
Tools for Characterizing Distributed Shared Memory

Applications

Gheith A. Abandah

Computer Systems Laboratory

HP Laboratories

abandah@hpl.hp.com

November 20, 1996

Keywords: Distributed Shared Memory, Application Analysis, Trace Collection, Trace

Analysis, Simulation.

Abstract

In order to support the design of future distributed shared memory (DSM) systems,

we have developed a set of tools for characterizing DSM applications. These tools

enable collecting and analyzing data, instruction, and I/O stream traces of DSM appli-

cations. They give characterization for several aspects of DSM applications including

communication and sharing patterns. They also enable evaluating the performance

of these applications on various DSM design alternatives. This report describes the

implementation of these tools, their usage, and the format of their output �les.

1

Internal Accession Date Only

Contents

1 Introduction 3

2 Trace Collection 5

3 Trace Analysis 7

4 Con�guration Independent Analysis 9

4.1 Memory-access Instructions : 10

4.2 Instruction Stream : 11

4.3 Procedure Calls : 11

4.4 Communication Patterns : 11

4.5 Memory Usage : 12

5 Con�guration Dependent Analysis 14

5.1 Con�guration File : 16

6 Time Distribution Analysis 17

7 Conclusions 17

8 References 18

A SMAIT Trace Format 19

A.1 Call Record : 19

A.2 Memory-access Record : 21

A.3 Branch Record : 22

B Command Line Options 22

C CDAT Trace Format 24

2

1 Introduction

This report describes a set of tools that were developed for characterizing distributed shared

memory (DSM) applications. It describes the implementation of these tools, their usage,
and the format of their output �les. The development of these tools was initiated to support
developing new DSMmultiprocessor systems, Protic et al. survey DSM concepts and systems
in [1]. The tools can also aid in application performance tuning.

There are three logical steps in conducting application characterization; problem de�nition,
performance collection, and performance analysis. In problem de�nition, we need to specify
the applications that we are interested in characterizing and the performance aspects that
need to be characterized. We are interested in characterizing a wide range of applications
including commercial, e.g. decision support and transaction processing; scienti�c, e.g.
uid
computation and �nite element analysis; and internet, e.g. WWW server and client applica-
tions. For all these applications, we are interested in characterizing the three tra�c streams;
data, instruction, and I/O.

Depending on the application, the characterization of one tra�c stream might be more
important than others. For example, data stream characterization has the highest priority
in characterizing scienti�c applications because the data stream is responsible for most of
the the system tra�c, while characterizing the I/O stream might be as important as the
data stream for some commercial applications.

There are several classes of techniques for performance collection, each with its own ad-
vantages and limitations. Hardware monitors, e.g. VAX microcode monitor [2], Convex
Cxpa [3], and the IBM POWER performance monitor [4] provide low-level information using
event counters, but require special hardware support. Code instrumentation, e.g. RYO [5]
and Pixie [6], enables collecting various performance data and traces, but requires source
code availability. Direct-execution simulation, e.g. Proteus [7] and SimOS [8], similar to code
instrumentation, enables collecting various performance data and perturbs the execution as
well, but does not require source code availability. SimOS collects traces for activities within
the operating system in addition to the user-space activities. Because of the wide range of
applications that we are interested in characterizing, we are collecting traces using code in-
strumentation and other methods. Trace collection using code instrumentation is described
in this report.

Most of the available parallel performance analysis tools are developed for analyzing message-
passing applications, e.g. Pablo [9], Medea [10], and Paradyn [11]. The tools presented in
this report address the shortage of tools for analyzing shared-memory applications. They
assist in the performance analysis of shared-memory applications and enable characterizing
wide range of performance aspects.

We have developed two tools for analyzing shared-memory applications. The �rst tool is
intended to generate abstractions that characterize the inherent application characteristics.
The second tool is intended to predict the application performance on speci�c hardware

3

CDAT

CIAT

Configuration

simulator

Multi-

Characterization

Characterization

Memory usage

SMAIT

Instrumented
code

TraceSource
code

processor
system

Trace
System-

level

Figure 1: Application analysis methodology outline.

con�gurations. Given alternative hardware con�gurations, the second tool predicts the tra�c

ow volume and characteristics. It also generates tra�c traces that are used to drive detailed
system-level simulators.

Figure 1 shows an outline of our methodology in characterizing DSM applications. The
�gure shows that a shared-memory multiprocessor is used to collect traces by executing
instrumented application codes. Nevertheless, other methods can be used for trace collection.

The Shared-Memory Application Instrumentation Tool (SMAIT) is used to instrument ap-
plications and is presented in more detail in Section 2. Instead of generating trace �les,
SMAIT can also pipe the traces to the analysis tools for on-the-
y analysis. On-the-
y anal-
ysis enables analyzing longer execution periods and solves the problem of having huge trace
�les.

The two analysis tools are the Con�guration Independent Analysis Tool (CIAT) and the
Con�guration Dependent Analysis Tool (CDAT). CIAT generates characterization for data
access instructions, branching, synchronization, communication patterns, and data sharing.
Additionally, CIAT generates a memory usage �le that speci�es the usage statistics of all
accessed memory pages. CDAT reads a con�guration �le that speci�es a proposed system
con�guration and simulates the execution of the traces on this con�guration. CDAT outputs
characterization and trace �les for the tra�c that would occur when the application is run
on the simulated con�guration. CDAT can use the memory usage �le to map memory pages
to the simulated memory banks.

Sections 3, 4, and 5 give more details about CIAT and CDAT. Section 6 describes another tool
used for analyzing the variation of application behavior over time. Section 7 concludes the
paper by stating the limitations and advantages of these tools and methodology. Appendix A
speci�es the formant of SMAIT trace �les. Appendix B presents CIAT and CDAT command
line options. Appendix C speci�es CDAT trace format.

