
1 Introduction: Custom-Fit Processors

Many people had the same reaction upon �rst becoming aware of VLSI microprocessors: can
we somehow design these chips by merely writing a program that describes what they are
to do? This is the \silicon compiling\ problem in its full glory. Despite amazing progress
in areas such as compiling control circuits using a \sea of gates" approach, and despite
tremendous progress in the automation of many of the steps of design and production, we
are very far from taking a functional description of a microprocessor and automatically
producing a silicon layout.

Although silicon compiling is well beyond us, in this paper we consider an even more am-
bitious problem: rather than generating a microprocessor automatically from a high-level
description, we would like to generate it from the applications it will run. In particular, given
an embedded processor running on an \appliance" product, we call the general-purpose pro-
cessor which is designed to scream on the embedded application a \Custom-Fit Processor".
The process we use to derive this processor design falls into the general class of technologies
referred to as Hardware/Software Codesign [Mic94, KL93, LWPV95, NGCM91].

Generating Custom-Fit Processors automatically is a superset of generating general-purpose
processors, and is thus strictly harder still. When faced with such an overwhelmingly im-
possible task, there are two approaches generally taken:

� One can build a very small thing (e.g. synthesizing a 4-bit adder) and hope to learn
while approaching reality from below.

� One can build a \toy", �lled with unreality, and then try to make it successively more
realistic, approaching reality from above.

Here we suggest a third approach, and our research program is dedicated to carrying this
out:

� One can restrict the problem one is attacking, but then, within that restricted frame-
work, do something that is completely realistic and is an end-to-end solution. From
that base, move towards a less-restricted solution. In a sense, this starts out being
realistic, but approaches greater generality \from the side".

The restriction we impose is the following: We design a VLIW [Fis83] architecture in which
virtually all characteristics can be changed: memory sizes and hierarchy, register sizes and
ports, the \cluster" structure of the architecture, the kinds of functional units and their
repertoires, the latencies of the functional units, and the connection and communication
topologies of all of these. At the same time, the code transformations that are done as part
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of the hardware/software codesign process are applied. This adds to that mix the limitations
of what the compiler is capable of. Any codesign system will have this latter restriction,
almost always much more than we do. Unfortunately, this is almost never acknowledged in
research results.

Within this framework our methodology is easy to describe, and similar to what has been
described elsewhere (for example, in [HD92, FW89, HD91, ABC94, DGF90, MPSitV89,
CDN92, CMS93, CMS95]). For example De Gloria and Faraboschi [DGF90] carry out almost
exactly this framework, but using tools which are much less mature.

This framework is particularly interesting right now, because it is now practical to put
enough millions of transistors on an inexpensive die to make a very powerful and general
VLIW { witness the media processors now appearing from several vendors [Eps95a, Sla95,
Cas95, Eps95b].

1.1 This Investigation

We believe the work described below is unique in the following sense:

� We are doing it with a productized, ambitious compiler that exposes and schedules a lot
of ILP. Previous studies have been done in environments in which very small percentage
di�erences have been available; at best they have found small factor speedups. Instead,
we �nd very large factor speedups, even between relatively similar cost, reasonable-
seeming architectures.

The experiments done here are a characterization of the e�ectiveness of tailoring ILP hard-
ware to given applications. We are attempting to shed light on the following broad questions:

� What is the performance of custom hardware at a given cost, when compared to more
general hardware at that same cost?

� How does the hardware you would build di�er for di�erent sections of code in similar
application areas? How does it di�er from hardware built for several routines at the
same time?

� How e�ective are search methods aimed at �nding the appropriate architecture?

2 Experimental Methodology and Infrastructure

2.1 The C Compiler

Our main tool in this investigation is the Hewlett-Packard Laboratories Cambridge C Com-
piler. It is a direct descendant of the Multi
ow compiler, which has been reported upon in
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detail elsewhere, particularly in [LFK+93]. For our purposes, it has the following qualities:

� It is a productized, real-world, highly-optimizing compiler.

� It generates ILP code as aggressively as any compiler we have ever heard of; we think
more than any other compiler ever built.

� It generates code from table-driven architectural descriptions in the following sense: if
you have a description of an architecture for which you are generating good code, you
can change most of the \normal" architectural parameters to produce a new model,
and continue to generate good code.

