
Many people have observed that computer systems
spend much of their time idle, and various schemes
have been proposed to use this idle time productively.
We have used this approach to improve overall
performance in storage systems. The most common
approach is to off-load activity from busy periods to
less-busy ones in order to improve system
responsiveness. In addition, speculative work can be
performed in idle periods in the hope that it will be
needed later at times of higher utilization, or a non-
renewable resource power can be conserved by
disabling unused resources during idle periods.
Much existing work in scheduling for idle periods uses
ad hoc mechanisms. The work presented here includes
a taxonomy of idle-time detection and prediction
algorithms that encompasses the prior approaches and
also suggests a number of others. We identify metrics
that can be used to evaluate all these idle-time
detection algorithms and demonstrate the utility of
both the metrics and the taxonomy by providing a
quantitative evaluation.

Idleness is not sloth

Richard Golding, Peter Bosch, and John Wilkes

idleness,
storage systems,
detecting idle periods,
predicting idle periods

This paper is a revised, extended version of a paper presented at
the 1995 Winter Usenix conference.

Internal Accession Date Only

1 Introduction
Resource usage in computer systems is often bursty: periods of high utilization alternate with
periods when there is little external load. If work can be delayed from the busy periods to the less-
busy ones, resource contention during the busy periods can be reduced, and perceived system
performance can be improved. The low-utilization periods can also be exploited for other
purposes—for example, eagerly performing work that might be needed in the future, or shutting
down parts of a system to conserve power, reduce wear, or lower thermal load.

The three main contributions of the work described in this paper are: a taxonomy of mechanisms
that can be used to detect and predict low-utilization (idle) periods, a survey of a wide range of
such mechanisms being used on some sample problems drawn from our storage systems work,
and an analysis of why the approach worked well. The taxonomy makes it easy to describe such
mechanisms and invent new ones; the survey and analysis provide concrete suggestions for
appropriate algorithm choices in a range of circumstances.

We call periods of sufficiently-low resource utilization idle periods. The definition of “sufficiently
low” is application specific; we use the term “idle” even if the value is non-zero. During these
times the system can execute an idle task without using resources that will affect time-critical work
too much.

Our approach is to detect when idle periods occur, to predict how long they will last, and then to
use this information to schedule the idle task. When a sufficiently-long idle period is predicted,
the idle task begins running. The idle task executes until it completes, or until it is signalled to
stop—typically when new foreground work arrives.

Figure 1 shows the overall structure of the framework of the idle detection system we have
investigated. Foreground work requests arrive and are executed, requiring resources. Potentially
useful idle tasks also consume the same resources. An idleness detector monitors the foreground-
work arrivals and the state of the scheduler, and many detector algorithms use the recent history
of these events to guide their predictions of idle time. The detector can also consider
environmental factors such as time of day. The idleness detector gives its predictions to the
actuator, which schedules the background idle work.

Figure 1: the idle-time processing framework.

foreground
work

idleness
detector resource

predictions

scheduler

background
 idle work

environment

actuator

load
1

The goal of the idleness detector is to make sufficiently good predictions that the net effect to the
system of running the idle task is positive. The best predictions exploit all the idle time and make
no mistaken predictions.

There are two basic ways to measure how good an idle-time processing system is. External
measures quantify the interference between the idle task and an outside application, and the
benefit from running the idle task. They use units such as additional foreground operation latency
or power consumption. Internal measures are based solely on how accurate the detector’s
predictions are. The external measures are what really matter, but internal measures are easy to
obtain and can be useful for guiding the choice of detection mechanism.

The rest of this paper is organized as follows. The rest of this section discusses some of the
characteristics of the idle periods in storage systems we have investigated. The following section
looks at several aspects of the problem of making good predictions about this idle time, including
a discussion of how they can be measured. We then present an architecture and taxonomy for
idleness detectors, use this taxonomy as a tool to generate a suite of idleness detectors, and
evaluate their effectiveness under realistic, measured workloads. An analysis of the effectiveness
of the taxonomy and an investigation of how one can choose an idleness detector follow. Some
thoughts about opportunities for future work and our conclusions wrap up the paper.

1.1 The nature of idle time
In our research, we have analyzed traces of storage operations taken from a number of systems,
including file systems, databases, and RAID arrays. We will be presenting results from traces
taken from file system disks attached to HP-UX systems. Details on most of these traces can be
found in our earlier paper on modeling disk systems [Ruemmler93].

Most idle periods in these traces are very short—on the order of milliseconds—but the bulk of idle
time comes from a few very long periods. (Figure 2 shows one such distribution.) This means that

0.0001 0.001 0.01 0.1 1 10 100 1000

Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

tio
n

Time
Count

Figure 2: cumulative distribution of idle time as a function of idle period
duration, for the cello-disk6 trace. The upper curve shows the fraction of the
number of idle periods; the lower curve shows the fraction of total idle time.
2

a system that uses idle time can get most of the benefit by doing a good job of finding the long idle
periods.

Idle periods also exhibit predictable patterns. To determine this, we computed the autocorrelation
for the sequence of idle period lengths. Figure 3 shows the results: for most of the traces we
investigated, how long the system stays idle is strongly related to how long it has recently been
idle. The figure shows the three patterns we observed among the traces.

• hplajw-disk0: this trace was taken on a quiet personal workstation. Most of the idle periods
were very long, and there was strong correlation between the length of one period and the
lengths of the preceding periods.

• cello-disk6: this trace is from a disk holding the Usenet news partition on a time-sharing
system. The length of time the system stayed idle depended only on the four previous
periods, and there appeared to be little longer-term correlation.

• database-disk0: this disk held part of a large production database system that exhibited a
transaction-processing-like workload. As with the cello-disk6 trace, the lengths of the
previous few idle periods are strongly correlated with the length of the current one, but
there are also long-term correlations at lags of more than forty periods.

Other researchers have indicated that file system traffic exhibits self-similar behavior [Gribble96].
In particular, they have shown that there is substantial long-term dependence between the
durations of idle periods.

These results suggest that idleness is a predictable phenomenon: by observing recent behavior,
and using the dependence between recent and future events, one can make good predictions
about future behavior.

2 An overview of idle-time processing
Idle-time processing consists, first, of detecting an idle period, then using that knowledge to
execute idle tasks to benefit overall system performance. In this section we explain what we mean
by each of these things.

0 10 20 30 40 50

lag (periods)

0.2

0.4

0.6

0.8

1.0

au
to

co
rre

la
tio

n

hplajw-disk0

0 10 20 30 40 50

lag (periods)

0.0

0.5

1.0

au
to

co
rre

la
tio

n

cello-disk6

0 10 20 30 40 50

lag (periods)

0.0

0.5

1.0

au
to

co
rre

la
tio

n

database-disk0

Figure 3: autocorrelation at different lags of the sequence of idle period duration, for three
workloads. Dark bars indicate significant correlation at 95% confidence level.
3

2.1 Detecting idle periods
Recall that the idleness detector monitors external work requests in order to find idle periods. More
precisely, the detector’s problem is to make a series of predictions, each of which identifies the
start time and duration of an idle period. The detector cannot be late with a prediction—otherwise
it isn’t a prediction. A good prediction will neither start earlier than the actual start time (so there
is no collision between idle processing and ordinary work) nor start much later (which would
waste time the idle task could spend doing work); nor will the duration last beyond the end of the
actual idle period.

As shown in Figure 4, the system initially is doing useful work, but then the offered external load
decreases below a predetermined threshold. Some time after this happens, the detector makes a
prediction about the idle period and signals the idle task to start. Later, as the load increases past
the threshold, it signals the task to stop.

The time lag between the load dropping below the threshold and the detector signalling the start
of the idle period represents a lost opportunity. This can also happen if the prediction is shorter
than the actual idle period. On the other hand, the time lag between the load exceeding the
threshold and the end of the prediction represents a possible actual cost because of interference
with foreground activity.

2.2 Executing idle tasks
Idle tasks are run when the system is predicted to be idle. The idleness detector finds periods
when the system will be idle, and starts and stops idle tasks appropriately.

The time line in Figure 5 illustrates a prototypical idle task in more detail.

Typically, the detector signals the idle task to start executing some time after the end of the last
piece of foreground work, or when the load on the system drops below some threshold. The initial
activity of the idle task may be to run an initialization step, such as determining which segments
to clean in a log-structured file system. This is followed by one or more executions of the main
idle-time step. Each step might take a different amount of time or require a different resource.
Breaking the idle task up into finer-grained steps reduces delay after an interruption, and hence
reduces the cost of a bad prediction.

Eventually, regular foreground work will again enter the system, or the system load will increase
above a threshold. If the detector’s prediction was accurate, the idle task will have completed
execution. If not, the detector signals the idle task to stop, and the task interrupts its activity, if

time

Figure 4: the output from a sample idle detector as the offered load changes.

offered
load

load
threshold

actual idle period

incorrect
prediction

wasted
idle time

idleness
prediction
4

possible. It may be necessary to execute a recovery step to bring the system back to normal
operation—for example, a powered-down disk must be spun up, or a partially-completed update
may need to be undone. Foreground work may be blocked or slowed during this period, so it is
desirable to keep the recovery time as short as possible.

2.3 Costs and benefits of using idle time
To understand the benefits and costs of idle-time processing, we must first understand how idle
tasks can help a system, and how they can hinder.

Measuring the improvement requires metrics for each idle task. These measures vary from one
system or application to another. Even within one system, more than one measurement may be
appropriate. Often these measures are not directly comparable, or may be subjective in nature.
External performance measures quantify these effects.

For example:

• The value of disk shuffling (reorganizing data layout on disk) is faster access to frequently-
used data. The costs include delaying disk accesses while data is being shuffled.

• The value of flushing the contents of a non-volatile write-behind buffer to disk during idle
periods is reduced exposure to failures, greater capacity to absorb future write bursts, less
interference with foreground IOs, and better disk-arm scheduling for the writes. The
disadvantages include potential interference with foreground reads, unexpected head
movements, and greater write traffic.

• The value of powering down a disk drive is the energy saved; the costs are that ordinary
work may be delayed, extra energy consumed during the “recovery” task of spinning up
the drive, and the disk lifetime reduced by repeated start-stop cycles.

Other costs are specific to the idle task: delaying cache flush operations can increase cache space
use, decreasing its ability to absorb bursts; disk shuffling requires collecting access pattern
information during regular operation.

The utility of using idle time depends in part on how well the detector can find idle periods. For
example, a detector that does not find much idle time will not save much energy in powering
down a disk; a detector that is overeager in declaring idle periods will cause interference between

foreground
work

Figure 5: the typical sequence of events in idle-time processing.

detector
delay

detector
signals
start

new work
arrives:
detector
signals stop

recovery
delay

foreground
work

regular
idle steps

initial idle
step

recovery
step

time

foreground

background
5

background and foreground work. Thus the internal measures of detector performance can help
explain why one detector works better than another for some systems.

2.4 Characterizing idle tasks
There are many different uses for idle time, but they mostly fall into four different categories:

• Required work that can be delayed, such as delayed cache writes, migrating objects in a storage
hierarchy, rebuilding a RAID array after a failure, cleaning a log-structured file system.

• Work that will probably be requested later, such as disk readahead, eager function evaluation,
collapsing chains of forwarding addresses for mobile objects, eager make [Bubenik89].