4

2 Trace Collection

SMAIT is based on RYO [5], a tool developed by Zucker and Karp for instrumenting PA{
RISC [12] instruction sequences. RYO is a set of awk scripts that enable replacing individual
machine instructions with calls to user written subroutines.

SMAIT is designed to enable collecting traces of multi-threaded shared-memory parallel
applications. SMAIT has two parts, a perl script program for instrumenting PA{RISC
assembly language �les, and a run-time library that is linked with the instrumented program.
The perl script program replaces some PA{RISC instructions with calls to the run-time
library subroutines. During program execution, the run-time library generates one trace �le
per thread. SMAIT provides three levels of instrumentation:

� At Level 1, SMAIT instruments the procedure call instructions for some I/O, thread
management, and synchronization subroutines. In this level, SMAIT enables collecting
traces for the I/O stream and timing information. The run-time library generates
one call record whenever an instrumented call instruction is executed. A call record
contains the call type, time before and after the procedure call, and four argument
�elds. Appendix A describes the format of SMAIT traces.

� At Level 2, SMAIT additionally instruments all load and store instructions to collect
traces for the data stream. The run-time library generates one memory-access record

whenever an instrumented memory-access instruction is executed. A memory-access
record contains the type of the instruction and the virtual address.

� At Level 3, SMAIT additionally instruments all branch instructions and the �rst in-
struction of every procedure in order to collect traces for the instruction stream. The
run-time library generates one branch record for each taken branch. A branch record
contains the virtual address of the branch instruction plus 4 and the virtual address of
the branch target. Four bytes are added to the branch instruction address to account
for the instruction in the delay slot after the branch instruction which, in PA{RISC ar-
chitecture, is fetched and conditionally executed. The run-time library also generates
one record whenever the �rst instruction of an instrumented procedure is executed.
Such record contains the virtual address of the procedure start.

When Level 1 is used, the instrumented code is lightly perturbed and runs near the original
uninstrumented speed. This level is mainly used for collecting timing information. When
Level 2 or 3 is used, the instrumented code is heavily perturbed and runs about 70{100 times
slower than the original uninstrumented code.

The following steps outline an example how to use SMAIT to instrument a simple matrix
multiplication program and to collect traces on a Convex SPP{1600 multiprocessor [13].

1. Convert the high-level source �les to assembly language �les.

5

2. Instrument the assembly �les using smait.perl and link with the two run-time library
object �les; smait.o and smait init.o. Figure 2 shows an example of a make �le that
converts the Fortran program, mat mul.f, into an assembly �le, mat mul.s, using the
Convex Fortran Compiler fc, instruments it using smait.perl, compiles it into the
object �le mat mul.o, and links the instrumented object �le with the run-time library
object �les.

smait.o: smait.c smait.h

cc -O -c smait.c

smait init.o: smait init.c smait.h

cc -O -c smait init.c

mat mul.o: mat mul.f

fc -O3 -S mat mul.f

sed 's,/dev/null,devnull,' < mat mul.s > mat mul.ss

smait.perl -level=3 <mat mul.ss >mat mul.s

fc -c mat mul.s

mat mul: mat mul.o smait.o smait init.o

fc -o mat mul mat mul.o smait.o smait init.o

Figure 2: Example make�le showing SMAIT instrumentation.

3. Select the trace type by setting the environment variable TRACE FILE TYPE. SMAIT
supports �ve options:

� \normal", generates one uncompressed trace �le per thread,

� \compressed", generates compressed trace �les,

� \suppressed", does not generate any trace �les,

� \to ciat", invokes CIAT and pipes the traces to it for on-the-
y analysis, and

� \to cdat", invokes CDAT and pipes the traces to it for on-the-
y simulation.

4. Select the trace �le name by setting the environment variable TRACE FILE NAME.

5. Run the instrumented code to collect traces. Figure 3 shows how to set the environment
variables and to run the instrumented code. The SPP{1600 command mpa is used to
run mat mul using 4 threads. The example shows that SMAIT run-time library reports
the names of the 4 trace �les, each �le name speci�es the number of threads and the
thread ID.

Table 1 summarizes SMAIT overheads in collecting traces of a 256�256 matrix multiplication
under the three instrumentation levels compared to the performance of the uninstrumented

6

% setenv TRACE FILE TYPE normal

% setenv TRACE FILE NAME trace level 3

% mpa -max 4 mat mul

Trace output stored in:

file trace level 3.4.0 for thread 0

file trace level 3.4.1 for thread 1

file trace level 3.4.2 for thread 2

file trace level 3.4.3 for thread 3

Figure 3: Example of collecting traces for 4 threads.

Table 1: SMAIT instrumentation overheads.

Instrumentation level mat mul.o size Execution time Trace size Compressed size

No instrumentation 14 KB 1.2 sec 0 0

Level 1 16 KB 1.3 sec 2.2 KB 0.8 KB

Level 2 73 KB 83 sec 116 MB 19.8 MB

Level 3 87 KB 90 sec 127 MB 20 MB

program. Column 2 shows the size of the object �le, mat mul.o. Level 3 generates code that
is about 6 times larger than the uninstrumented code. Column 3 shows the execution time.
Level 3 results in a factor of 75 slowdown. Columns 4 and 5 shows the size of the four trace
�les for the normal and compressed types respectively. Compression reduces the trace size
by a factor of 6.

3 Trace Analysis

This section is an introduction to CIAT and CDAT, it describes some trace analysis tech-
niques that are common in both tools.