We thus are able to use it to explore a design space of architectures to �t a processor to a
given application.

2.2 Searching For A VLIW Architecture

Our basic experimental method involves the following loop:

� Using some search method, search for a new candidate architecture

� Measure the cost of the architecture

� Build a version of our compiler that generates good code for that architecture

� Generate the code

� Measure the goodness of the code

� Repeat until satis�ed

In the past, many researchers have implemented similar loops. They have typically concen-
trated upon search techniques, or upon the selection of special-purpose functional units to
match the functionality needed in a loop. Our philosophy here is di�erent. Following the
RISC/VLIW religion, we want to build simple hardware that does the basic, simple opera-
tions, but uses lots of ILP to get a speedup. So we try to match the structures and sizes of
the architecture to the application, rather than speci�c opcodes.

Similarly, it is likely that search techniques to prune the space of architectures under con-
sideration would be very successful. Here, instead, we searched exhaustively through a huge
space: despite being real-world tools, our tools are fast enough and computers are now su�-
ciently fast enough to make this practical. We are con�dent that any good search technique
could cut down signi�cantly on our processing time (see Table 3) without greatly a�ecting
the results reported upon here.
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2.3 Benchmarks

We were interested in measuring how di�erent an application-speci�c microprocessor would
be when tailored for di�erent tasks within a single application domain. These seem like
relevant questions: right now people build chips to do speci�cally one subtask of an appli-
cation, when a general-purpose processor is not su�cient (e.g. for MPEG video compres-
sion/decompression); additionally, we now have media processors, which are specialized for
an application area, but not a single subtask. This makes intuitive sense, as the subtasks
in a single application area often seem to have similar compute structures, as is the case in
media processing.

Benchmark Description

A FIR symmetrical �lter implemented using a 7x7 convolution

kernel.

C Inverse DCT transform with dequantization of the DCT co-

e�cients. The algorithm used is the Arai, Agui and Nakjima

algorithm for scaled FDCT/IDCT, with some improvements,

as described in [AAN88, Wal91].

D,E Color conversion from the RGB to the YCbCr color space

(and vice versa, as described in the JPEG standard)

F Halftoning via standard Floyd-Steinberg error di�usion (no

stochastic weights update). The benchmark produces triplets

containing 1 bit halftoned pixels.

G 1D bilinear scaling by integral factors along columns.

H 3x3 median �lter using the standard algorithms, not using a

\smart" version of the median.

Table 1: The individual benchmarks.

We picked color output routines, which are quite easily available in the public domain, and
are quite similar to those used in many media-processing applications. These routines often
contain a large quantity of potential ILP. All the benchmarks except C have as input a row
of a full color RGB image. We have converted all 
oating point to �xed, as is common in this
kind of processing. Proper source code transformations have been applied to all benchmarks
to expose ILP (loop transformations, if-conversion, etc.). These same transformations speed
the code up on virtually all superscalar and VLIW architectures and implementations. Table
1 describes the benchmarks we used.

We wanted to know how architectures which were optimized for those individual routines
would compare with architectures optimized for collections of the routines. Thus we also
ran combinations of the above, jammed into single loops, avoiding the intermediate memory
store/load otherwise needed. Table 2 shows a description of the \jammed" benchmarks.

4



Benchmark Description

GF 1D bilinear scaling followed by Floyd-Steinberg halftoning.

GEF 1D bilinear scaling followed by E, a YUV!RGB color space

conversion, followed by Floyd-Steinberg halftoning.

DH RGB!YUV color space conversion followed by a 3x3 median

�lter.

DHEF RGB!YUV color space conversion followed by a 3x3 median

�lter, followed by E, a YUV!RGB color space conversion,

followed by Floyd-Steinberg halftoning.

Table 2: The jammed benchmarks.

For example, �gure 1 shows the D (Floyd-Steinberg error di�usion) benchmark in C, imple-
mented in the standard form found in image processing literature.

2.4 Running the Experiment

The experiment was set up in such a way that we were rebuilding a compiler for each
architecture and then running the compilation for all benchmarks and for di�erent unrolling
factors. When the compiler started spilling register contents for a given unrolling, we stopped
considering that unrolling factor and all larger ones.