• Work that is not necessary, but will improve system behavior, such as rearranging data layout on
disk, shutting down parts of a system to conserve power, checking system integrity,
compressing unused data.

• Shifting work from a busy to an idle resource, such as choosing the least-loaded network path,
compressing data to reduce disk or network traffic.

Idle tasks can also be characterized by how they react to being stopped and started (we call these
granularity properties):

• Interruptability: some idle tasks can be interrupted at any time, and will stop immediately.
Others must complete a fixed granule of work before they can relinquish the system
resources they are consuming. (For example, a disk write operation must run to completion,
while a powered-down device can be restarted at any time.)

• Work loss: when some idle tasks are interrupted, they will lose or must discard some of the
work that they have performed. (For example a log-structured file system cleaner may have
to abandon work on the current segment.) This cleanup process itself may need resources,
and some idle tasks have to be followed by a recovery task to put the system back to a
consistent state.

• Resource use: most idle tasks block foreground work from making progress to some degree.
In the extreme, they may completely deny foreground-work access to a resource (e.g., a disk
that has been spun down); in other cases, foreground activity simply slows down while the
idle task is executing.

Each of these properties affects applications in different ways. For example, high degrees of
multiprogramming will probably make a workload more resilient to an idle task that blocks
access to a single resource, since there is probably something else useful that can be done while
the idle task has the resource.

2.5 Idle task examples
There are many possible uses for idle time. Storage, compilation, user interfaces, and distributed
systems all exhibit highly variable workloads—a clue that a system could benefit from idle-time
processing. We surveyed a number of them in an earlier paper [Golding95]. Here we present three
examples that we will use throughout this paper, together with how our taxonomy classifies
them.

2.5.1 Disk power-down
Several people have investigated powering down disk drives on portable computers to conserve
energy (e.g., [Cáceres93, Douglis95, Greenawalt94, Marsh93, Wilkes92b]). Using the taxonomy
6

we have developed, the “idle task” is keeping the disk powered off, with the goal of decreasing
energy consumption. The initial step is to spin the disk down, and the recovery step is to spin it
back up (Table 1).

For example, during normal operation, an HP Kittyhawk disk [HPKittyhawk92] consumes 1.5–
1.7W. When it is spun down, it enters a “sleep” mode that consumes very little energy. When a
disk IO request arrives, the disk must be powered up, which uses 2.2 W for 1.5 s (i.e., 3.3 J).
Energy consumption will decrease if the savings from the powered-down mode outweigh the
energy cost of spinning it up again. For this disk, it can be achieved if the disk is spun down for
as little as 2.2 s; larger disks take somewhat longer to recoup the spin-up cost. However, spinning
the disk down too often will increase the latency of disk requests and increase the chance of disk
failure. A good idle-time policy will balance these conflicts.

Douglis et al. [1995] found that, using simple adaptive timer-based idle detectors, systems could
save as much as 50% of the power that would be required to keep a disk running continuously,
and that there were smooth tradeoffs between the amount of energy saved and the delay added
to user IO operations.

2.5.2 Delayed writeback
The read-write bandwidth of a disk is a scarce resource during a burst of requests. As write
buffers increase in size, synchronous read accesses will come to dominate performance in realistic
systems because the amount of memory needed to absorb peak write rates is (much) smaller than
the quantity needed to cache all reads [Ruemmler93, Bosch94]. The delays seen by reads can be
reduced by delaying writes until idle periods, possibly with the help of non-volatile memory
[Baker92b, Carson92a, Chen96b, Ganger94b].

Delayed writeback is an example of delayed work. When a write operation arrives, it is saved in
the cache rather than written to disk. This consumes buffer-cache space, which may reduce the
read hit rate in the cache, or require more memory. When the system is idle, these accumulated
writes are flushed to disk in groups of N IO requests. The larger the value of N, the better the
requests can be scheduled at the disk [Seltzer90b, Jacobson91]. This flush can potentially delay
foreground reads that arrive during the flush. In practice, reads should be given priority over
writes [Carson92a]; however, we’ll explore the effect of scheduling the reads and writes with
identical priority.

This idle task requires no special initialization or recovery actions. A good delayed writeback
system minimizes read latency and cache utilization. Table 2 summarizes these characteristics.

Table 1: characteristics of disk power-down; numbers are for an HP Kittyhawk disk.

Initial idle task spin down disk

Idle task (do nothing): saves 1.5–1.7 W

Recovery idle task spin up disk: takes 1.5 s @ 2.2 W

Granularity
unit: can be aborted at any time
loss: energy to spin up disk (3.3 J)
resource: excludes any other disk accesses

External measures energy saved
delay caused to IO operations
7

2.5.3 Eager LFS segment cleaning
In a segmented log-structured file system, blocks are appended to the end of a log as they are
written [Rosenblum92, Carson92a, Seltzer93]. The disk is divided up into a number of segments,
which are linked together to form the log. As blocks are re-written and their new values appended
to the log, earlier copies become garbage that must be reclaimed. A cleaner task selects a segment
that contains some garbage blocks and copies the remaining valid blocks out of the segment. The
segment is then marked as being empty so it can be written over later.

The cleaning operation causes a significant amount of disk traffic, and consumes operating
system buffer space [Seltzer93]. The disruptiveness can be minimized if cleaning is performed
when there is little ordinary disk traffic. However, segments must be cleaned promptly enough
that the system does not run out of clean segments, which would force a segment-clean in the
foreground.

The cleaning task is characterized by the delay it imposes on ordinary traffic and how often the
system runs out of clean segments. Minimizing the delay is best done with an interruptible
cleaner that can discard partially-completed operations. Table 3 summarizes these characteristics.

3 An idleness detection architecture
Having presented an overall framework for idle-time processing, we now turn our attention to
how to build idleness detectors. We have found it useful to decompose the solution into a number
of separate components, each implementing just one part of the detection algorithm. By
combining the parts in different ways we can build detectors on a mix-and-match basis to explore
a much wider range of design alternatives than would otherwise be the case.

Table 2: characteristics of delayed writeback

Initial idle task (none)

Idle task flush dirty disk blocks

Recovery idle task (none)

Granularity
unit: fixed (N sectors)
loss: none
resources: ties up disk

External measures max cache space needed
change in read latency

Table 3: characteristics of LFS segment cleaning

Initial idle task (none)

Idle task clean one segment

Recovery idle task discard partially-cleaned segment

Granularity
unit: fixed (1 segment)
loss: up to 1 segment,
resource: ties up disk

External measures foreground cleaning time
change in read latency
8

Figure 6 shows the overall scheme. An idleness detector is composed of a number of predictors
and skeptics, along with an actuator:

• A predictor monitors its environment—the arrival process, resource usage, and possibly
other variables such as the time of day—and issues a stream of predictions. Each prediction
is a tuple <start time, duration>.

• A skeptic [Rodeheffer91] filters and smooths these predictions, possibly combining the
results from several predictors.

• The actuator obeys the sequence of predictions it gets as input to start and stop the idle task;
its purpose is to isolate the interactions with the idle task from the predictors.

The predictors and skeptics form a directed acyclic graph, which we collectively call the idleness
detection network. Predictors are the leaves, generating streams of predictions for skeptics, which
form the internal nodes. The skeptics generate streams of predictions that can be processed by
other skeptics, and so on until they read a single node that emits predictions to the actuator.

3.1 Predictors
Since a prediction consists of both a start time and duration, we split the predictor component into
two subcomponents. The start detector policy generates the start time part of a prediction, and
communicates with a duration predictor policy to get an estimated duration (Figure 6).

3.1.1 Start time detector policy
Simple detectors use little information to determine when idle periods will start; more
sophisticated ones take advantage of knowledge about the arrival process to make better
decisions. We present them here in order of increasing complexity.

• Timer-based: whenever the system runs out of work, the detector policy begins a timer. If no
work comes in before the timer expires, the detector declares that an idle period has begun.
The timer period can be fixed, variable, or adaptive. A fixed period does not change. A variable
period is computed as a function of some values in the environment, such as time of day.
An adaptive timeout period is increased if predictions are too eager, and decreased if they
are too conservative.

Figure 6: construction of a simple idleness detector.

idleness
detector

start

stop

environment +
system load

start

stop
actuator

skepticpredictor

predictions
9

• Rate-based: the detector policy maintains an estimate of the rate at which work is arriving,
and declares an idle period when its rate estimate falls below a threshold. Different
threshold rates can be used for “start of idle period” and “end of idle period” to provide
some hysteresis. Methods for maintaining the estimate include:
– moving average: the rate is periodically sampled, and the detector computes a moving

average of the samples.
– event window: the detector maintains the times of the last n arrivals, and estimates the rate

as n divided by the age of the oldest arrival. This is similar to leaky bucket rate-control
schemes for high-speed networks [Cruz92].

– time window: the predictor maintains a list of arrival times more recent than t seconds,
and estimates the rate as the length of the list divided by t. This is a variation on the event
window method.

– adaptive: like the other rate-based policies, but the threshold rates are adapted based on
the accuracy of recent predictions in order to meet an accuracy goal.

• Rate-change-based: these predictors maintain an estimate of the first derivative of the arrival
rate to predict in advance when the arrival rate will fall below a threshold.

• Periodic: if the workload contains work that repeats with a nearly constant period, a digital
phase locked loop or DPLL [Lindsey81, Massalin89a] can be used to synchronize predictions
to these periodic events in the workload. By knowing when work will arrive, such as a file-
system daemon that does periodic buffer-cache flushes, the idle periods can also be
predicted.

3.1.2 Duration prediction policy
A wide range of techniques can be used to adapt an estimate of how long an idle period will last
to a changing workload. We list them here according to the amount of information they use about
the arrival process.

• No duration: no prediction is made (alternately, the prediction is “forever”). Variants on this
approach include policies that merely detect the end of an idle period when it happens,
rather than making a prediction beforehand. These are most useful when the definition of
“idle” allows some residual foreground work.

Figure 7: components of the predictor component. The details of the interface
are discussed in Section 3.1.3.

predictorenvironment +
system load

start
detector

predictions

predictions

duration
predictorenvironment +

system load getContinuance

duration

notification

getDuration
10

• Fixed duration: a fixed duration is predicted. The simplest form of this is “enough time to run
the idle task once”.

• Moving average: the duration prediction policy keeps a moving (possibly weighted) average
of the actual durations. The usual average is the mean, but a geometric average or median
can also be used. (More generally, the predictor can treat idle periods as an ARIMA process
[Box94].)

• Filtered moving average: like moving average, but only idle periods greater than some lower-
bound are considered during the averaging process, so that the presence of many very short
idle periods that cannot be used does not bias the results for longer, useful periods.

• Backoff: after each prediction is used, the duration predictor uses the feedback to determine
whether the actual duration was longer or shorter than predicted. If it was longer, the next
prediction is increased; if it was shorter, the next prediction is decreased. The increases can

Table 4: start time detector policies implemented.

Name Description Parameters

Timer Fixed-duration timer Timeout duration (seconds)

AdaptTimerArithArith Adaptive timer; increases or decreases duration
arithmetically Duration increment (seconds)

AdaptTimerArithGeom Adaptive timer; increases duration
arithmetically; decreases duration by half Duration increment (seconds)

AdaptTimerGeomArith Adaptive timer; increases duration by doubling;
decreases duration arithmetically Duration increment (seconds)

AdaptTimerGeomGeom Adaptive timer; changes duration by doubling
or halving none

MovingAverage Rate-based predictor that maintains a moving
average of IO/second rate Threshold rate (IO/s)

PLL Phase-locked loop that attempts to lock on to 30s
Unix sync daemon activity none

EventWindow Rate-based predictor that maintains a window of
the last n operations to estimate a rate

Window size
Rate threshold and kind (IO/s,

KB/s, or fraction of time busy)

Table 5: duration predictor policies implemented.