Both tools accept two sets of trace �les. Each set is made up of p trace �les coming from p

threads of execution. The �rst optional set is called call traces and contains traces of the I/O
and synchronization calls. The second set is required and called detailed traces and contains
the call traces, data stream traces, and instruction stream traces|if available. Although
all the records in the call traces are also in the detailed traces, the call traces are used
because they usually come from a less perturbed execution and their time stamps are closer
to the uninstrumented execution. The call traces are collected using SMAIT instrumentation
level 1, and the detailed traces are collected using SMAIT instrumentation level 2 or 3.

Both tools assume that the traces come from an application with one or more execution

7

phases where each phase has its own properties. Currently, the supported phases are serial
and parallel phases and user-de�ned phases. In a serial phase, thread 0 is the only active
thread and other threads, for a multi-thread execution, are idle. In a parallel phase, multiple
threads are active. The tools recognize the two phases from the trace records of the thread
spawn and thread join calls that activate and deactivate threads between serial and parallel
phases. The user-de�ned phases are recognized when the tools encounter special marker

records (see Appendix A). The marker records can be generated by instrumenting the high-
level source code.

Both tools perform analysis per phase and report characterization statistics at the end of
each phase. Both tools also report the aggregate characterization statistics of all phases at
the end. Each line in the report �le has a distinctive tag. The tag format is \RrTtLll:", where
r is the phase number, t is the thread number, and ll is a distinctive data type number. The
aggregate statistics lines have r='x'. When t='x', the line refers to data that is applicable
to all the active threads.

Both tools manage one pseudo clock per thread to interleave processing multiple traces. The
clocks are initialized to zero at the start of the �rst phase. A thread clock is incremented
by one whenever an instruction is processed for that thread. The clocks are synchronized at
the end of each phase and after emerging from a synchronization barrier to the value of the
largest clock.

Within a serial phase, both tools process the trace records of thread 0 until reaching a thread
spawn call. Within a parallel phase, both tools process trace records from all the available
threads until reaching a thread join call. A trace record is processed for the thread with the
smallest clock. In case all threads have same clock value, trace records are processed in a
round robin method.

The tools also support traces that do not contain information about thread management and
synchronization. They support analyzing T trace �les of T di�erent processes by interleaving
these traces on p processors. This is accomplished by making use of the time stamps of
the call records that imply process synchronization like semop. The tools logically break
the traces into slices. A slice is a sequence of memory-access and branch records that are
surrounded by two call records. The end time of the head call record is used as the start
time of the slice, and the start time of the tail call record is used as the end time of the slice.
Call records that do not imply process synchronization like disk read are part of the slice
body. The tools employ a Scheduler that sorts the slices into a list according to their start
time and schedule them to the available processors.

The Scheduler tries to keep the processors busy. It schedule the slice at the list head whenever
there is free processor, the slice is from a trace �le that does not have any other scheduled
slice, and its start time is larger than the end time of the scheduled slices. This greedy
scheduling sometime results in process migration among processors. Process migration can
be prohibited by selecting the a�nity option, see Appendix B. The Scheduler supports time-
slicing to ensure that long slices do not hog processors more than a user-de�ned slice length.

8

In order to improve processor utilization, the Scheduler also swaps out a process when it is
blocked waiting for disk read.

The tools reconstruct an approximation of the instruction stream using the branch records.
This is accomplished by maintaining one program counter per thread. Whenever this pro-
gram counter is incremented by one instruction word, the instruction at the old address is
fetched.

The program counter is initialized whenever a procedure start record is encountered and is
incremented by one instruction word for every memory-access record. For branch records,
the program counter is �rst compared against the source address of the branch record. The
program counter is usually less than the source address because instructions other than
memory-access instructions are not represented in the trace. Hence, the program counter is
iteratively incremented by one instruction word at a time until it matches the source address.
Secondly, the target address is copied to the program counter.

The above algorithm generates an approximation of the instruction stream because the
memory-access instructions in a block between a procedure start or a target address and the
next taken branch are crammed to the block start. Better instruction stream reconstruction
can be achieved by referring to the executable �le to �nd the relative addresses of the
memory-access instructions.

4 Con�guration Independent Analysis

CIAT is intended to capture inherent application characteristics that do not change from one
con�guration to another. Con�guration here refers to the con�guration of the multiprocessor
that runs the application. The con�guration of a multiprocessor includes the way processors
are clustered in a hierarchy, the interconnection topology, the coherence protocols, and the
cache con�gurations.

CIAT uses many counters for counting various events and uses a memory structure to keep
track of data and code accesses. The phase statistics are reported in a report �le at the end
of each phase and the aggregate statistics are reported in the report �le at the end of the
last phase. Additionally, at the end of the last phase, CIAT scans the memory structure
and reports memory usage statistics in the report �le and generates a memory usage �le
that summarizes the memory usage of each touched page. Subsection 4.5 presents more
information about the memory usage �le.

The following example shows how to use CIAT to analyze the call traces trace level 1.4

and the detailed traces trace level 3.4 of a 4-thread run.

% ciat trace level 1.4 trace level 3.4

9

For this example, the output report �le name is trace level 3.4.ciat report and the
output memory usage �le name is trace level 3.4.memory.

Alternatively, CIAT can be invoked by SMAIT for on-the-
y analysis as follows:

% setenv TRACE FILE TYPE to ciat

% setenv TRACE FILE NAME trace level 3

% setenv CALL FILE NAME trace level 1

% mpa -max 4 mat mul

The environment variable TRACE FILE NAME is used for naming the report and memory usage
�les. The environment variable CALL FILE NAME is optional and is used to specify the names
of the call trace �les. On-the-
y analysis is slower than generating traces. When the example
outlined in Section 2 is run with on-the-
y analysis, the execution time rises from 90 sec to
280 sec (a factor of 230 total slowdown).