The performance of clustered architectures (see Section 3.1) was not computed for all pos-
sible combinations, to avoid an exponential explosion of runtime and data. To account for
clustering, we computed a \correction value" as a function of the number of clusters, by
running a set of separate experiments for a few signi�cant architecture data points in the
de�ned space. In our experience, this approximation is enough to account for the e�ects of
clustering.

For this experiment, we ran 5730 compilations of the benchmarks, on 191 architectures
(plus their associated clustering values). The time to re-compile a customized compiler was
relatively short (about 50 seconds), since only the machine model needed to be re-linked into
the executable.

The time to run a single compilation benchmark varied signi�cantly between a couple of
seconds and a few minutes. On average, it took on the order of 28 seconds per benchmark,
adding up to about 48 hours of running time for the whole experiment. The platform used
for the experiment was a 9000/770 HP workstation, 100MHz clock, 256MB main memory.

Table 3 shows the basic data concerning the computation time of the experiment.
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FSDline ( ubyte * linein,
ubyte * lineout,
int plane_size )

{
int i, color;
int16 *ep, Err[3], errTemp[3];
int16 errTempOff[3], oldErr[3];
ubyte *dp, *op, out[3], bitmask;

dp = linein;
ep = errBuf + 3;
op = lineout;
Err[0] = Err[1] = Err[2] = 0;

errTemp[0] = ep[-3 + 0];
errTemp[1] = ep[-3 + 1];
errTemp[2] = ep[-3 + 2];
bitmask = 0x80;

for (i = 0; i < plane_size; i++) {
for (color = 0; color < 3; color++) {
errTempOff[color] = errTemp[color];
errTemp[color] = ep[color];
oldErr[color] = Err[color];
Err[color] = (errTemp[color] + ((Err[color]*7+8)>>4)+

((int) dp[color] << ((2*8)-13)));
out[color] = ((Err[color] > (128 << ((2*8)-13)))

? out[color] | bitmask : out[color]);
Err[color] = ((Err[color] > (128 << ((2*8)-13)))

? Err[color] - (255 << ((2*8)-13)) : Err[color]);
errTempOff[color] += ((Err[color]*3+8)>>4);
errTemp[color] = ((Err[color] * 5 + oldErr[color]+8)>>4);
ep[-3 + color] = errTempOff[color];
op[color] = out[color];

}
dp += 3, ep += 3;
if (bitmask == 0) {
op = op + 3;
out[0] = out[1] = out[2] = 0;
bitmask = 0x80;

}
else
bitmask = bitmask >> 1;

}
}

Figure 1: The Floyd-Steinberg algorithm.

3 Architecture Cost and Performance

Computing the cost and performance of an architecture from a set of high-level parameters
(such as number of ALUs, multipliers, registers, ports, etc.) is a nontrivial task. Several
implementation choices exist and the tradeo� between choices varies widely depending upon
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# runs 5730

# architectures 191

runtime per architecture 897s (15 m)

compiler time per benchmark 28s

compiler compile time per arch. 50s

total time 171449s (48 h)

Table 3: Experiment computation time.

available VLSI technology, target application, area and power requirements, design method-
ology and so on.

In this paper we have simpli�ed the problem and only consider the cost of building the CPU
datapath. Other factors, such as pinout requirements and cost of the memory system, are
not considered in the cost equations. Considering these factors would a�ect the numbers we
report, but probably would not materially a�ect our conclusions.

We estimate the cost of the datapath in terms of silicon real estate relative to a baseline
con�guration. The �gures that we use are derived from an analysis of existing designs in
current VLSI technology. They are certainly not close to exact �gures, but we believe are
representative enough to support the conclusions of this paper.

3.1 Clusters and Architectural Parameters

Our architecture template (Figure 2) is a multi-cluster machine, composed of (nearly) identi-
cal clusters containing functional units and local register banks. The communication between
clusters happens across a set of global connections, and is explicitly scheduled by the com-
piler. The Multi
ow Trace [CNO+87] follows exactly this structure. The reason for clusters,
which are not independent, but rather share a single long instruction, is to avoid register
banks with too many ports. Thus instead of a single register bank supporting, say, 8 ALUs,
we might split it into 4 register banks, each supporting two ALUs. In order to use an ALU,
the operands it requires must be in the associated register bank, or must be moved there
with an explicit move in a prior instruction. The fact that the di�erent clusters are (nearly)
identical makes the chip easier to fabricate as well. The cluster di�er in that the single
branch unit resides on cluster #0 and is not duplicated in the others.