Name Description Parameters

Fixed Fixed duration Duration (seconds)

BackoffArithArith Increases or decreases estimate arithmetically Duration increment
(seconds)

BackoffArithGeom Increases estimate arithmetically; decreases estimate by half Duration increment
(seconds)

BackoffGeomArith Increases estimate by doubling; decreases estimate
arithmetically

Duration increment
(seconds)

BackoffGeomGeom Changes estimate by doubling or halving none

Average Estimate is a moving average of the duration of recent idle
periods none
11

be arithmetic, increasing by a constant each time, or geometric, increasing by a constant
factor. The skeptic in Autonet [Rodeheffer91] and round-trip timers in TCP [Postel80a,
Comer91, Karn91] used geometric increase and arithmetic decrease to maintain a prediction
slightly longer than the actual, while a duration predictor works to keep its predictions
slightly shorter.

The backoff algorithm can be applied either at the end of the prediction period or at the end
of the idle period. The first gives a chance for the algorithm to be much more aggressive in
extending its estimates; the latter provides more information, but potentially causes the
period to be adjusted much less often.

• Filtered backoff: backoff policies that only consider actual idle periods longer than a given
lower-bound during their backoff calculations.

• Autocorrelation: the autocorrelation on the work arrival process gives the probability of an
event arriving or the rate of arrival as a function of time into the future. The predicted
duration is the period during which the probability of arrival is below some threshold. The
autocorrelation is somewhat expensive to compute, so it might be recomputed periodically
rather than continuously. It might also be used to predict the beginning of multiple idle
periods.

• Conditional autocorrelation: like a simple autocorrelation, except that multiple
autocorrelation functions are computed based on some property of arriving events. For
example, the expected future might be different following read requests or write requests.

• Ad-hoc rules: finally, as with predicting the beginning of an idle period, many systems can
take advantage of other specific features of the arrival process, such as periodicity.

3.1.3 Interface between start time and duration prediction policies
In our evaluations, we separated the implementation of the start detector policy from that of
duration prediction policy, as shown in Figure 6.

The interface between the two policies required a few revisions to get right. The final version
consisted of three parts:

1. Notifications of the beginning and ending of actual idle periods sent from the start detector
to the duration predictor.

2. Requests from the start detector for a duration prediction at the beginning of an idle period.
We called this operation getDuration.

3. Requests for a duration prediction in the middle of an idle period, called getContinuance.

Predicting duration of an idle period that is in progress is necessary because many periods run
much longer than initially predicted, and it can be useful to get a prediction of how much longer
it will likely continue, given that it has already lasted at least as long as the original prediction.

3.1.4 Offline predictors
As with so many problems of this type, optimal idleness detection requires off-line analysis that
has knowledge of future events. While this approach is often not useful for building a system, in
those cases where usage patterns are stable a one-time analysis may provide a useful prediction.
For example, “weekends from 1–6 a.m.” is a common time to perform system maintenance.

In practice, however, we have concentrated on on-line detectors for our work.
12

3.2 Skeptics
A skeptic takes in one or more prediction streams, and emits a new one. Skeptics are used to filter
out bad predictions and to combine the results from several predictors into a single prediction
stream.

Single-stream (filtering) skeptics include:

• low-pass: discards predicted periods that are shorter than some threshold (e.g., the duration
of the idle task).

• quality: discards predictions from a predictor that is consistently wrong. The skeptic can
compute a measure of the predictor’s accuracy, perhaps filtered to remove short-term
variations, and pass along predictions when the accuracy is above some threshold.

• environmental: discards or modifies predictions according to some external event (such as
time of day). This can allow idleness predictions to be restricted to times when nobody is
around, for example. The time-of-day input can be derived from moving averages of
workloads over long periods of time, so this skeptic can be made adaptive.

Perhaps the most important use for skeptics is to combine several prediction streams. For
example, a periodic-work detector will not handle non-periodic bursts, while another predictor
might. A skeptic could combine the two, only reporting a prediction when both agree.

More generally, a skeptic can combine a number of input streams by weighted voting. Each
stream is given a weight, and the skeptic produces a prediction only when the combined weights
are greater than some threshold. When the weights are equal and fixed, this becomes simple
voting. Alternately, the weights can be varied according to the accuracy of each predictor. This
approach has been shown to yield near-optimal prediction in many cases [CesaBianchi94].

3.3 Actuator
The actuator uses the stream of predictions provided by the network of predictors and skeptics to
signal idle tasks to start and stop. When the actuator signals an idle task to start running, it can
pass along an indication of how long the prediction network expects the system to stay idle. Some
of the idle tasks we evaluated used the prediction to scale the amount of work they tried to do.

There is an interesting policy choice related to the actuator: when to signal a task to stop. While
the actuator only starts an idle task when the system is predicted to be idle, it can base its decision
to stop the task on either the predicted duration, on direct measurements of how busy the system
is, or both. The options include:

• Stop the idle task at the end of the predicted duration, ignoring how busy the system
becomes.

• Ignore the predicted duration and stop the task when the system becomes busy. If the
detector network is accurate, then stopping when the system becomes busy should be
almost identical to following predicted duration.

• Stop the idle task at the earlier of either the end of the predicted duration or when the system
becomes busy. This approach is the most conservative policy: it ensures that the idle task is
stopped before new work arrives when predictions are good, and minimizes interference
when predictions are too long.

• Stop the idle task at the later of the end of the predicted duration or when the system
becomes busy. This approach guarantees that the idle task will always run for at least as
13

long as it was told in the prediction, and longer if possible. It is, however, the least
conservative, and we have not yet found a use for it.

4 Experimental results
To get quantitative measures of the effectiveness of idle-time processing, we used the taxonomy
presented in Section 3 to design and implement a large number of possible idleness detection
network components and networks composed from them, whose performance we then
evaluated.

We used three idle tasks, as detailed in Section 2.5. They were:

• disk power-down: spin down an idle disk drive to save power;

• delayed writeback: delay disk write operations to idle periods; and

• eager segment cleaning: perform LFS segment cleaning when there is little other traffic.

We begin this section with a discussion of the methods we used in the evaluation, and then study
each of the three idle tasks in turn.

4.1 Methodology
We implemented our idle processing architecture in the Pantheon simulation system [Wilkes95].
In particular, we simulated a host system issuing read and write requests to a set of disks. We
used calibrated disk models [Ruemmler94], and exercised our detectors using week-long IO
access traces taken from three real systems [Ruemmler93] to avoid making simplifying
assumptions about access rates or patterns:

• hplajw: a trace of a single-user HP 9000/845 workstation with two 300MB disks.

• snake: a trace of a HP 9000/720 file server at UC Berkeley with three disks—one 500MB and
two 1.35GB.

• cello: a trace of the eight disks on an HP 9000/877 cluster server. We often report on cello-
disk6, which held the /news partition and accounted for about half the IO traffic in the
system.

The Pantheon simulator uses the system model shown in Figure 8. We used an open queuing
model, where IO events were replayed according to the times recorded in the trace. To provide
support for idleness detection, we modified the DeviceDriver and Disk classes to let us connect
idleness detector networks. The delayed writeback and segment cleaning tasks used events from
the device driver level, while the powerdown task used events from the disk controller.

4.1.1 Measures used for evaluation
We used two analytical techniques in our evaluation that bear discussion. The first summarizes
the tradeoff between two otherwise incomparable measures. The second measures the
consistency of a measure across multiple workloads.

All three of the idle tasks we modeled present tradeoffs among multiple measures. The segment
cleaning task, for example, balanced aggressive cleaning to keep the amount of unprocessed data
low against conservative cleaning to minimize the interference with foreground operations. The
ideal was to minimize both the amount of unprocessed data and the interference: a policy that
yielded moderately good performance at both measures is better than a policy that yields low
unprocessed data at the cost of very high interference.
14

We found that a simple Euclidean distance metric summarized this tradeoff nicely. To compute
this metric, we first scaled all measurements into a [0,1] range, with 0 being “better” than 1, then
took the distance of the resulting point from the origin. The scaling helped to make different
measures comparable—one might be comparing megabytes against milliseconds, for example. It
also insulated the measure from the peculiarities of different workloads. While it is possible to
bias this computation in favor of one measure or the other by adding a scaling factor, we chose to
weight the measures equally.

Specifically, consider a sample (x,y), with and . Assume that the observed values for
X ranged from to and that larger values of X were to be preferred, so the “best” value
for measure X was . The scaled value of x is:

which maps all the values in X into a [0,1] range with better values closer to zero. A similar process
applies to y. We then computed the distance from to the origin:

This formulae work equally well if the best point is the minimum, in which case and
are exchanged in the formulae.

As an example, consider the tradeoffs for the segment cleaning task. The left-hand graph in
Figure 11 show the ranges for X (latency improvement, from 16.65 ms to 18.06 ms) and Y (mean
queue length, from 0.14 KB to 8455 KB) for the hplajw-disk0 trace. The best value of X is the largest,
18.06 ms; the best value of Y is the smallest, 0.14 KB. A policy that yielded x=17.4 and y=90, near

IO load

Figure 8: standard Pantheon host-disk system framework, showing the added
idle processing attachment points.

ddidle

idle

DeviceDriver

DiskMechanism

IOsched

IOsched

Disk

x X∈ y Y∈
xmin xmax

xmax

x'
xmax x–()

xmax xmin–()
--------------------------------=

x' y',()

d x'
2 y+ '

2
=

xmax xmin
15

the center of the graph, would be scaled to and
. The distance metric is

We also wanted to determine how consistently various policies performed across different
workloads. A measure of consistency should indicate whether one policy consistently yielded
better results than another policy across several workloads. It should also indicate whether a
single policy produced equally good results across workloads. We used these indications to
suggest policies that are generally safe choices over a wide range of conditions.

Our approach to defining a consistency metric was to use the mean and variance of how well each
policy did across the workloads. We first scaled all the results for a particular workload into a (0,1)
range just as we did for the distance metric. The mean of this measure for one detector across
multiple workloads indicates how close to the best value the detector was, on average, and the
variance of the measure indicates how consistent the results were.

More formally, consider a set of measurements taken by using a set of policies P with
a set of workloads W. For each workload , we can find the best and worst values for each
workload w, and , and compute range of values . For
each policy , the scaled measure is

This scaled measure can be thought of as the fraction that policy p produced of the best result for
workload w. The mean,

gives the overall “goodness”, and allows us to compare two policies; the variance of this measure
indicates whether the policy performance varied across different workloads or not.

4.2 Disk power-down
The first idle task we looked at was disk power-down, which tries to save energy by turning off
a disk drive when it is not being used, as discussed in Section 2.5.1.

There were two external measures we used to evaluate the disk power-down idle task: the energy
saved, and the number of operations that had to be delayed because the disk wasn’t ready when
the operation was issued. These are similar to the measures that have been considered in other
studies on this problem [Douglis95].