CIAT provides the option of generating a trace �le of the key communication events. This
trace �le facilitates conducting time distribution analysis of the communication patterns in
an application using the tool described in Section 6. The format of this �le is outlined in
Subsection 4.4.

The following subsections present the application characteristics that are reported by CIAT.
The characteristics are classi�ed into �ve groups; memory-access instructions, instruction
stream, procedure calls, communication patterns, and memory usage.

4.1 Memory-access Instructions

These statistics are found by counting occurrences of the di�erent types of load and store
instructions. CIAT reports the following in number and percentage:

1. Memory-access instructions for both types, load and store.

2. Load instructions classi�ed by the size of the accessed data and the register type
involved; byte, halfword, word,
oat, and double-
oat.

3. Store instructions classi�ed by the size of the accessed data and the register type
involved; zero-byte, byte, halfword, three-byte, word,
oat, and double-
oat.

4. Frequency of load and store strings according to the string length. A load string of
length l is a sequence of l consecutive loads from one thread not interrupted by stores.
Similarly, A store string of length l is a sequence of l consecutive stores from one thread
not interrupted by loads.

10

4.2 Instruction Stream

CIAT reports the following information about the instruction stream:

1. Number of fetched instructions.

2. Number of taken branches.

3. Total number of procedure calls.

4. Number of calls to instrumented procedures.

4.3 Procedure Calls

CIAT reports summaries about the procedure calls that have call records in the trace �le.
For each call type, CIAT reports number of occurrences, time spent in the call, and an
accumulation of the amount �eld. For the I/O calls, this summary speci�es:

1. Number of calls of each type.

2. Time spent in each call type.

3. Amount of data in bytes transfered by each call type.

For the synchronization and thread management subroutine calls, the summary speci�es:

1. Number of times the subroutine was called. This number gives an indication of the
parallelism grain size.

2. Time spent in each subroutine. This time is useful to estimate the synchronization
overhead and the load balance conditions.

4.4 Communication Patterns

In a shared-memory application, processors communicate by accessing shared memory. CIAT
reports the amount of communication and the communication patterns for every execution
phase. Speci�cally, CIAT reports the following:

1. Number of read-after-write accesses (RAW): A RAW access occurs when one or more
processors load a memory location that was stored by a processor. This pattern does
not include the case when only one processor loads a memory location that was stored
by this same processor. This is a common communication pattern, it occurs in a
producer-consumer situation where one processor produces data and one or more pro-
cessors consumes it.

11

2. Sharing degree for RAW. This is a vector S, where S[k] is the number of times that a
memory location was read by k processors after being written.

3. Number of write-after-read accesses (WAR): A WAR access occurs when a processor
stores a memory location that was loaded by one or more processors. This pattern
does not include the case where a processor stores to a memory location that was only
loaded by itself. This is also a common pattern, it occurs when a processor writes data
that was read by other processors.

4. Invalidation degree for WAR. This is a vector I, where I[k] is the number of times that
a memory location was written after being previously read by k processors.

5. Number of write-after-write accesses (WAW): A WAW access occurs when a processor
stores to a memory location that was stored by another processor. This is a less
common pattern, it occurs when multiple processors write without reading, or when
processors take turns on a memory location where in each turn a processor writes and
reads.

6. Number of read-after-read accesses (RAR): A RAR access occurs when a processor
loads a memory location that was loaded by another processor and the �rst visible ac-
cess to this location is a load. This is an uncommon pattern, it occurs in bad programs
that read uninitialized data. Nevertheless, CIAT often encounters this pattern when
the data is initialized in untraced routines.

When instructed by the command line option, CIAT dumps a trace for the above communi-
cation events. The trace �le has a header that speci�es its format and contains a record for
each of the four communication events. Each record contains �elds for the clock, event type,
processor, and degree. The degree is 1 for WAW, equals the invalidation degree for WAR,
and unde�ed for RAW and RAR.

4.5 Memory Usage

CIAT reports the following summary of the memory usage for the instruction and data
streams at the end of the report �le:

1. Total number of touched pages.

2. Number of touched pages that are shared. A shared page is a page touched by more
than one thread.

3. Number of touched pages that are range shared. A range-shared page is a page touched
by more than one thread, or is in an address range reserved for shared pages, see
Appendix B.

4. Total number of touched memory locations in bytes.

12

5. Number of touched data memory locations in bytes.

6. Number of touched code memory locations in bytes.

7. Number of shared memory locations in bytes. A shared memory location is a location
accessed by more than one thread.

8. Number of touched memory locations in bytes that are page shared. A page-shared
memory location is a location in a shared page.

9. Number of touched memory locations in bytes that are range shared. A range-shared
memory location is a location in a range-shared page.

10. Total number of memory accesses.

11. Number of data accesses.

12. Number of data accesses to shared memory locations.

13. Number of data accesses to shared pages.

14. Number of data accesses to range-shared pages.

15. Number of code accesses.

16. Number of code accesses to shared memory locations.

17. Number of code accesses to shared pages.

18. Number of code accesses to range-shared pages.

19. Data Locality Index, which is calculated as the number of accessed data bytes divided
by the number of touched data memory locations.

20. Code Locality Index, which is calculated as the number of fetched instructions divided
by the number of touched instructions.

In addition to the above aggregate statistics, CIAT reports one record for each touched page
in the memory usage �le. The record format is speci�ed in the �le header. Each record
contains the page number, number of touched bytes, number of touched code bytes, number
of shared bytes, number of data accesses, number of code accesses, number of shared data
accesses, number of shared code accesses, and the page owner.