In addition to that, we consider a multi-level memory system composed of a Level 1 Memory
and a Level 2 Memory. Level 1 Memory is used to model the global memory of the system,
and has a �xed throuput for all the experiments. Level 2 Memory varies in terms of number
of parallel accesses and latency.

Table 4 explains the parameters we take into account. Some of the settings we used were
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completely determined by our choice of the initial parameters. These include register �le
ports, communication paths and cycle speed. Table 5 shows a description of these derived
parameters.

Level 2 Memory

...Reg.File

...

IALU IALU IALU...

Cluster

Reg.File

...

IALU IALU IALU...

Cluster

Full Interconnect...

Level 1 Memory

Figure 2: The architecture template

3.2 The \Baseline" System

We used as our baseline system one with 1 ALU, which could do IMUL, 1 reference to Level
1 Memory and 1 to Level 2 Memory (8 cycle latency), and 64 registers, all in 1 cluster. Our
costs and performance models, explained in the following sections, are scaled to make this
system cost 1 unit.

Note that this system is capable of a great deal of ILP, due to its multiple issue capability,
and its pipelining.

3.3 Computing Architecture Cost

The cost function for an architecture is computed as follows:

COST = c �Xdp(p) � (Yreg(r; p) + Yalu(a) + Ymul(m))

{ c is the number of clusters

{ a is the number of ALUs per cluster

{ m is the number of ALUs per cluster able to do integer MULs

{ r is the number of registers per cluster

{ l is the number of memory accesses per cluster
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Parameter Description

Clusters Ranges between 1 and 16.

IALUs Ranges between 1 and 16. All operations have latency of 1 cycle, except

multiplications (2 cycles, pipelined).

ALU Repertoire We eliminated 
oating point units by hand before we started. These routines

do little 
oating point, and the cost function would have eliminated it in any

case, so we saved the trouble.

Among the integer units, the only choice presented in this experiment is

whether or not a given ALU is capable of integer multiply. We allowed

between 1/4 and 1/2 the ALUs to be IMULs, however at least 1 IMUL was

always present.

This methodology allows us to give any opcode choice to the compiler. We

limited this experiment for expository reasons, and because our philosophy

in general is to design an architecture from building blocks rather than syn-

thesizing lower-level special- purpose hardware.

Register Sizes We allowed between 64 and 512 registers total (for all clusters).

Memory System We picked many di�erent con�gurations for this experiment, but found that

considering all of them muddied the insights available in this paper, but did

not change the results. We thus decided to limit the exposition to only a few

choices: always a single Level 1 Memory port and between 1 and 4 accesses

to Level 2 Memory. The latency of an access to Level 1 Memory is always

3 cycles (non-pipelined), while the latency to Level 2 Memory varies from 2

to 8 cycles (non-pipelined).

Table 4: The architecture parameters.

Parameter Description

Register Ports We varied these with the requirements of the other functional units. In a full

system, it is useful to consider this an independent variable, since it greatly

a�ects the cost of the system.

Connectivity As in the number of register ports, we varied the connectivity according to

the needs of the functional units, but it could have been allowed to be a

more general parameter (and in the production of a chip you will build, will

be).

Cycle Speed We used an approximation to quantify the e�ect of cycle speed of our ar-

chitectural choices. This is how we believe it best to treat cycle speed in

a system like this, though sometimes it may be considered an independent

parameter, as in making silicon technology choices, or in area vs. speed

tradeo�s in designing functional blocks.

Table 5: The derived parameter settings.
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{ p is the number of ports of the register �le in a cluster, computed as a function
of the ALUs (a), and the memory ports (l): p(a; l) = (3 � a) + (2 � l)

{ Xdp(r; p) is the datapath width of a cluster, computed as: Xdp(p) = k1 � p

{ Yreg(r; p) is the register �le height for a cluster, computed as: Yreg(r; p) = r � (k2 �

p + k3)

{ Yalu(a) is the height of the ALUs for a cluster, computed as: Yalu(a) = k4 � a

{ Ymul(m) is the height of the MULs for a cluster, computed as: Ymul(m) = k5 �m

{ k1 � � � k5 in the above equations are �tting parameters computed from observation
of existing designs.