In our model, the idleness detection network monitored activity inside the disk controller. Each
disk was augmented to include an idleness detection network and an idle task. The idle task
initiated a spindown whenever it received a prediction from the detection network, and waited
to spin the disk back up until a disk IO request arrived.

Real disks have a great many different power-management systems. We used a simple,
representative power management system derived from typical 2.5” disks. We assumed that the
disk would require 1 s to spin down and 1.5 s to spin up. It would consume 1.6 W during normal

x' 18.06 17.4–() 18.06 16.65–()⁄ 0.46= =
y 0.14 90–() 0.14 8455–()⁄ 0.0106= =

d 0.46()2 0.0106()2+ 0.46012= =

mp w, M∈
w W∈

mbest w, mworst w, rw mbest w, mworst w,–=
p P∈

m'p w,
mbest w, mp w,–()

rw
---=

m'p
1
W
-------- m'p w,

w W∈
∑=
16

operation; 0.4 W while sleeping; and 2.4 W while spinning up. For these parameters, the break-
even point, where the energy saved while being spun down equals the energy cost of spinning
back up, is 3 s.

For the idle detection networks, we evaluated each of our start time detectors combined with a
Fixed 10 s duration predictor—this being what we considered a reasonable minimum duration.
The fixed duration predictor provided a target for the adaptive start time detectors: when
working properly, they adapted their detection policy to only declare idleness when it was likely
that the system would stay idle for at least long enough to save a little power.

Figure 9 shows the detailed results for two of the disk traces we evaluated, comparing the power
saved against the number of delayed operations. Note that higher power savings and fewer
delayed operations is to be preferred, which is to the lower right in the graph. The small graphs
show how each family of start time detection policies performed compared to the overall picture.

There is a clear tradeoff between the two measures. In our implementation, at least one operation
was delayed every time the disk was powered up because the disk never tried to anticipate when
future requests might arrive. Detectors that powered down the disk more often therefore delayed
the most operations, and indeed for all but three disks in the traces the two measures are
correlated at a 95% likelihood. The three exceptions came from disks where the PLL detector
saved relatively little power but still delayed many operations. (The sample in the lower left of
both graphs in Figure 9 is from a PLL detector.)

For power savings, a few start detectors consistently did the best over the 13 disks in our
workload traces, as shown in on the left-hand side of Figure 10. The AdaptTimerArithGeom 0.1s
and 1.0s and Timer 0.5s and 1.0s appear to be the four safest choices: they get within 2% of the
best power savings for all of the workloads. They are our recommended choices when power
savings are most important.

The rate-based (EventWindow and MovingAverage) detectors produced better than anticipated
results for this idle task. We expected them to do poorly because they were intended to find
periods of low traffic, while disk powerdown requires periods of no traffic. In practice, it appears
that the EventWindow detectors with small windows and lenient thresholds do fairly well.

The detectors that delayed the fewest operations, as shown on the right-hand side of Figure 10,
were the most conservative: rate-based detectors with low rate thresholds and large windows.
These detectors delayed between a tenth and a third as many operations as did the detectors that
yielded the best power savings.

4.3 Delayed writeback
The next idle task we looked at was delayed writeback. The overall performance of a disk system
can be improved by processing read operations immediately, since processes are waiting for their
completion, while delaying write operations a bit—in particular, delaying them to times when
there is no read traffic occurring. If this is successful, it will the latency of read operations will be
smaller, since they will be able to proceed without interference from write traffic. The cost is that
the data to be written consumes memory resources while it is waiting. A good idleness detector
for delayed writeback will minimize the interference between read and write operations while
keeping the amount of unwritten data at a minimum. Thus the two measures we used to evaluate
the delayed writeback task were the improvement in read latency and the length of the write
queue.
17

We implemented this idle task by inserting a special “write delay” device driver between the host
workload source and the normal device driver. The write delay device driver sent read operations
directly to the normal device driver for immediate service. It placed write operations on a FIFO
queue, from which they were removed when the idle task was informed that there was enough
time to do some writes. This was a simplistic model of delayed write operations: it did not attempt

0.01516
0.1 0.2 0.3 0.4 0.5 0.6

0.6796

Fraction of power saved

515

20002000

4000

6000

8000

10000

10460

D
el

ay
ed

 o
pe

ra
tio

n
co

un
t

cello-disk6

0.1651
0.2 0.3 0.4 0.5 0.6 0.7

0.7419

Fraction of power saved

312

10001000

2000

3000

3261

D
el

ay
ed

 o
pe

ra
tio

n
co

un
t

hplajw-disk0

0.1651
0.2 0.4 0.6

0.7419

Timer

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

AdaptTimerArithArith

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

AdaptTimerArithGeom

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

AdaptTimerGeomArith

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

AdaptTimerGeomGeom

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

EventWindow-IOperSec

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

EventWindow-BusyPerSec

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

EventWindow-KBperSec

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

MovingAverage

312

10001000

2000

3000
3261

0.1651
0.2 0.4 0.6

0.7419

PLL

312

10001000

2000

3000
3261

0.01516
0.2 0.4 0.6

0.6796

Timer

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

AdaptTimerArithArith

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

AdaptTimerArithGeom

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

AdaptTimerGeomArith

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

AdaptTimerGeomGeom

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

EventWindow-IOperSec

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

EventWindow-BusyPerSec

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

EventWindow-KBperSec

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

MovingAverage

515
20002000

4000

6000

8000

10000
10460

0.01516
0.2 0.4 0.6

0.6796

PLL

515
20002000

4000

6000

8000

10000
10460

Figure 9: disk powerdown: power savings versus number of delayed operations. Better is lower and
to the right.
18

to coalesce overlapping write operations in an attempt to reduce the amount of data to be written;
nor did it attempt to satisfy read operations from the data in the queue. We believe that real
performance would be slightly better than indicated here, but as with our other models, this one
is sufficient to investigate idleness detection.

The idle task wrote items to disk in the order they were queued when it was informed there was
idle time. It would issue only as many write requests as could be processed in the predicted idle
duration, and it allowed only up to 8 Kbytes of outstanding write requests in order to limit the
recovery time when an idle period ended. The system also enforced a maximum queue size of
16 Mbytes; if more writes were enqueued than that, a foreground task would be triggered to flush
at least 8 Mbytes of data from the queue.

Figure 11 shows the relationship between the improvement in read latency and the length of the
delayed write queue for the hplajw-disk0 and cello-disk6 workloads.

For the hplajw-disk0 workload, there was plenty of idle time available and so read latency is
improved by up to 18.1 ms (39.7%). There was also usually sufficient time after a burst of writes
to flush the queue, so the mean queue length was short.

0.0 0.2 0.4 0.6

Distance from best

EventWindow size 250, 0.1 IO/s
EventWindow size 100, 0.1 IO/s

EventWindow size 50, 0.1 IO/s
PLL

EventWindow size 100, 1.0% busy
EventWindowSplit size 25, 0.1/1.0 IO/s

EventWindow size 50, 1.0% busy
EventWindow size 10, 1.0% busy

EventWindow size 250, 1.0% busy
EventWindow size 5, 0.1 IO/s

EventWindowSplit size 5, 0.1/1.0 IO/s
EventWindow size 10, 0.1 IO/s

EventWindow size 5, 1.0% busy
MovingAverage 0.1 IO/s

AdaptTimerArithArith 10.0s
AdaptTimerArithGeom 10.0s
AdaptTimerGeomArith 10.0s

Timer 5.0s
EventWindow size 250, 4 KB/s

EventWindowSplit size 25, 1.0%/10.0% busy
AdaptTimerArithArith 1.0s

EventWindowSplit size 5, 1.0%/10.0% busy
EventWindow size 100, 4 KB/s

EventWindow size 50, 4 KB/s
EventWindow size 250, 1 IO/s
EventWindow size 100, 1 IO/s

AdaptTimerGeomGeom
EventWindow size 10, 4 KB/s
EventWindow size 50, 1 IO/s
EventWindow size 5, 4 KB/s

EventWindow size 250, 10 KB/s
EventWindowSplit size 25, 5/10 IO/s

MovingAverage 1.0 IO/s
EventWindow size 10, 1 IO/s

EventWindow size 100, 10 KB/s
EventWindow size 5, 1 IO/s

EventWindow size 50, 10 KB/s
EventWindow size 100, 10.0% busy
EventWindow size 250, 10.0% busy

EventWindow size 50, 10.0% busy
EventWindow size 10, 10 KB/s

EventWindow size 10, 10.0% busy
EventWindow size 5, 10 KB/s

EventWindow size 5, 10.0% busy
EventWindowSplit size 5, 5/10 IO/s

EventWindow size 250, 5 IO/s
EventWindow size 100, 5 IO/s

EventWindow size 50, 5 IO/s
EventWindow size 250, 40 KB/s

AdaptTimerArithArith 0.100s
EventWindow size 100, 40 KB/s

EventWindow size 10, 5 IO/s
AdaptTimerArithGeom 1.0s
AdaptTimerGeomArith 1.0s

EventWindow size 50, 40 KB/s
EventWindow size 5, 5 IO/s

EventWindow size 10, 40 KB/s
EventWindow size 5, 40 KB/s

MovingAverage 10.0 IO/s
Timer 1.0s
Timer 0.5s

AdaptTimerGeomArith 0.100s
AdaptTimerArithGeom 0.100s

0.0 0.2 0.4 0.6 0.8

Distance from best

Figure 10: disk powerdown: overall consistency of power savings and operation delay for the detectors.

power savings delayed operations
19

In the cello-disk6 workload, on the other hand, there was much less idle time available.
Nonetheless, most detectors provided an improvement in read latency, up to 14.3 ms (18.4%). All
of the detectors reached the maximum queue length at least once in the cello-disk6 workload.

For the busy cello-disk6 workload, a group of detectors, all non-adaptive Timers with timeouts of
5 s or longer that used adaptive duration predictors, made read latency worse, by about 4%. For
the less busy hplajw-disk0 workload, all detectors improved performance by at least 37%—though
the same cluster of non-adaptive Timers showed up among the least effective.

We were curious how consistent the choice of best overall detector was among the workloads we
investigated. We computed the scaled Euclidean distance metric defined in Section 4.1.1 for each
run to determine how well a particular policy balanced queue size against latency improvement.
We then used the mean and variance of the distance metric across different workloads as the
measure of the overall usefulness and consistency of the policy. Figures 12 and 13 report the
results, grouped by start detection policy and duration prediction policy.

There are a few lessons to be learned from these results. First, the duration prediction policy does
not matter nearly as much as the start detection policy. For many start detection policies
(Figure 12) the results for all detector-predictor combinations are clustered closely about the
mean, while the results for duration predictors (Figure 13) show large variations. Our
implementation only used the duration prediction to try to determine how much data to write out
at any given time, and we believe that most of the idle periods were longer than needed to empty
the delay queue.

The overall best policy combination was not the combination of the generally best detector and
the generally best predictor. The overall best combination was the AdaptTimerArithArith 10s +
Fixed 100s policy: while the Fixed 100s prediction policy was ranked the best overall predictor,
the adaptive timer detector policies were not.

