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1.0 INTRODUCTION

This report presents the workload characteristics of a busy
customer Internet World Wide Web Server. The purpose of
this study is to obtain a better understanding of today’s
WWW traffic patterns and to set the stage for analysis of sys-
tem resource utilization as a function of Web Server work-
load. By workload we mean both the request stream
presented by clients (the work) as well as the server response
to the requests (the load). Characterization involves deter-
mining and describing the fundamental character of the
workload as presented over time. This report describes in
detail the requests made by clients to the WWW server and
the characteristics of the system’s response, including the
distribution of response sizes and server response times. We
conclude with a set of system performance recommendations
for this server.

With an understanding of the workload as it evolves over
time performance engineers can analyze the demands users
of a service are placing on the system and see trends in user
behavior over time. One of the benefits of workload charac-
terization is that it allows construction of analytical models
of the workload and simulators that emulate client behavior
in order to study the performance of similar systems in a
controlled lab test environment. In this controlled environ-
ment it is possible to measure with greater accuracy the
effects of the various types of user requests and thereby con-
struct accurate models of server system resource utilization
as a result of a given workload.

A model of system resource utilization supports capacity
planning for future deployments where the workload is
known and helps developers assess trade-offs in application

development based upon application and system workload
data from the field. Developers and system managers can
optimize system architecture and design in such environ-
ments to achieve optimal performance.

1.1 System Under Study

The Web server system we studied consisted of a single HP
9000 Model 735 workstation with 144 MB of system RAM,
two 2 GB disks connected via fast wide SCSI, on a 10BaseT
Ethernet network with T3 Internet access. The Web server
implementation was NCSA 1.5 [1] with a local modification
that allowed us to collect server response time information
(see "Server response time" on page 8 for a description). The
NCSA implementation uses one server parent process to
receive all incoming requests and creates a site-determined
number of pre-forked HTTP daemon (httpd ) processes.
The server we studied used 40 persistent children processes.
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Abstract

Use of the Internet and the World Wide Web have increased rapidly over the past few years. HP customers deploying Web
servers want to understand how their servers are being used by Internet users, how those patterns of use are changing over
time, and what steps they should take to ensure adequate server response to the incoming requests today and in the future. This
requires an evaluation of the requests offered to the Web server and the characteristics of the server’s response to those
requests over a suitably long time interval.

In this report we present the results of a study of one customer’s Internet Web server system over a two month period. During
that time the traffic to the site increased significantly in terms of incoming requests and outgoing bytes. We examine the
request and response types, and characterize the traffic distribution on the basis of request size, response time, and other fac-
tors. We conclude with system performance recommendations and identify future directions for our Web research.
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The architecture of the Web server system is shown in Figure
1. In the figure the Client browser application creates a TCP
connection to the server system and makes an HTTP request
to the Parenthttpd  process. The Parenthttpd  gives the
request to one of the existing (“pre-forked”) Childrenhttpd

processes for service. (If there are not enough Children pro-
cesses a new process will be created dynamically to handle
the request and will exit when the request is complete.) To
satisfy the HTTP request the Childhttpd  process:

1. parses the incoming request to determines what con-
tent the client desires

2. retrieves the content (in the case of HTML or Image
requests) or computes the result (for dynamic CGI
requests).

CGI (Common Gateway Interface) requests invoke
applications to return computed content each time they
are selected. They are invoked as the result of the post-
ing of a form, clicking on an activeimage map or a
hypertext link that refers to aCGI script.

3. writes the resulting content to the TCP connection and
closes the socket.

The Client browser receives the result of the request and dis-
plays it to the user.

The study period consisted of two months during which we
received daily logs from the HTTP daemon processes
(httpd  logs request completions toaccess_log ) and from
the MeasureWare Agent system performance instrumenta-
tion. There were no significant failures or major server
changes so the data is of very high quality.

1.2 HTTP Daemon Log File Format

To characterize the workload offered to a WWW server sys-
tem we examined the client request completions logged by
the HTTP daemon process (httpd ) to its access_log  file.
Each WWW request causes a line to be added to this file
containing the following information:

● a timestamp indicating the arrival time of the request

● the address of the system making the request: either the
client system’s IP address or the IP address of an inter-
mediate firewall or proxy server supporting the client

● the type of request (GET an HTML file, POST a
response to a form, etc.)

● the URL target of the request (which may contain
parameters)

● the HTTP status after the processing of the request (OK,
error, redirect)

● the number of bytes returned, and

● from the OpenMarket server or our enhanced NCSA 1.5
httpd  the server response time of the HTTP request.

Server response time is the difference in wall clock time
between when the request arrived at the Child process
and when the last byte of content was written to the net-
work socket by the Childhttpd .