The costs range from 1.0 (for the baseline) to about 100 for the most ambitious architectures
(16 ALUs, 8 MULs, 512 registers, 4 memory ports, 1 cluster). For example, Table 6 shows
the cost of some of the architectures that we have considered in our experiments.

IALU IMUL L2MEM REGS Clusters Cost

1 1 1 64 1 1.0

2 1 1 64 1 1.7

4 2 1 128 1 6.5

4 2 1 128 2 3.6

8 4 1 256 1 28.7

8 4 1 256 2 13.1

8 4 1 256 4 7.4

16 8 1 512 1 93.4

16 8 1 512 2 38.4

16 8 1 512 4 19.0

16 8 1 512 8 12.2

Table 6: Examples of the cost of some of the architectures considered in the experiments. Costs

are expressed as relative ratios versus the cost of the baseline con�guration (the �rst line of the

table). L2MEM is the number of level2 memory ports.

These numbers are certainly approximate, but we believe they are realistic enough to allow
one to generalize from the results of this study.

3.4 Cycle Speed

The complexity of an architecture impacts the cycle time, a factor we must take into account
in any realistic evaluation. In this experiment, we have tried to come up with a reasonable
derating factor (vs. the baseline architecture) that applies a cycle time increase as a function
of the register �le ports. The underlying assumption is that, as in most designs, the read
stage of the pipeline is the limiting factor for cycle speed.
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The function that we use assumes a quadratic relationship between cycle time and number
of ports, and, for example, Table 7 gives the following values for some of the architectures
we considered:

IALU L2MEM Clusters Cycle

1 1 1 1.0

2 1 1 1.1

4 1 1 1.5

4 1 2 1.1

8 1 1 2.7

8 1 2 1.4

8 1 4 1.1

16 1 1 7.3

16 1 2 2.7

16 1 4 1.5

16 1 8 1.1

Table 7: Examples of cycle speed derating factors for di�erent architecture con�gurations. Again,

values are relative to the baseline con�guration (the �rst line of the table).

4 Results

The performance of the benchmarks (\su") and the cost (\c") of the architectures are dis-
played on Tables 8, 9, 10 and Figures 3, 4.

In our experiments, we describe architectures by means of a n-uple of 6 parameters:
(a;m; r; p2; l2; c)

where

{ a is the total number of ALUs

{ m is the total number of ALUs capable of executing an integer MUL

{ r is the total number of registers

{ p2 is the total number of parallel accesses to Level 2 Memory

{ l2 is the latency in cycles of accesses to Level 2 Memory

{ c is the number of clusters

So, for instance, the description (4 2 256 1 4 4) (�rst line of Table 8) identi�es an architecture
with 4 ALUs (1 per cluster), 2 of them capable of a MUL, 256 registers (64 per cluster), 1
port to Level 2 memory with a 4-cycle access latency and 4 clusters.
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The basic unit of measure for our experiments is called \Speedup", and it represents the fac-
tor performance improvement that the given architecture gets on the benchmark in question,
compared to the running time of that benchmark on the baseline system. Note that this is
not the speedup due to instruction-level parallelism. The baseline system already o�ers a
signi�cant amount of ILP. In this paper we wanted to avoid the \maxpar wars", and just
concentrate on the relative evaluation of the choices we had.

4.1 Architectural Performance Vs. Cost

Figure 3 is a scatter diagram that shows the cost and speedup for each of the 191 architectures
(after the best cluster arrangement had been selected) for each of the individual algorithm
benchmarks (A, C, D, F, G, H), while Figure 4 shows the same for the jammed bench-
marks. The line in each scatter diagram is drawn through all of the best cost/performance
alternatives for each benchmark.