16.65
17.0 17.5 18.0

18.06

Latency improvement (ms)

0.1427

1

10

100

1000

8455

M
ea

n
qu

eu
e

le
ng

th
 (

K
B

)

hplajw-disk0

-2.856
0 5 10

14.27

Latency improvement (ms)

723.1

1000

5000

10000
10260

M
ea

n
qu

eu
e

le
ng

th
 (

K
B

)

cello-disk6

Figure 11: delayed writeback: relation between operation delay and mean delay queue
length. Better is to the lower right.
20

Overall, however, the rate-based (EventWindow and MovingAverage) start detector policies
showed less variance than the adaptive timer policies. Our conclusion is that a rate-based policy
combined with a simple fixed-duration predictor is a good choice for the write delay idle task.

4.4 Eager LFS segment cleaning
Our final idle task was designed to model segment cleaning in a log-structured file system: the
system must periodically perform garbage-collection operations to compact all the active data
together [Rosenblum92]. This workload introduces extra housekeeping work into the disk
subsystem, beyond the work required for ordinary foreground reads and writes. The goal of
using idle time is to perform these housekeeping operations at times when there are few
foreground operations. However, the housekeeping has to be performed often enough to avoid
running out of free space into which new data can be written.

We did not model segment cleaning per se, since we were using traces recorded from systems that
did not use a log-structured file system. Instead, we constructed an additional workload that
periodically introduced a burst of read and write traffic similar to a cleaner reading a segment into

0.0 0.5 1.0

Distance from best

PLL
Timer 50.0s
Timer 10.0s
Timer 1.0s
Timer 5.0s
Timer 0.5s

EventWindow size 100, 0.1 IO/s
EventWindow size 250, 0.1 IO/s

AdaptTimerArithGeom 0.100s
EventWindow size 250, 1 IO/s

EventWindow size 50, 0.1 IO/s
EventWindow size 250, 5 IO/s
EventWindow size 100, 5 IO/s
EventWindow size 100, 1 IO/s
EventWindow size 50, 5 IO/s
EventWindow size 50, 1 IO/s
AdaptTimerArithArith 0.100s
EventWindow size 10, 1 IO/s
EventWindow size 10, 5 IO/s

EventWindow size 10, 0.1 IO/s
AdaptTimerArithGeom 1.0s

AdaptTimerArithGeom 10.0s
MovingAverage 1.0 IO/s

AdaptTimerArithArith 10.0s
MovingAverage 10.0 IO/s

EventWindow size 5, 1 IO/s
AdaptTimerArithArith 1.0s

EventWindow size 5, 0.1 IO/s
MovingAverage 0.1 IO/s

EventWindow size 5, 5 IO/s

Figure 12: delayed writeback: comparative performance of various start detection policies. The
range bar shows the mean distance from the best observed result and standard deviation of that

distance across all workloads for all runs, with all the duration predictors in Figure 13, that used the
named detection policy.

0.0 0.2 0.4

Distance from best

BackoffArithGeom 1.0s
BackoffArithGeom 0.010s

BackoffArithArith 0.010s
BackoffArithGeom 0.100s

BackoffArithArith 0.100s
BackoffArithArith 1.0s

Fixed 10s
Average

Fixed 20s
Fixed 100s

Figure 13: delayed writeback: comparative performance of various duration predictor policies. The range
bar shows the mean distance from the best observed result and standard deviation of that distance across
all workloads for all runs, with all the start detectors in Figure 12, that used the named detection policy.
21

memory, then writing it out elsewhere. We modeled the amount of data that needed to be copied
by assuming that the file system was in a steady state, so that each byte written created one byte
of data that must be copied. While this is not strictly what an LFS cleaner does, we believe that the
resulting workload was sufficiently like an LFS cleaner to evaluate idle detector performance.

Specifically, the cleaner task repeatedly executed a cleaning cycle whenever the system was idle.
In one cleaning cycle, the task read up to 1MB of data consecutively from one location on the disk,
then wrote the data to another location on the disk and advanced the read and write locations for
the next cycle. The cleaner task used the duration prediction from the idleness detection network
to compute how much data could be processed in one cycle without interfering with foreground
work, and set the amount read in the cycle accordingly. The task would only begin a cycle if it
expected that it could process at least 64KB without interruption. If the cleaner was told by the
actuator to stop, it immediately wrote out as much as it had read and then stopped. Interruptions
during the write portion of the cycle were ignored.

The interference between cleaning and foreground operations was measured by the delay
imposed on the foreground operations. This should, of course, be minimized. Most studies on LFS
segment cleaning policies have compared the overall service times using different policies—for
example, comparing background cleaning with cleaning on demand in the foreground
[Seltzer93]. For this study, however, we were not modeling an entire log-structured file system
and instead measured interference by the difference in mean service time between the system
without cleaning and background cleaning with various idleness detection policies.

Whether housekeeping is being performed often enough was measured by the amount of
unprocessed data. Since we were not modeling garbage collection per se, we instead measured
the amount of unprocessed data. The lower this amount, the more space was ready to absorb a
burst of writes, and hence the less likely it was that a real LFS would have to perform garbage
collection in the foreground.

We report results from the hplajw and cello traces. Since hplajw was lightly used, the amount of
unprocessed data stayed low and the cleaner task had ample opportunity to run. The cello system
was much busier, so the cleaner had both more work to do and the idle periods were shorter. We
varied both the start detection and the duration prediction algorithms since this idle task was
sensitive to duration predictions.

For both workloads, most idle detectors worked well enough to cause a negligible increase in
mean operation delay. For cello-disk6—the busier and thus more difficult system—the worst
detector delayed user operations by an average of 5.2 ms, which was only 1.4% of the original
mean operation service time. (In this trace, many write operations were part of large bursts and
the operation service time included the time spent waiting for preceding operations to complete.)
For hplajw-disk0, a lightly used disk, the delay due to the worst detector was slightly less good:
6.6 ms, or 6.2% of the original service time.

For the busy cello-disk6 workload, the mean amount of unprocessed data ranged from 3.6 MB to
84 MB; a few detectors never declared idleness and thus cause unbounded accumulation. A real
LFS would have had to perform foreground cleaning in those cases. For the hplajw-disk0
workload, unprocessed data ranged from 0.42 MB to 2.0 MB, with about half the detectors
yielding a mean of less than 0.5 MB. The start detectors that never found idle time were all fixed
timers. Some had too long a timeout value; others used an adaptive duration predictor that did
not receive enough accurate detections to provide usefully-long duration predictions.
22

Figure 14 shows the relationship between operation delay and mean amount of unprocessed data
for two of the disks we evaluated. While one might expect a tradeoff between operation delay and
unprocessed data amount, some detectors do well at both measures.

Figure 15 shows how the different start detection policies performed over the various workloads.
The rate-based start detectors were generally the best. We only used measures from those runs
that performed cleaning to determine the scaling range, and so the outlier policies show in the
graph as having mean distances much greater than one. We also evaluated the ranking when
ignoring the outlier results; rate-based detectors were still generally the best.

Rate-based detectors work well for this idle task because allowing a few foreground operations
during a cleaning cycle allows the system to find more time for cleaning than if a stricter policy

-0.96
0 1 2 3 4 5 6

6.566

Operation delay (ms)

0.4084

1

10

75.47

U
np

ro
ce

ss
ed

 d
at

a
(M

B
)

hplajw-disk0

-0.004
0 1 2 3 4 5

5.156

Operation delay (ms)

3.577

10

100

1000

1736

U
np

ro
ce

ss
ed

 d
at

a
(M

B
)

cello-disk6

Figure 14: relationship between operation delay and mean amount of unprocessed
data. Some policies actually improved the mean operation delay because of the

difference in disk head position from the added work.

0.01 0.1 1 10

Distance from best

Timer 50.0s
Timer 10.0s
Timer 5.0s
Timer 1.0s
Timer 0.5s

EventWindow size 250, 0.1 IO/s
PLL

EventWindow size 50, 5 IO/s
AdaptTimerArithGeom 0.100s

AdaptTimerArithGeom 1.0s
EventWindow size 5, 5 IO/s

EventWindow size 100, 0.1 IO/s
EventWindow size 10, 5 IO/s
EventWindow size 5, 1 IO/s

MovingAverage 10.0 IO/s
AdaptTimerArithArith 0.100s
EventWindow size 10, 1 IO/s

EventWindow size 100, 5 IO/s
AdaptTimerArithArith 1.0s

AdaptTimerArithGeom 10.0s
EventWindow size 50, 0.1 IO/s

AdaptTimerArithArith 10.0s
MovingAverage 1.0 IO/s

EventWindow size 250, 1 IO/s
EventWindow size 250, 5 IO/s
EventWindow size 5, 0.1 IO/s

MovingAverage 0.1 IO/s
EventWindow size 50, 1 IO/s

EventWindow size 100, 1 IO/s
EventWindow size 10, 0.1 IO/s

Figure 15: stability of the various start detector policies. The range bar shows the mean and
standard deviation of all policies that used the detector. Recall that outliers were removed

before scaling, so policies that never performed cleaning resulted distances greater than one.
23

were used—such as a Timer-based policy, which requires absolute idleness in the system. At the
same time, by requiring the IO rate to drop below a fairly low threshold (0.1 or 1 IO/s), the policy
ensures that few foreground operations will be affected.

We expected that duration predictors would be important for the cleaning task, since it limits the
amount of work it will attempt in one cleaning cycle so that it can likely be completed within the
predicted idle duration. However, as Figure 16 shows, there was no statistically significant
difference in results between duration predictor policies with the possible exception of the Fixed
100s policy.

We conclude that the choice of when to start cleaning is more important than the accuracy of
predicted duration, and that rate-based detectors do the best job for this kind of idle task.

4.5 Summary
In this section we have shown that idle detection can be used successfully to guide the execution
of three different idle tasks: powering down a disk drive, delaying write operations, and
performing LFS cleaning operations. The disk powerdown experiments showed a significant
power savings (60-70%) over letting a disk continue spinning, and we found that simple, adaptive
methods are as good as the best fixed timeout values often used for this task, and sometimes
better. The delayed write results showed that idle time can be used to move operations that are
not time-critical out of the way of operations that are, resulting in 20–40% improvements in
service time for time-critical operations. The cleaning task showed that housekeeping operations
can successfully be moved to periods when the system is being lightly used, while not falling
behind on them.

We found that the policy that detected when the system is idle had more effect on the
performance results than the choice of duration predictor. We had expected that the tasks that use
duration predictions to guide the amount of work they try to accomplish in one idle period would
be sensitive to the duration predictor, but these tasks appear to complete their work quickly
enough that duration predictions do not need to be particularly accurate.

Finally, we found that timer-based detector policies worked well for the task that required
complete idleness (disk powerdown), while rate-based detectors worked better for the tasks that
could continue while foreground operations executed.

0.01 0.1 1 10

Distance from best

BackoffArithArith 1.0s
BackoffArithArith 0.100s
BackoffArithArith 0.010s

BackoffArithGeom 0.100s
BackoffArithGeom 1.0s

BackoffArithGeom 0.010s
Average

Fixed 10s
Fixed 20s

Fixed 100s

Figure 16: stability of the various duration predictor policies. The range bar shows the mean and standard
deviation of all policies that used the detector. There is little statistical difference between policies.
24

5 Analysis
The taxonomic approach we have taken is different from most previous investigations into using
idle time. Most of the policies that the taxonomy describes adapt in some way to system behavior,
and most have one or more tuning parameters. In this section we investigate why a taxonomic
approach was beneficial, and why adaptivity was important. We show that performance was not
very sensitive to tuning parameters, suggesting that making a somewhat wrong tuning choice is
not usually catastrophic.