The page owner is unde�ned and equals -1 for a shared page. For a private page, one that
was touched by only one thread, the page owner equals the thread number.

13

5 Con�guration Dependent Analysis

CDAT is intended to predict the tra�c that would be generated by an application on a pro-
posed DSM multiprocessor con�guration. CDAT is a simple trace-driven simulator that has
cache, memory, bus, and internode interconnection models. These models can be arranged in
a hierarchical con�guration as speci�ed by the con�guration �le, see Subsection 5.1. CDAT
generates abstractions and
ow parameters that can be used to parameterize workload gen-
erators. CDAT uses many counters for counting various events. The phase statistics are
reported in a report �le at the end of every phase and the aggregate statistics are reported
at the end of the last phase.

Additionally, CDAT generates two types of traces; general and detailed. The general trace
contains the requests and returns generated by normal and I/O processors as seen at the
interconnection networks. Processor requests are generated on cache misses and DMA activ-
ities and processor returns are generated on cache replacements. The detailed trace contains
records for all transactions that are interchanged to satisfy processor requests and returns.
Appendix C speci�es these transactions and gives the format of these trace �les.

CDAT modeling of DSM systems is
exible to enable experimenting with various DSM de-
sign options. For example, it enables evaluating various coherence protocol alternatives and
implementation techniques. Supporting various coherence protocols is possible because the
coherence protocol handling subroutines are modular and the user can specify the wanted
protocol as one of the con�guration �le options. Supporting di�erent hardware implementa-
tions is accomplished by using the general CDAT trace to feed system-level simulator. The
general trace gives the system-level simulator the freedom of using various DSM hardware
implementations.

Although CDAT does not keep track of time explicitly, it approximates time by tagging the
generated transactions by the pseudo clock. The clock equals the instruction number that
caused the transaction. CDAT assumes that each instruction takes one clock cycle.

One of the problems that faces CDAT is mapping virtual addresses to the distributed physical
memory banks. CDAT has several policies for mapping memory pages. Some of these policies
rely on the information gathered by CIAT about memory usage. CDAT reads the memory
usage �le and maps the used virtual pages into physical memory banks according to the
policy speci�ed in the con�guration �le. CDAT has the ability to allocate private memory in
the local node, interleave shared memory across nodes, and replicate some shared memory
in multiple nodes, e.g. for shared code pages.

The following example shows how to use CDAT to analyze the call traces trace level 1.4

and the detailed traces trace level 3.4 for a DSM multiprocessor speci�ed by the con�g-
uration �le dsm.cfg.

% cdat trace level 1.4 trace level 3.4 dsm.cfg

14

For this example, the output report �le is trace level 3.4.cdat report. CDAT can also
be invoked by SMAIT for on-the-
y simulation in a similar way as CIAT. Setting the en-
vironment variable CONFIGURATION FILE NAME speci�es the con�guration �le name. When
the example outlined in Section 2 is run with on-the-
y simulation, the execution time rises
to 175 sec (a factor of 146 total slowdown).

CDAT reports number and percentage of the following
ow parameters for the data and
instruction streams of normal processors. Additionally, similar parameters are reported for
the I/O stream of the I/O processors.

1. Cache hit.

2. Cache miss.

3. Cache misses that are satis�ed locally.

4. Cache misses that are satis�ed from a remote node.

5. Cache misses that are satis�ed from a local memory bank.

6. Cache misses that are satis�ed from a local cache.

7. Cache misses that are satis�ed from a remote memory bank.

8. Cache misses that are satis�ed from a remote cache.

CDAT reports statistics about the tra�c transactions. Some of the transaction types are
listed in Appendix C. CDAT reports three aggregate numbers for each phase:

1. Total number of transactions.

2. Number of processor requests.

3. Average latency, which is estimated as the number of critical-path transactions divided
by the number of processor requests.

CDAT reports the number of occurrences of each transaction type. CDAT also reports a
state table for the processor requests and returns. Each processor request or return type has
one column. The various rows specify the number of occurrences of the di�erent states of
the requested or returned lines. The states are classi�ed according to the line home node
(local or remote), presence (local, remote, home), and cache status (idle, shared, exclusive,
or dirty). The table also shows the average sharing degree of remotely shared lines.

CDAT also reports the number of active cycles, number of idle cycles, and utilization of each
processor.

15

5.1 Con�guration File

The con�guration �le speci�es the following aspects:

� Number of nodes, valid values are 1 through 32 nodes.

� Number of processors per node, valid values are 1 through 128 processors and the total
number of processors should not exceed 128 processors.

� Number of memory banks per node, valid values are 1 through 32 banks.

� Line size in bytes.

� Thread mapping to processors, speci�es the node and processor each thread is mapped
to.

� Cache coherence protocol. Currently, there are 8 variants of a directory based cache
coherence protocol. These variants di�er in the cache status of remote loaded lines, the
processor cache action on replacing exclusive lines, and the support of direct processor
to processor transactions. Table 2 summarizes these variants.

� Memory allocation policy. The currently supported policies are:

1. Round Robin 1 (RR1), memory pages are interleaved in a round robin scheme
across all the available nodes. The memory usage �le is not used. When the
command line option -HPUX is selected, pages that are in a private memory
range are allocated locally.

2. Round Robin 2 (RR2), this policy is similar to RR1 but code pages are replicated
in all active nodes. The memory usage �le is used to �nd the code pages.

3. Oracle policy. This policy relies on the memory usage �le so that code pages are
replicated, private pages are allocated locally, and shared pages are interleaved in
a round robin scheme.

Table 2: Cache coherence protocol options.