Note that most of the diagrams contain various performance levels in which several points
are approximately in a straight horizontal line. In those cases, the apparent explanation is
that the increasing costs as one goes to the right are due to the addition of features to the
leftmost architecture that are not helping it achieve much better performance on the given
benchmark. Sometimes a feature is very relevant to a benchmark, and then a new plateau
is reached with several points in a higher performance level straight line as that feature is
added.

4.2 Design For One Algorithm, Run Another

One of the things we most wanted to �nd out in this experiment was this: when you design
for one application or algorithm and run on another, what happens? In particular, one might
expect to run into these situations:

1. Perhaps specialization hardly matters at all. Architectures for a given application all
perform pretty much the same, with small percentage di�erences among them, as long
as one considers only \reasonable" architectures. Or,

2. Perhaps architectures di�er a lot, but there is some independent measure of good-
ness for them that does not vary much with the benchmarks (except in the grossest
of choices, such as whether to include 
oating point hardware). Architectures built
for applications in a narrow domain are more-or-less \well ordered" That is, for any
two architectures, the same one is virtually always better than the other across the
applications. Or,

3. Perhaps the architectures optimized for di�erent algorithms di�er a lot, and how good
they are heavily depends upon which algorithm was used to guide the choice.
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Figure 3: Cost/Speedup scatter diagrams for the original benchmarks

13



0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

S
p
e
e
d
u
p

Cost

DH.c

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

S
p
e
e
d
u
p

Cost

DHEF.c

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

S
p
e
e
d
u
p

Cost

GF.c

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

S
p
e
e
d
u
p

Cost

GEF.c

Figure 4: Cost/Speedup scatter diagrams for the jammed benchmarks

To answer these questions in the context of the experiment done here, we decided to set up
several situations in which a designer might choose an architecture. We allowed the following
two degrees of freedom:

� An upper bound on the cost of the architecture. We arbitrarily chose costs of 5, 10,
and 15 as constraints a designer might be working with. We call these low, medium,
and high cost architectures, respectively.

� The degree to which the designer would be willing to select an architecture that was
not the absolute best for the algorithms for which the architecture was optimized, in
order to perform better on the other applications.

In particular, in Tables 8, 9, 10 we considered, for each algorithm, the architecture that
would do best without exceeding the COST parameter.
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Cost=5.0 Range=0%

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

A(4 2 256 1 4 4) (3.7 3.6) 6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60

C(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

D(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

F(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

G(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

H(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

GF(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

GEF(8 2 128 1 8 4) (3.8 4.8) 1.04 3.93 4.09 4.53 5.72 6.15 6.14 5.97 6.31 6.36

DH(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

DHEF(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

Cost=5.0 Range=10%

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

A(4 2 256 1 4 4) (3.7 3.6) 6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60

C(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

D(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

F(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

G(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

H(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

GF(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

GEF(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

DH(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

DHEF(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

Cost=5.0 Range=1(=490%)

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

all(8 2 128 1 4 4) (3.8 4.8) 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38

Table 8: Speedup results for low cost (< 5:0) architectures.

When the RANGE parameter was 0, the architecture was chosen without considering the
other applications at all, and the table (in this case the (Range=0%) portion of the Tables)
shows, in the rows across, how well that architecture performed on each application. How-
ever, what if the hardware designer wanted to optimize for a given algorithm, but knew
something about the domain and was willing to factor in, at least somewhat, other algo-
rithms? In the middle portion of the Tables we show what happens when the designer does
the following: For each algorithm, attempt to pick the best architecture, but be willing to
back o� by as much as 10% of performance (the RANGE parameter) in order to make the
average of the other applications better. For the medium cost models, in fact, it is also
instructive to see what happens when the designer is willing to give up as much as 50% of
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Cost=10.0 Range=0%

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

A( 8 4 256 1 4 4) (6.1 7.4) 9.94 5.84 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38

C( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

D( 8 4 256 1 4 4) (6.1 7.4) 9.94 5.84 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38

F( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

G( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

H(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

GF(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

GEF(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

DH(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

DHEF(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

Cost=10.0 Range=10%

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

A( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

C( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

D( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

F( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

G( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

H(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

GF(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

GEF(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

DH(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

DHEF(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

Cost=10.0 Range=50%

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

A( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

C( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

D( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

F( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

G( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

H( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

GF( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

GEF( 8 2 256 1 8 4) (5.8 6.6) 6.82 6.15 4.33 4.64 5.72 6.35 6.14 5.97 6.31 6.36

DH(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

DHEF(16 4 128 1 4 8) (3.9 8.7) 0.89 3.54 3.83 5.14 5.41 9.45 8.39 8.93 10.09 9.61

Cost=10.0 Range=1(=60%)