We also investigated how the performance of an idle task using a particular idleness detection
policy is related to internal measures of how well that policy can find and predict idle time. The
results suggest that external performance measures correlate with internal measures only when
either idle time is difficult to find, as in a busy workload, or when the penalties of an incorrect
prediction are high. For other cases, the external performance of the idle tasks is usually very good
and so the choice of policy does not matter so much.

We have one negative result: we investigated whether skeptics (Section 3.2) could improve
performance. The skeptics we investigated did not.

5.1 Effectiveness of the taxonomy
Taking a taxonomic approach to analyzing idleness detection was worth the effort. We saw two
costs: the time spent developing the taxonomy, and the computing time spent evaluating the large
number of detection policies we generated using the taxonomy. The benefits came from the
coverage of the problem space that the taxonomy provided, and the software-engineering
benefits of a module design guided by the taxonomy.

The cost involved in determining the components was small—a few days discussion among two
people, spread out over half a month. The implementation effort was also low: one person
completed the first version of the entire idle processing code except the PLL detectors in about
two weeks, including the time spent learning the Pantheon simulator system. The final code
evolved over the next few months, overlapped with other work. The final version of the entire
system, including the implementation of the three idle tasks, consists of slightly more than 11k
lines of C++ code and 600 lines of Tcl code.

As a benefit, the taxonomy adequately covers the kinds of idleness detection we have seen used
in practice. We have been pleased to find that all of the work that we are aware of that has been
published since our first paper [Golding95] has fallen neatly into this taxonomic structure. For
example, Douglis et al. [1995], while developing adaptive disk power-down policies, investigated
the use of adaptive timers with either arithmetic or geometric adjustment. The primary
differences between their policies and our AdaptTimer policies are that they considered using
different increment values for increase and decrease; they limit the smallest and largest timer
values; and the decision to adjust the timer depends on an application-specific condition (whether
recent spindown activity has met a user goal or not). Likewise, Helmbold et al. [Helmbold96]
have investigated using a skeptic based on machine learning techniques to choose the best from
among a family of fixed timer detectors. In both these examples, we found that having a
taxonomy helps identify the essential characteristics of their work, separate from the specific
problem that they were investigating, and suggest ways that the ideas can be generalized or used
for other problems.

Dividing the problem into smaller components made implementation easier. The usual software
engineering arguments for modularity applied to this problem: the individual start detection,
25

duration prediction, and skeptic objects are quite simple, often consisting of less than twenty lines
of non-boilerplate code. Being able to combine different policies at runtime meant we could
investigate a large policy space with a small implementation effort.

Using a taxonomic approach helped us to find better policies than we might otherwise have
found. Consider how different the ranking of idleness detection policies is among the three
sample idle tasks. If we had considered only, say, the adaptive timer detectors—which are best
for disk powerdown and delayed writeback—we would not have found any of the overall best
detectors for segment cleaning, which are all rate-based. Moreover, the absolute best idleness
detection policy combination for delayed writeback across all the workloads did not use the best
overall detector start detection policy, which indicates that it was necessary to look at all the start
detector/duration predictor combinations.

The taxonomy also generated some surprises. For example, we had previously believed that the
EventWindow detectors would work better with long windows, in order to remove the effects of
transient burst behavior. The measured results differed from our expectations, and on further
investigation we found that a long window did not allow the detector to react quickly enough
when the system stopped being idle.

5.2 The importance of adaptation
Many of the idleness detection and prediction policies we have investigated try to adapt to the
system they monitor. Such adaptation has two purposes: it reduces the sensitivity of an initial
design to later deployments, and it allows a running system to adapt to changing requirements.

To illustrate the importance of adaptation, we performed a simple analysis on our traces.
Consider a system where the “benefit” b of using an idle period of duration d is quantifiable as

, which is a simplification of the energy savings in Joules from the disk power-down
idle task. If a fixed timeout policy of length t is used to detect the start of an idle period, then the
overall benefit becomes . We performed an offline analysis to find the timeout
period that maximized this benefit, using traces from four systems: the three systems we used for
evaluating idle tasks in Section 4, plus a one-hour trace of a very busy transaction-processing
system. We considered both the timeout value that maximized the benefit over each entire trace
(the trace-optimal timeout), and the optimum values for each hour subset of the traces (the hourly-
optimal timeout).

Figure 17 shows that there is significant opportunity for adaptation: the hourly-optimal timeout
period varied widely over time—on the quiet hplajw-disk0 trace, the optimal timeout ranged from
50 ms to 1 s.

That such opportunity for adaptation matters in practice is shown in Figure 18, which shows how
the benefit derived from using an adaptive policy, a Fixed 1s policy, and the trace-optimal fixed
timeout policy compares to the hourly-optimal fixed timeout policy. The adaptive timer policy
was an AdaptTimerArithArith 0.1 s, which incremented or decremented the timeout duration 0.1 s
at a time.

These results support our argument that adaptivity is important for building a system that can be
used for many different workloads. The Fixed 1s timer almost always performed suboptimally,
and sometimes it was substantially worse than the hourly optimal (for two of the database traces).
The adaptive policy, on the other hand, performed much closer to optimal on those same traces.

b 1.2d 3–=

b 1.2 d t–() 3–=
26

Adaptivity is also useful in tracking short-term changes within a workload, and an hourly
granularity is too coarse. The adaptive policy almost always did as well or better than the hourly-
optimal fixed timeout policy, which in turn did better than the trace-optimal fixed timeout.

When we changed the benefit formula so that the break-even point was much longer than in our
previous formula, , the differences become more pronounced, as shown in
the lower graph in Figure 18. While the Fixed 1 s timer policy sometimes got equal or higher
benefit than the adaptive timer, the adaptive timer was more consistent. In two of the database
traces, the best benefit came from never using idle time. These bars are omitted from the graph.

Our conclusion is that adaptivity helps to make idleness detection resilient to differences in
workloads and to changing workloads, in many cases yielding results close to optimal.

5.3 Relations between internal and external measures
When building a system, one would like to find a good idleness detector without performing the
exhaustive evaluation we did for our three example idle tasks. Ideally, one could make a
prediction of which detectors will work well based on their internal measures when measured
against a similar workload.

In the following sections we will first define a number of internal measures, then look at how the
external measures for our example idle tasks were related to them. The results from our
investigation are mixed: we found correlation between internal and external measures for some
of our applications, but not for others.

5.3.1 Internal performance measures
Internal measures quantify how well a particular detector finds idle periods, and are independent
of a particular idle task.

Taking the internal measurements depends on an application-specified level of acceptable
idleness. The simplest definition was that the system should be considered idle whenever there
were no requests active. We used this definition because it is trivial to detect on-line. A more

hplajw-disk0

0
0 50 100 150

167

Time (hours)

0
0.00.0

0.5

1

O
pt

im
al

 ti
m

eo
ut

 (
se

co
nd

s)

hplajw-disk0

hourly
overall

cello-disk6

0
0 50 100 150

167

Time (hours)

0
00

1

2

2.25

O
pt

im
al

 ti
m

eo
ut

 (
se

co
nd

s)

cello-disk6

hourly
overall

Figure 17: optimal fixed timeout values for two traces.

b 1.2 d t–() 15–=
27

complex system might use low operation rates to define idleness, but such a definition often
requires off-line analysis to detect properly.

We start with several primitive measures:

• The predicted time is the total amount of time a detector declared to be idle.

• The actual time is the total time the best possible off-line detector could produce.

• The overflow time measures the amount of time that the detector declared as idle when the
system was not idle.

• The violations count the number of operations that overlapped the declared idle periods. The
violation rate is the number of violations per second of declared idle time.

From these basic measures we compute two derived measures:

• The efficiency of a detector: this is a measure of how good the detector is at finding idle
periods in the workload. It is defined as

-25.4

-20-20

-10

0

4.3

P
er

ce
nt

 d
iff

er
en

ce
 fr

om
 h

ou
rly

-o
pt

im
al

 b
en

ef
it

Fixed 1s
Trace-optimal
Adaptive

database snakehplajwcello

0

1

10 11 12 2 3 4 8

9

0 1 2 3 4 5 6 7 0 1 22 5 6

-110

-100-100

-50

0

P
er

ce
nt

 d
iff

er
en

ce
 fr

om
 h

ou
rly

-o
pt

im
al

 b
en

ef
it

Fixed 1s
Trace-optimal
Adaptive

database snakehplajwcello

0 1 10 11 12 2 3 4 8 9 0 1 2 3 4 5 6 7 0 1 22 5 6

Figure 18: percentage ratio of benefits from using various timer-based start detection policies to that of
the hourly-optimal fixed timer policy, for various workloads.

S
ho

rt
 b

re
ak

-e
ve

n
po

in
t

(b
y

w
or

kl
oa

d)
Lo

ng
 b

re
ak

-e
ve

n
po

in
t

(b
y

w
or

kl
oa

d)
28

efficiency = (predicted - overflow) / actual
That is, it is the fraction of actual idle time that was declared idle.

• A detector’s incompetence evaluates how much of the predicted idle time is not idle,
penalizing over-eager detectors. It is defined as

incompetence = overflow / actual
A good idleness detector will have a high efficiency and a low incompetence.

5.3.2 Relations
We investigated the relationship between internal and external measures by measuring the
efficiency and violation rate produced by each idleness detection policy, then determining
whether the results for that policy correlated with the external performance measures for the
three different idle tasks.Table 6 summarizes the results. We measured the relationships between
measures by looking for correlation at a 95% confidence level.

• Disk power-down: we found close correlations between the two external measures—power
savings and the number of delayed operations—and both efficiency and violation rate.
There was one exception: the PLL detectors simply did the wrong thing most of the time.
Efficiency is correlated with power savings because an efficient detector is finding most of
the opportunities to have the disk powered down. Violation rate is correlated with power
savings because the length of time spent powered down in any one idle period was
determined by the time until the next operation arrives, which is on average the inverse of
the violation rate.

Table 6: relations between internal and external performance measures.

External measure Efficiency Violation rate

Powerdown:

Energy yes yes, except for
PLL detectors

Operation delay yes, except for
PLL detectors yes

Delayed writeback:

Mean queue length yes no

Latency improvement
yes

(only busy
workloads)

no

Distance metric
yes

(only busy
workloads)

no

LFS segment cleaning:

Mean unprocessed data yes no

Operation delay yes no

Distance metric
yes, except for

some Fixed
timers

no
29

• Delayed writeback: the violation rate does not appear to be related to any of the external
measures we took. Delayed writeback is relatively insensitive to occasional overlapped
foreground and background operations. We could not establish correlations with efficiency
for the traces from quiet disks, because nearly all idleness detection policies yielded
efficiency greater than 90%. For the busy cello-disk6 workload, however, efficiency clearly
correlated with all three external measures. This is because an efficient idleness detection
policy will find more time to flush the delay queue than an inefficient detection policy.

• Eager LFS segment cleaning: once again, the violation rate was not related to the external
measures because it was rare for a cleaning cycle to run long enough be interrupted by new
work arriving—for most idleness detection policies, less than 5% of cleaning cycles for the
busy cello-disk6 workload, and much lower for quiet disks. Efficiency, on the other hand,
was correlated with all three external measures, with the exception noted in Section 4.4 of a
group of fixed Timer detectors that did especially poorly.