Option Remote lines Exclusive replacement Direct transactions

1 Maybe loaded exclusive Announced Supported

2 Loaded shared Announced Not supported

3 Loaded shared Not announced Not supported

4 Maybe loaded exclusive Not announced Not supported

5 Maybe loaded exclusive Not announced Supported

6 Maybe loaded exclusive Announced Not supported

7 Loaded shared Not announced Supported

8 Loaded shared Announced Supported

16

4. First Touch (1Touch). In this policy, a page is allocated in the same node where
it is referenced for the �rst time. The memory usage �le is not used.

� General trace �le generation; 0: not generated, 1: generated.

� Detailed trace �le generation; 0: not generated, 1: generated.

� Processor data cache con�guration, e.g. size, line size, and associativity.

� Processor instruction cache con�guration.

� Interconnect cache con�guration.

6 Time Distribution Analysis

Time distribution analysis is handled by a separate tool called Time Distribution Analysis
Tool (TDAT). TDAT is used to analyze event traces generated by CIAT or CDAT. The
event trace is an ASCII �le that has one record per event. Each record starts with a clock
�eld and may have other optional �elds.

TDAT puts the events into bins according to the clock �eld. The bin width can be spec-
i�ed by the user. TDAT �nds the total number of events, number of bins, average event
rate, minimum and maximum rates, standard deviation, density function, and distribution
function.

The following example shows how to use TDAT to analyze event trace using 1000-cycle
bins for 4 processors.

% tdat event trace event.time 1000 4 > event.freq

The output �le event.time contains the number of events in each bin. The example shows
that the output data is directed to the �le event.freq.

7 Conclusions

In this report, we have presented some of our tools for characterizing DSM applications and
supporting the design of future DSM systems. These tools are continuously updated and
improved to answer an increasingly expanding list of needed application characterization and
design options. Future updates will be re
ected in the release notes of these tools.

Some of the limitations of the methodology outlined in this report are that trace collection
using SMAIT requires the availability of application sources. Additionally, the trace collec-
tion does not include the activities inside the operating system or shared libraries. While the

17

collected traces are of the PA{RISC instruction set architecture (ISA), future DSM systems
use di�erent ISA. Thus a method is required to translate the performance of these traces to
future systems.

On the other hand, some of the advantages of this methodology are that we collect parallel
traces for applications that use the shared-memory programming paradigm. Such traces
are of higher importance than other traces, e.g. serial traces, for developing DSM systems.
Nevertheless, CIAT and CDAT can be used to analyze traces collected by other tools. An-
alyzing the performance of an application for runs of varying number of processors enables
application characterization as a function of the number of processors. Moreover, time dis-
tribution analysis is also supported. CIAT and CDAT use simple models, thus they can be
used to do fast analysis of long traces. They can also be used in on-the-
y mode to save the
burden of generating huge trace �les. Through CDAT, application analysis directly supports
evaluating various design options for future systems.

Acknowledgment

I would like to thank Tom Rokicki for his assistance in implementing these tools, Rajiv Gupta
and Josep Ferrandiz for their guidance, Lucy Cherkasova for her constructive discussions and
comments, and Milon Mackey for providing valuable traces that enabled extending the tools.

8 References

[1] J. Protic, M. Tomasevic, and V. Milutinovic, \Distributed shared memory: Concepts
and systems," IEEE Parallel and Distributed Technology, pp. 63{79, Summer 1996.

[2] D. Clark and H. Levy, \Measurement and analysis of instruction use in the VAX{
11/780," in Proc. The 9th Annual Symposium on Computer Architecture, pp. 9{17,
1982.

[3] CONVEX Computer Corporation, 3000 Waterview Parkway, P.O. Box 833851, Richard-
son, TX 75083{3851, CXpa Reference Manual, second ed., March 1993. Order No.
DSW{253.

[4] E. H. Welbon, C. C. Cha-Nui, D. J. Shippy, and D. A. Hicks, \The POWER2 perfor-
mance monitor," IBM J. Research and Development, vol. 38, pp. 545{554, Sept. 1994.

[5] D. F. Zucker and A. H. Karp, \RYO: a versatile instruction instrumentation tool for
PA{RISC," Technical Report CSL{TR{95{658, Stanford University, Jan. 1995.

[6] M. D. Smith, \Tracing with Pixie." ftp document, Center for Integrated Systems, Stan-
ford University, Apr. 1991.

[7] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl, \PROTEUS: a
high-performance parallel-architecture simulator," Tech. Rep. MIT/LCS/TR-516, Mas-
sachusetts Institute of Technology, Sept. 1991.

18

[8] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, \Complete computer simula-
tion: The SimOS approach," IEEE Parallel and Distributed Technology, Fall 1995.

[9] D. Reed et al., \Scalable performance analysis: The Pablo performance analysis envi-
ronment," in Proc. IEEE Scalable Parallel Libraries Conf., 1993.

[10] M. Calzarossa, L. Massari, A. Merlo, M. Pantano, and T. Daniele, \Medea: A tool for
workload characterization of parallel systems," IEEE Parallel and Distributed Technol-

ogy, vol. 3, pp. 72{80, Winter 1995.

[11] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kun-
chithapadam, and T. Newhall, \The Paradyn parallel performance measurement tool,"
Computer, vol. 28, pp. 37{46, Nov. 1995.

[12] Hewlett-Packard, PA-RISC 1.1 Architecture and Instruction Set, third ed., Feb. 1994.

[13] T. Brewer, \A highly scalable system utilizing up to 128 PA-RISC processors," in Digest
of papers, COMPCON'95, pp. 133{140, Mar. 1995.

A SMAIT Trace Format

SMAIT generates one binary trace �le for each thread. A trace �le is made up of a collection
of simple records. Each simple record has 2 �elds and each �eld is 4 Bytes long and contains
an unsigned integer number.

