presented an algorithm for the blind restoration of blurred and noisy
images that combines the deblurring efficiency of You and Kaveh’s algorithm with the filtering
efficiency of an SVD-based filter. Our scheme requires no prior knowledge of either the image or
noise characteristics and performs well even at low SNRs.
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(a) (b)

(c) (d)

Figure 3: (a) Image blurred with the 5 � 5 uniform blur PSF, SNR=20dB, (b) result of applying the
denoising algorithm to the image in (a), (c) result of applying the deblurring algorithm to the image in (a),
(d) result of applying the deblurring algorithm to the image in (b).
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(a) (b)

(c) (d)

Figure 4: (a) Image blurred with the 5 � 5 uniform blur PSF, SNR=10dB, (b) result of applying the
denoising algorithm to the image in (a), (c) result of applying the deblurring algorithm to the image in (a),
(d) result of applying the deblurring algorithm to the image in (b).
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