These results suggest that internal measures are correlated with external one only when there is
little idle time available or when the penalty of getting a poor prediction is high. Our conclusion
is that internal measures may be helpful in finding a good detector for heavily-loaded or
pathological situations, but that most of the time the problems are undemanding, the results are
uniformly good and hence there is little guidance to be had from the internal measures.

5.4 Sensitivity of internal measures to policy parameters
Most families of idle detection mechanisms in our taxonomy can be tuned to provide different
behaviors. We investigated two example policies—one start detector and one duration
predictor—to determine how sensitive their internal performance measures are to their tuning
parameters. We found that they were generally well behaved: while there usually is an optimum
parameter setting, the results from nearby settings were not much worse. We also found that the
results, when they matter, are similar between busy and quiet workloads.

5.4.1 Start detection policy parameters
We investigated tuning the EventWindow+IO rate threshold detector because its external
performance varied depending on its parameter settings. For example, at low rate thresholds the
detector yielded good power savings for disk powerdown, but high rate thresholds did poorly.

The detector is parameterized by rate threshold and window size. The rate threshold governs
how quiet the system must be before being declared idle. We expected a low threshold to give low
efficiency, because it would take some time for the mean IO rate to drop below the threshold, and
the waiting period could have been used profitably. A low threshold should, however, give a low
violation rate. The window size governs responsiveness: a small window means the detector
reacts quickly to changes, but it may prematurely declare idleness. A large window may cause the
detector react too slowly to start of idleness and to the start of a burst of requests.

To measure the effects of tuning a detector, we set up an experiment to take internal measures
with a no-op idle task and a Fixed 10 s duration predictor. The actuator was parameterized to
follow the predictions exactly: when it received a prediction, the idle task ran for 10 s, whether
new work arrived or not. We took measurements from a quiet disk (hplajw-disk0) and a busy one
(cello-disk6).

On the quiet disk, the violation rate was relatively insensitive to the window size. Bursts of
requests were small and infrequent, so there was plenty of time for the average rate to drop below
30

any threshold we tried. As one might expect, the measured violation rate was closely related to
the threshold rate parameter setting.

On a busy disk behavior was more complex, as shown in Figure 19. Medium-size windows (25–
250 requests) gave low violation rate results at high rate threshold settings. This is probably
because these window lengths balanced between responsiveness at the start of a burst—
optimized by a short window—and conservatism in declaring idleness. For rate thresholds below
about 0.1 IO per second, the smaller windows performed better. It took a long time for the average
rate to fall below the threshold, no matter what the window length, so the system was already
conservative; using a small window improved the responsiveness when a new burst started.

For a given window size, the lowest violation rate came with a threshold related to window size,
as shown in Table 7.

Other internal measures, such as efficiency, confirmed our expectations. Lower rate thresholds
yielded lower efficiency, since the detector was more conservative about declaring time idle. On

Table 7: the threshold rate that produced the lowest violation
rate for various window sizes on the cello-disk6 workload.

window size
(requests) 2 5 10 25 50 100 250 500 1000

best rate threshold
(IO/s) 0.1 0.1 0.5 0.5 1.0 1.0 5.0 5.0 10.0

450

400

350

300

250

200

150

100

50

0

V
io

la
tio

n
 ra

te

Violation rate
Window size

Threshold rate

0
50

100
150
200
250
300
350
400
450

2
5

10
25
50

100
250
5001000

0.01
0.05

0.1

0.5

1

5

10

Figure 19: violation rate for EventWindow detector on trace cello-disk6, varying window
size and threshold rate.
31

busy disks, efficiency decreased with larger windows, since the detector was slower to respond
to the end of a burst.

5.4.2 Duration predictor policy parameters
The second tuning experiment investigated how sensitive internal measures were to changes in
the duration increment parameter of the BackoffArithGeom predictor. This predictor works by
maintaining a current estimate of the next duration. When an actual duration is longer than the
prediction, the predictor increases the next prediction arithmetically by adding the increment
value. When the actual duration is shorter than the prediction, the predictor cuts the next
prediction in half. The intent was that this predictor would be conservative: it would slowly
increase its predictions but quickly decrease them to avoid interference with other work.

In the experiment, we investigated increment values ranging from 0.5 ms to 80 s, and measured
the efficiency, violation rate, and incompetence observed by strictly following the predictions. We
used the AdaptTimerArithArith 0.1 s start detector since it performed well for some external
measures (power savings for disk powerdown, mean unprocessed data for segment cleaning) and
generally gave high efficiency. This detector adjusts its timeout value fairly slowly, so the start
detector and duration predictor should not interfere too much with each other’s adaptations.

Figure 20 shows the relationship between the duration increment value and efficiency a typical
disk. The best efficiency generally came with small increments, at or below 2 or 3 seconds. The
efficiency was very good up to a threshold point, then dropped significantly. Any value in the
range of 0.05 to 1 second appears to produce about equal efficiency. With larger increments, we
believe the duration predictor was too quick to increase the prediction, and that the system
entered a cycle of expanding the prediction in one period then contracting it drastically in the
next.

The violation rate measure showed similar trends. The violation rate remained low for small
duration increments, then became much worse at increments larger than 1 or 2 seconds.

0.0005
0.001 0.01 0.1 1 10

80

Duration increment (s)

0.885

0.900.90

0.92

0.94

0.96

0.98
0.9832

E
ffi

ci
en

cy

0.0005
0.001 0.01 0.1 1 10

80

Duration increment (s)

3.403

500500

1000

1500

1925

V
io

la
tio

n
ra

te

Figure 20: efficiency and violation rate versus BackoffArithGeom duration predictor increment on
cell0-disk6.
32

There are two behaviors of the adaptive Backoff duration predictors that explain these measures.
First, if the increment is too large the predictions oscillate as the predictor increases too much,
then backs off to a more reasonable amount—then increases again when the prediction is just
shorter than it should be. Second, a large increment leads to long predictions, which in turn cause
the prediction to be adjusted less often, leading to poorer-quality predictions.

5.5 Using skeptics
Skeptics filter the stream of idle predictions, hopefully to improve them. To examine whether this
was a useful idea or not, we implemented two skeptics that attempted to reduce the violation rate
produced by a detector, and obtained the resulting internal measures. While most detectors work
to make good predictions in the short term, these skeptics attempted to apply longer-term
information.

The skeptics were:

• SkepticTOD (or time-of-day skeptic) only allowed predictions for the least-busy hours of the
day. This is an environmental skeptic in our taxonomy. It maintained an hour-by-hour
moving average of the number of operations requested, and filtered out predictions during
the nth busiest hours. We experimented with two versions: one that only filtered out the two
busiest hours (actually the 90th percentile; labelled TODSensitive below) and one that
filtered out the seven busiest hours (70th percentile; TOD below).

• SkepticRate maintained a moving-average estimate of the recent violation rate of the
incoming prediction stream, and only passed predictions when the rate estimate was below
some threshold. We used a threshold of 0.7 violations/second.

We expected that applying a skeptic would reduce both efficiency and violation rate because the
skeptic was filtering out some idle periods. To measure this effect, we repeated the experiment of
Section 5.4.2 for tuning predictor parameters, with skeptics inserted into the detector network.
We measured the resulting efficiency and violation rate.

The skeptics were occasionally able to improve the violation rate. The TOD skeptics had little
effect, as seen in Figure 21, though they never increased the rate. The rate skeptic, on the other
hand, improved the violation rate on the cello-disk6 workload significantly for those detectors
that showed high rates. For the hplajw-disk0 workload, it sometimes made the violation rate
worse, presumably because it filtered out predictions that would have resulted in few violations.

The effects on efficiency were clearer (Figure 22). The TOD skeptics reduced efficiency by 10–20%
for all the workloads. The rate skeptic, on the other hand, reduced efficiency by about 70% for
hplajw-disk0 and by more than 90% for cello-disk6.

Our conclusion is that skeptics remain an unproven idea. The ones we investigated can help
somewhat on a busy system, but on a lightly-loaded system they do not.

6 Conclusions
The high degree of burstiness observed in many real computer systems gives many opportunities
for doing useful work at low apparent cost during idle periods. Many people have observed this,
and applied this idea to specialized domains.

The contribution of this work is to put the previous approaches into a common framework. This
framework should be helpful to those looking to exploit low-utilization periods in computer
33

systems, regardless of the precise details of the problem, since the framework itself is independent
of the particular domain.

Developing the taxonomy was helpful to us in two ways: it improved our understanding of the
problem, and it helped us systematize the generation of a large number of potentially interesting
detection and prediction algorithms. Without it, we would have had a much harder time
exploring the design space.

We had three goals in evaluating the detection mechanisms: to see if they could be applied to
realistic tasks and workloads; to find ways to predict which algorithms were appropriate to
various tasks by looking for correlations between task performance and task-independent
internal measures; and to investigate the sensitivity of some algorithms to their parameters.

0.0005
0.001 0.01 0.1 1 10

80

Duration increment (s)

6.026

5050

100

150

181.9

V
io

la
tio

n
ra

te

hplajw-disk0

None
TOD Sensitive
TOD
Rate

0.0005
0.001 0.01 0.1 1 10

80

Duration increment (s)

3.389

500500

1000

1500

1925

V
io

la
tio

n
ra

te

cello-disk6

None
TOD Sensitive
TOD
Rate

Figure 21: violation rate versus BackoffArithGeom duration predictor increment with skeptics applied.

0.0005
0.001 0.01 0.1 1 10

80

Duration increment (s)

0.2165

0.30.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
1.004

E
ffi

ci
en

cy

hplajw-disk0

None
TOD Sensitive
TOD
Rate

0.0005
0.001 0.01 0.1 1 10

80

Duration increment (s)

0.005636

0.20.2

0.4

0.6

0.8

0.9832

E
ffi

ci
en

cy

cello-disk6

None
TOD Sensitive
TOD
Rate

Figure 22: efficiency versus BackoffArithGeom duration predictor increment
with skeptics applied.
34

We were gratified to learn that simple predictors work remarkably well at our idle tasks. This is
good news: it means that these techniques can be applied successfully in the real world with only
moderate effort. Rate-based detectors, in particular, work well for idle tasks that can be
overlapped with while regular work.

Some detectors and predictors were quite sensitive to their parameters. The quickness with which
an EventWindow detector reacted, for example, depended both on the threshold rate and window
size.

The self-adapting nature of some of the idleness detectors proved useful, and the adaptive
algorithms were often among the best. For some algorithms, the best parameterization values
depended on the workload—which could change over time. Rather than have users manually
estimate the best value, adaptive mechanisms can automatically adjust to the workload.

The external measures specific to the idle tasks were sometimes related to basic internal measures.
For most of the tasks we started with suspicions about how the idle detectors should behave to
produce a good result; for example, we were pretty sure that efficiency was important for saving
power in the disk spindown task. For the segment cleaning task, on the other hand, while we
expected that a low violation rate was important, we did not have intuition about the tradeoff
between finding short idle periods often versus long periods more rarely. We discussed the actual
relations in Section 5.3.

The implementation of idleness detectors proved straightforward, though we learned a few
lessons along the way. We learned that we needed to be sure that adaptive algorithms were able
to update their state often to react quickly to changes. We discovered that the notion of continuing
a prediction (Section 3.1.3) was useful.