There are three types of records that are supported by SMAIT; call, memory-access, and
branch. The following is a description of the three record types.

A.1 Call Record

Call records are used for tracing I/O, synchronization, and thread management calls. Each
call record is made up of 6 simple records with a total of 12 �elds. The �rst �eld in each
simple record is a concatenation of the number of the simple record within the call record,
the call type, and a constant. The �rst hex digit (least signi�cant) speci�es the simple record
number. The next two digits specify the call type according to Table 4. The most signi�cant
�ve hex digits are the constant digits 00001.

The start time �eld contains the time stamp in microseconds before calling the subroutine.
The end time �eld contains the time stamp in microseconds after calling the subroutine.

In the spawn record, argument 1 is a positive integer that speci�es an identifying number
for the parallel region at the thread spawn and argument 2 speci�es the number of spawned
threads. For the barrier record, argument 1 is the address of the synchronization variable
and argument 2 speci�es the number of threads waiting on the barrier.

19

Table 3: Call record format.

Simple record number Field 1 Field 2

1 00001xx0 Start time

2 00001xx1 End time

3 00001xx2 Argument 1

4 00001xx3 Argument 2

5 00001xx4 Argument 3

6 00001xx5 Argument 4

Table 4: Call types.

xx Subroutine

01 Thread spawn, cps spawn

02 Thread join, cps join

03 Barrier synchronization

04 Begin ordered section, cps begin order

05 End ordered section, cps end order

06 Begin critical section, cps begin critical

07 End critical section, cps end critical

10 Marker, used in the high-level source code

11 File read

12 File write

13 Load and clear work, ldcw

14 Semaphore operation, semop

15 Semaphore control operation, semctl

16 Generic system call

17 Start trace record

18 End trace record

20

1 One Byte
2 Halfword
3 Three Bytes
4 Word
8 Doubleword

0 Fixed point
1 Floating point

0 Zero Byte

1 Store

0 0 0 0 FL SZ0 TY

0 Load

Figure 4: Type �eld format of memory-access records.

The marker record is generated by a special call inserted in the source code. The call
template is smait marker(int *cmd, int *num), where cmd is a command that controls the
generation of detailed traces and num is a user-speci�ed distinguishing number. Command 0
has no e�ect, command 1 stops the thread detailed tracing, command 2 resumes thread
detailed tracing, command 3 stops detailed tracing of all threads, and command 4 resumes
detailed tracing of all threads.

For the �le read and write records, argument 1 is the virtual address of the memory bu�er,
argument 2 is the number of bytes moved, and argument 3 is the �le handle that speci�es
the accessed �le. For the semop record, the four arguments specify the semaphore identi�er,
number, operation, and
ags respectively. For the semctl record, the four arguments specify
the semaphore identi�er, number, command, and value respectively. Argument 1 in the
generic record speci�es the system call identi�er.

Argument �elds not de�ned above are not used.

A.2 Memory-access Record

Memory-access records are used for tracing memory-access instructions. Each memory-
access record is made up of 1 simple record with a total of 2 �elds. The �rst �eld speci�es
the memory-access type and the second �eld contains the virtual address. As shown in
Figure 4, the �rst hex digit in the type �eld speci�es the access type, the second hex digit
speci�es the size of data accessed, the third hex digit speci�es the register type involved in
the memory access, and the most signi�cant �ve hex digits are the constant digits 00000.

For example, the type �eld 00000040 refers to an instruction that loads one word into a
�xed-point register, and 00000181 refers to an instruction that stores a double-word from a

oating-point register to memory.

21

A.3 Branch Record

Branch records are used for tracing procedure starts and taken branch instructions. Each
branch record is made up of 1 simple record with a total of 2 �elds. The most-signi�cant
hex digit of the �rst �eld speci�es one of three record types.

� Procedure start record when the most-signi�cant hex digit is 4. For example, the
simple record 40000000 00004C00 is generated when starting to execute a procedure
at address 4C00.

� Taken branch record when the most-signi�cant hex digit is 8. The rest of the �rst �eld
speci�es the address of the instruction after the taken branch, and the second �eld
speci�es the target address. For example, the simple record 80004C18 00004D20 is
generated for a taken branch instruction at address 4C14 to the target address 4D20.

� Procedure call record when the most-signi�cant hex digit is C. The rest of the �rst
�eld speci�es the address of the instruction after the procedure call instruction, and
the second �eld speci�es the target procedure address. For example, the simple record
C000542C 00005630 is generated for a procedure call instruction at address 5428 to
the target procedure at address 5630.

B Command Line Options

This appendix speci�es the command line options acceptable by CIAT and CDAT. Unless
otherwise stated the following options apply to both tools. The simplest way to use CIAT
and CDAT on trace �les collected using SMAIT is

ciat [calls file.p] trace file.p, and

cdat [calls file.p] trace file.p cfg file,

where trace file.p is the start of the names of p detailed trace �les, calls file.p is
the start of the names of p optional call trace �les, and cfg file is CDAT con�gura-
tion �le. In this case, CIAT generates a report �le named trace file.p.ciat report

and memory usage �le named trace file.p.memory. CDAT generates a report �le named
trace file.p.cdat report.

Alternatively, for traces collected by other tools, the following format can be used

ciat [options] [-c call list] -t trace list, and

cdat [options] [-c call list] -t trace list cfg file,

22

where trace list is a �le containing a list of detailed trace �le names, call list is a �le
containing a list of call trace �le names, and options can be zero or more of the options
shown below. In this case, trace list is used in naming the output �les.

� -ciat events: this option is only valid with CIAT and it enables the generation of
CIAT event trace.