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

all( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

Table 9: Speedup results for medium cost (< 10:0) architectures.
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Cost=15.0 Range=0%

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

A(16 4 256 2 4 8) (6.8 13.0) 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14

C(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

D( 8 4 512 1 4 4) (6.1 11.0) 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38

F( 8 4 512 1 4 4) (6.1 11.0) 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38

G( 8 2 256 1 4 4) (6.1 6.6) 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38

H(16 4 512 1 8 8) (6.2 14.1) 5.95 7.46 3.86 3.98 5.41 10.52 5.75 6.79 10.58 9.74

GF(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

GEF(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

DH(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

DHEF(16 8 256 1 4 8) (7.1 12.2) 10.54 6.43 3.86 5.25 5.41 10.50 8.39 8.93 10.55 10.06

Cost=15.0 Range=10%

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

A(16 4 256 2 4 8) (6.8 13.0) 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14

C(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

D( 8 4 512 1 4 4) (6.1 11.0) 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38

F(16 4 256 2 4 8) (6.8 13.0) 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14

G(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

H(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

GF(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

GEF(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

DH(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

DHEF(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

Cost=15.0 Range=1(=19%)

Arch Desc (su,c) A.c C.c D.c F.c G.c H.c GF.c GEF.c DH.c DHEF.c

all(16 4 512 1 4 8) (7.2 14.1) 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88

Table 10: Speedup results for high cost (< 15:0) architectures.

the performance to make the others better.

For example, in the medium cost tables, the architecture chosen as the best for algorithm
GEF executed that application with a speedup over the baseline of 8.93. But when the
RANGE is allowed to go to 50%, the selection mechanism decides to give up 8 of its ALUs,
and with that budget buy back another 128 registers (and make some other small changes).
This has the e�ect of lowering the GEF speedup over the baseline from 8.93 down to 5.97.
However, in so doing, it makes the overall performance go from an average of 3.9 up to 5.8,
and it makes A go from a pathological .89 speedup to 6.82. (Note that in the original model
chosen for GEF, there were too many ALUs and too few registers for an algorithm like A.
The compiler gets greedy and gets into trouble. This is a known problem, and one hard to
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avoid with schedulers of this nature. The revised architecture choice gets back to a more
balanced system).

Finally, we looked at the question of which architecture minimized the total running time
of all the applications at a given cost. Since we used the same mechanism as the above
(but with the RANGE set to in�nity), we reproduced the result as the same sort of table.
However, in that case all the architectures make the same decision, so we only show a single
line, at the bottom of each table, giving the performance of the architecture on the given
application.

Again following the medium cost model picking an architecture for GEF, the picker gives
back just a little more performance than it had at the 50% RANGE (by making changes
that are \at the noise level") but improves the overall average from 5.8 to 6.1.

5 Conclusions

From the above examples, we can see that, when using a real-world compiler and code that
contains a lot of ILP, the architecture choices we make are quite sensitive to the application
being tailored to.

By allowing the designer a little freedom to pick less than the absolute best implementation
for the target applications, we can often make dramatic improvements in how that imple-
mentation will process other applications. This certainly 
ies in the face of the concept
of \Custom-Fit Processing", especially when we see dramatic losses in performance of the
original target algorithm that are made to satisfy the overall picture. This can be seen most
dramatically in the medium-cost models, in which several of the algorithms run at 60-70% of
their performance on a more tailored architecture, and on the low-cost model, in which one
application gets into pathologically bad trouble and runs at about 17% of its performance
on the architecture made for it.

We believe that, given the maturity and real-world properties of the tools we are using, this
is probably a realistic assessment of what designers will face in doing high-level synthesis. If
and when the cost of individual chip design becomes very much lower than it is today, it will
make a lot of sense to build chips for the narrowest of embedded applications. Today, that
seems like a dangerous route to attempt without a very strong apriori knowledge of what
will run on the chip.
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