If the foreground work is similar to the storage system traces we used, we can make some general
recommendations for picking the best detectors for a task:

• if the idle task completely blocks regular work, or if the cost of interrupting the task is high,
then a low violation rate is important. Various kinds of Timer and AdaptTimer detectors
work well for this, though the adaptive versions may be more resilient to a wide range of
workloads.

• if regular work can continue while the idle task is executing, albeit with some interference,
then rate-based detectors, such as the EventWindow and MovingAverage policies, are often
a good choice.

• if the granularity of the idle task is large, or the cost of using an inaccurate prediction is high,
then prediction duration is important. The adaptive BackoffArithArith and
BackoffArithGeom predictors, using a duration increment parameter in the range 0.1 to 1.0 s,
often work well.

• the selection of the absolute best tuning parameters isn’t usually important, because
performance often appears to be stable within a range of parameter values.

6.1 Future directions
We limited our investigation to simple policies, so there are many additions that could be made
to this work. Idleness detection is closely related to the general problem of predicting future
events, given a series of recent past events. More sophisticated time series analytic approaches
could be used for this purpose. There are machine learning techniques that could potentially do
even better. We also have wondered about, but did not investigate, the effect of having policies
35

use application-specific feedback, such as how much housekeeping got done during one
predicted period.

Our investigation of skeptics was at best cursory, and could easily be extended.

Acknowledgments
George Neville-Neil suggested predictors based on the first derivative of arrival rate, and read
several early drafts of this work. Fred Douglis’s interest in disk power conservation spurred much
of our early thinking. Darrell Long and David Helmbold, at U. C. Santa Cruz, suggested the
possibility of using machine learning techniques. The feedback from reviewers and readers of our
earlier paper on this subject helped to clarify our thinking and analysis. The other members of the
Storage Systems Program at Hewlett-Packard Labs have provided support, encouragement, and
comments all during this project.

References
[Baker92b] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer. Non-

volatile memory for fast, reliable file systems. Proceedings of 5th International Conference on
Architectural Support for Programming Languages and Operating Systems (Boston, MA, 12–15
October 1992). Published as Computer Architecture News, 20(special issue):10–22, October 1992.

[Bosch94] Peter Bosch. A cache odyssey. M.Sc. thesis, published as Technical Report SPA–94–10.
Faculty of Computer Science/SPA, Universiteit Twente, Netherlands, 23 June 1994.

[Box94] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time series analysis:
forecasting and control, third edition. Prentice-Hall, Englewood Cliffs, NJ, 1994.

[Bubenik89] Rick Bubenik and Willy Zwaenepoel. Performance of optimistic make. Proceedings of
1989 ACM SIGMETRICS and Performance ’89 International Conference on Measurement and
Modeling of Computer Systems (Berkeley, CA). Published as Performance Evaluation Review,
17(1):39–48, May 1989.

[Cáceres93] Ramón Cáceres, Fred Douglis, Kai Li, and Brian Marsh. Operating system implications
of solid-state mobile computers. Technical report MITL–TR–56–93. Matsushita Information
Technology Laboratory, Princeton, NJ, May 1993.

[Carson92a] Scott Carson and Sanjeev Setia. Optimal write batch size in log-structured file
systems. USENIX Workshop on File Systems (Ann Arbor, MI), pages 79–91, 21–22 May 1992.

[CesaBianchi94] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, and M. Warmuth. On-line prediction
and conversion strategies. Technical report UCSC–CRL–94–28. Computer and Information
Sciences Board, University of California at Santa Cruz, August 1994.

[Chen96b] Peter M. Chen. Optimizing delay in delayed-write file systems. Technical report CSE–TR–
293–96. University Michigan, May 1996.

[Comer91] Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP: design,
implementation, and internals, volume II. Prentice-Hall, 1991.

[Cruz92] Rene L. Cruz. Service burstiness and dynamic burstiness measures: a framework.
Journal of High Speed Networks, 2:105–27. IOS press, Amsterdam, 1992.

[Douglis95] Fred Douglis, P. Krishnan, and Brian Bershad. Adaptive disk spin-down policies for
mobile computers. Proceedings of Second Usenix Symposium on Mobile and Location-Independent
Computing (Ann Arbor, MI). Usenix Association, 10–11 April 1995.
36

[Ganger94b] Gregory R. Ganger and Yale N. Patt. Metadata update performance in file systems.
Proceedings of 1st OSDI. (Monterey, CA), pages 49–60. Usenix Association, 14–17 November
1994.

[Golding95] Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and John Wilkes. Idleness
is not sloth. Proceedings of Winter USENIX 1995 Technical Conference (New Orleans, LA), pages
201–12. Usenix Association, Berkeley, CA, 16–20 January 1995.

[Greenawalt94] Paul M. Greenawalt. Modeling power management for hard disks. 2nd
International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems (MASCOTS ’94) (Durham, NC), pages 62–6. IEEE Computer Society Press, Los
Alamitos, CA, 31 January–2 February 1994.

[Gribble96] Steven D. Gribble, Gurmeet Singh Manku, and Eric A. Brewer. Self-similarity in file
systems: measurement and applications, 1996. Available at
http://www.cs.berkeley.edu/ gribble/cs262/project/project.html.

[Helmbold96] David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod. A dynamic disk spin-
down technique for mobile computing. Proceedings of 2nd Annual International Conference on
Mobile Computing and Networking (MOBICOM) (Rye, NY), 10–12 November 1996.

[HPKittyhawk92] Hewlett-Packard Company, Boise, Idaho. HP Kittyhawk Personal Storage
Module: product brief, Part number 5091–4760E, 1992.

[Jacobson91] David M. Jacobson and John Wilkes. Disk scheduling algorithms based on rotational
position. Technical report HPL–CSP–91–7. Hewlett-Packard Laboratories, 24 February 1991,
revised 1 March 1991.

[Karn91] Phil Karn and Craig Partridge. Improving round-trip time estimates in reliable transport
protocols. ACM Transactions on Computer Systems, 9(4):364–73, November 1991.

[Lindsey81] William C. Lindsey and Chak Ming Chie. A survey of digital phase-locked loops. In
William C. Lindsey, editor, Phase Locked Loops, pages 296–317. Institute of Electrical and
Electronics Engineers, April 1981.

[Marsh93] Brian Marsh, Fred Douglis, and P. Krishnan. Flash memory file caching for mobile
computers. Technical report MITL–TR–59–93. Matsushita Information Technology Laboratory,
Princeton, NJ, 18 June 1993.

[Massalin89a] Henry Massalin and Calton Pu. Fine-grain scheduling. Proceedings of Workshop on
Experience in Building Distributed and Multiprocessor Systems (Ft. Lauderdale, FL), pages 91–104.
USENIX Association, October 1989.

[Postel80a] J. Postel. Transmission Control Protocol, Technical report RFC–761. USC Information
Sciences Institute, January 1980.

[Rodeheffer91] Thomas L. Rodeheffer and Michael D. Schroeder. Automatic reconfiguration in
Autonet. Proceedings of 13th ACM Symposium on Operating Systems Principles (Asilomar, Pacific
Grove, CA). Published as Operating Systems Review, 25(5):183–97, 13–16 October 1991.

[Rosenblum92] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a
log-structured file system. ACM Transactions on Computer Systems, 10(1):26–52, February 1992.

[Ruemmler93] Chris Ruemmler and John Wilkes. UNIX disk access patterns. Proceedings of Winter
1993 USENIX (San Diego, CA), pages 405–20, 25–29 January 1993.

[Ruemmler94] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE
Computer, 27(3):17–28, March 1994.
37

[Seltzer90b] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revisited.
Proceedings of Winter 1990 USENIX Conference (Washington, D.C.), pages 313–23, 22–26
January 1990.

[Seltzer93] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin. An
implementation of a log-structured file system for UNIX. Proceedings of Winter 1993 USENIX
(San Diego, CA, 25–29 January 1993), pages 307–26, January 1993.

[Wilkes92b] John Wilkes. Predictive power conservation. Technical report HPL–CSP–92–5.
Concurrent Systems Project, Hewlett-Packard Laboratories, 14 February 1992.

[Wilkes95] John Wilkes. The Pantheon storage-system simulator. Technical Report HPL–SSP–95–14.
Storage Systems Program, Hewlett-Packard Laboratories, Palo Alto, CA, 29 December 1995.
38

	Idleness is not sloth
	Richard�Golding, Peter�Bosch, and John�Wilkes

	idleness, storage systems, detecting idle periods,...
	1 Introduction
	Figure�1 : the idle-time processing framework.
	1.1 The nature of idle time
	Figure�2 : cumulative distribution of idle time as...
	Figure�3 : autocorrelation at different lags of th...

	2 An overview of idle-time processing
	2.1 Detecting idle periods
	Figure�4 : the output from a sample idle detector ...

	2.2 Executing idle tasks
	Figure�5 : the typical sequence of events in idle-...

	2.3 Costs and benefits of using idle time
	2.4 Characterizing idle tasks
	2.5 Idle task examples
	2.5.1 Disk power-down
	Table 1 : characteristics of disk power-down; numb...

	2.5.2 Delayed writeback
	Table 2 : characteristics of delayed writeback

	2.5.3 Eager LFS segment cleaning
	Table 3 : characteristics of LFS segment cleaning

	3 An idleness detection architecture
	Figure�6 : construction of a simple idleness detec...
	3.1 Predictors
	Figure�7 : components of the predictor component. ...
	3.1.1 Start time detector policy
	Table 4 : start time detector policies implemented...

	3.1.2 Duration prediction policy
	Table 5 : duration predictor policies implemented....

	3.1.3 Interface between start time and duration pr...
	1. Notifications of the beginning and ending of ac...
	2. Requests from the start detector for a duration...
	3. Requests for a duration prediction in the middl...

	3.1.4 Offline predictors

	3.2 Skeptics
	3.3 Actuator

	4 Experimental results
	4.1 Methodology
	Figure�8 : standard Pantheon host-disk system fram...
	4.1.1 Measures used for evaluation

	4.2 Disk power-down
	Figure�9 : disk powerdown: power savings versus nu...
	Figure�10 : disk powerdown: overall consistency of...

	4.3 Delayed writeback
	Figure�11 : delayed writeback: relation between op...
	Figure�12 : delayed writeback: comparative perform...
	Figure�13 : delayed writeback: comparative perform...

	4.4 Eager LFS segment cleaning
	Figure�14 : relationship between operation delay a...
	Figure�15 : stability of the various start detecto...
	Figure�16 : stability of the various duration pred...

	4.5 Summary

	5 Analysis
	5.1 Effectiveness of the taxonomy
	5.2 The importance of adaptation
	Figure�17 : optimal fixed timeout values for two t...
	Figure�18 : percentage ratio of benefits from usin...

	5.3 Relations between internal and external measur...
	5.3.1 Internal performance measures

	efficiency = (predicted - overflow) / actual
	incompetence = overflow / actual
	5.3.2 Relations
	Table 6 : relations between internal and external ...

	5.4 Sensitivity of internal measures to policy par...
	5.4.1 Start detection policy parameters
	Figure�19 : violation rate for EventWindow detecto...
	Table 7 : the threshold rate that produced the low...

	5.4.2 Duration predictor policy parameters
	Figure�20 : efficiency and violation rate versus B...

	5.5 Using skeptics
	Figure�21 : violation rate versus BackoffArithGeom...
	Figure�22 : efficiency versus BackoffArithGeom dur...

	6 Conclusions
	6.1 Future directions
	Acknowledgments
	References