� -HPUX: this option can be used when the trace is collected on a system running the
HPUX operating system. In this case, the tools assume that the virtual addresses
0x40000000 through 0x7���f are private addresses.

� -p: this option implies that the thread spawn and join calls are invisible and the tools
should start analysis with a parallel phase.

� -i p: this option instructs the tools to interleave the trace �les listed in trace list

on p processors.

� -a: this option instructs the scheduler to maintain a�nity of the processes, i.e. a
process is always scheduled at the same processor. In the default mode the scheduler
can move a process among the available processors to maximize utilization.

� -rr interleaving: this option can be used with -i to use a simple round robin
trace interleaving on the p processors. If this option is not selected, the tools do slice
interleaving as explained in Section 3.

� -k: when this option is used, the tools keep long slices scheduled until they �nish. The
default is to swap out long slices.

� -s v: this option speci�es the length v in instructions after which a long slice is
scheduled o� its processor. The default value is 20,000 instructions.

� -handle io: this option instructs the tools to simulate the tra�c implied by disk read
and write calls. The default is not to handle I/O.

� -buffered io: instructs the tools to simulate bu�ered disk I/O. The default is raw
disk I/O.

� -asynch io: to use asynchronous disk I/O, a process does not wait for disk I/O com-
pletion. The default is synchronous disk I/O where a process is blocked waiting for
I/O completion.

� -distributed io: when this option is selected, each processor performs its disk I/O
through the local I/O processor. The default mode is centered disk I/O where all disk
I/O is done through the I/O processor in node 0.

� -dma bw v: this option speci�es the disk DMA bandwidth in MB/sec. The default
value is 20 MB/sec.

23

� -disk latency v: this option speci�es the average disk latency in msec. The default
value is 10 msec.

� -ipc v: this option is used to specify the processor IPC number (instructions per
cycle). The default value is 2.

� -h: instructs the tools to print the command line options.

C CDAT Trace Format

This appendix is intended to describe the format of the two types of CDAT traces; general
and detailed. The general trace is composed of one trace �le for each processor and each
I/O processor. Normal node processors are numbered 0, 1, . . . , and I/O node processors are
numbered -1, -2, Each record in the general trace is generated to report one cache miss
or replacement or to report the change in the processor status between active and idle. The
record format is

clock addr code proc node bank hnode status sharing list -1,

where

� clock: is the pseudo clock.

� addr: is the cache line virtual address.

� code: is the record type code, request and return records have the same code numbers
as de�ned below. The start active status record code is 91 and the start idle status
record code is 92.

� proc: is the number of the requesting processor in its node.

� node: is the node number of the requesting processor.

� bank: is the number of the memory bank in the home node.

� hnode: is the home node number of the line.

� status: is the status of the line; 1: idle (not cached), 2: shared, 3: exclusive, and
4: dirty.

� sharing list: is a vector that speci�es for each processor whether it has a copy of
this line; 0: does not have a copy, and 1: has a copy.

� \-1": indicates sharing list end.

24

For example, the record

11351 277248 2 0 3 1 2 4 0 0 1 0 0 0 0 0 -1

says that at clock 11351 processor 0 of node 3 has a load miss for the line 277248 which has
home at bank 1 of node 2. This line is dirty in proc 2 of node 0 (assuming 4 processors per
node).

CDAT detailed trace �le contains all the sequences of transactions of all processors. Each
transaction can be classi�ed into one of the following six classes (the supported transactions
and their codes are listed for each class, also shown is the format of each class):

� Processor request, processor to memory, response is required:

{ read shar (01), on instruction fetch miss.

{ read shar or priv (02), on load miss.

{ read priv own (03), on store miss.

{ req inv (04), on store hit on a shared line.

{ read current (05), used by the I/O processor to read the current copy of a line
without joining its sharing list.

{ write purge (06), used by the I/O processor to update a memory line, invalidating
cached copies, and ignoring write backs.

Record format: clock addr code proc node bank hnode

� Memory response, memory to processor:

{ data shar (11), shared copy of a cache line.

{ data priv (12), private copy of a cache line.

{ alloc done (13), private ownership granted.

{ write purge done (14), write purge completed.

Record format: clock addr code bank hnode proc node

� Processor return, processor to memory, no response is needed:

{ write back (21), for dirty lines.

{ update data (22), as a response to snoop hit on a dirty line. This transaction is
not reported in the general trace.

{ update tag (23), relinquishing a clean private line (exclusive).

Record format: clock addr code proc node bank hnode

25

� Memory recall, memory to processor, response is required:

{ recall shar (31), recall transaction for read priv.

{ recall shar or priv (32), recall transaction for read shar or priv.

{ recall priv own (33), recall transaction for read priv own.

{ inv (34), invalidate remote copies for req inv.

Record format: clock addr code bank hnode proc node

� Cache to cache recall response, processor to processor:

{ c2c data shar (41), shared copy of the line, need to forward data to home.

{ c2c data priv (42), private copy of the line, need to forward data to home.

{ c2c data priv own (43), private copy of the line, no need to forward data.

Record format: clock addr code proc node proc node

� Recall response, processor to memory:

{ recall c2c data (51), after c2c data shar or c2c data priv.

{ recall c2c done (52), after c2c data priv own.

{ inv done (53), response to inv.

{ recall nack shar (54), negative acknowledgment due to not dirty line.

{ recall nack inv (55), negative acknowledgment due to not available line.

{ recall data (56), returning dirty line to memory.

Record format: clock addr code proc node bank hnode

CDAT generates a sequence of transactions in response to a cache miss or replacement. Each
sequence of transactions starts with either a processor request or a processor return transac-
tion. A sequence that starts with a processor return transaction has a singular transactions.
Transaction 22, update data, can end the �rst three processor request sequences.

26