Using this information we analyze the offered workload in
terms of the request type and interarrival time; the content
size on the site; the response size and server response time;
the clients requesting service; and so on.

Note that this study focuses only on the server system and in
particular on the behavior of thehttpd  processes on the
server. This study does not capture the client behavior nor
the behavior of the intervening (Internet) network(s)
between the Client browser and thehttpd  processes. In par-
ticular this study does not examine the effects of client cach-
ing, WWW proxy cache or firewall systems, or end-to-end
latency of data returned to the client; these are all noted as
important aspects of WWW application performance.

Note also that thehttpd  server response time metric is an
optimistic view of the end-to-end latency and throughput of
each request (see "Server response time" on page 8). Despite
this fact,httpd  server response time provides us with an
important attribute of server system behavior, namely the
duration of service for a request by the Childhttpd  process.
This information is used to construct an analytic model of
Web server performance in [2]. That model predicted client
response times based upon the server response time.

1.3 Performance Analysis Toolkit

The volume of data in thehttpd  log files is quite large—
usually 20-30MB per day (uncompressed) for a busy Web
site. We needed a way to analyze this data quickly and effi-
ciently so we developed the Performance Analysis Toolkit
[3]. Using the Toolkit, the performance analyst converts the
ASCII logs to a record-oriented binary format, and then uses
tools that scan the binary records to capture the metrics
under study. By performing analysis on the binary data our
tools achieve a roughly 50x speedup relative to previous
tools that ran on the raw log files.

The analysis process consists of three distinct phases.

1. Data Conversion. Conversion of theASCII httpd  logs
to the corresponding binary “reduced log format”.
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This is done once per log file. A converted log file is
around 20% of the size of the rawASCII log file.

2. Data Reduction. Computation on the binary logs
resulting in tabularASCII output. The reduction tools
are separate, modular applications using the library
Framework to access data in the binary logs.

3. Visualization. Presentation of the results of the reduc-
tion tools. The visualization tools are mostlyperl

scripts that use thegnuplot  utility to create the
graphs presented in this document for our analysis.

Workload Visualization and Analysis

This paper examines requests at a Web server by unique file
size, response size, server response time, and throughput
using a variety of statistical analyses including the mean,
median, and sample distribution of the data. These distribu-
tions are presented using a combined plot with a histogram
and the Cumulative Distribution Function (CDF) for the data
set.

For the histogram and CDF the data were segmented into
logarithmic (base 2) sized buckets; e.g., the 128 byte bucket
includes all responses between 64 and 127 bytes. The fre-
quency value corresponding to each of the buckets in the his-
togram represents the proportion of occurrences of a data
value in that range. The CDF line represents the cumulative
frequency of the current and all previous buckets.

The reason for doing using a logarithmic distribution is that
the data we see (such as file size or response time) has a
great variance. If using a linear scaled distribution, most of
the data would be crowded by the Y axis, with a large num-
ber of empty buckets at the high end. With a logarithmic dis-
tribution we can more clearly see the detail at the low end,
while also capturing the range at the high end.

The point at which a CDF graph crosses the 50% frequency
indicates the median value for a distribution. The tallest his-
togram box corresponds to the mode (most frequently occur-
ring value) of a distribution. We typically plot both the
arithmetic mean and the geometric mean on the distribution
for reference. The arithmetic mean is the ordinary sum of the
values divided by the number of values. The geometric mean
is the Nth root of the product of the values. The arithmetic
mean is coincident with the median in a balanced distribu-
tion, such as a normal or uniform distribution. The geometric
mean is coincident with the median in a log-normal distribu-
tion (the geometric mean can also be computed as the arith-
metic mean of the log of the sample values).

1.4 Document Outline

The remainder of this document presents our analysis of the
workload on the Web Server under study. The workload
study is presented in sections as follows.

● Section 2.0 examines the traffic offered tohttpd —in
daily, weekly, and hourly periods

● Section 3.0 examines the user requests by type and the
distribution of file sizes for content on the site

● Section 4.0 examineshttpd  responses by type, size,
server response time, and throughput.

● Section 5.0 examines the distribution of user requests in
terms of the client network.

● Section 6.0 summarizes the work and presents some
directions for future research in the area.

● Appendix A contains supplemental images referenced
throughout the text.

The paper concludes with a discussion of the next phase of
study, speculation about the likely evolution path for Web
workloads, and the impact of those changes on system per-
formance.

2.0 TRAFFIC PATTERN ANALYSIS

This section presents a view of the aggregate traffic at the
httpd  processes on the server system over the analysis
period of April and May 1996.

Figure 2 Daily Traffic

Figure 2 shows the total traffic seen byhttpd  in terms of
HTTP client requests (commonly referred to as hits) and
megabytes transferred fromhttpd  as a result of those
requests. In this figure hits are presented using lines connect-
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ing the values from day to day using the left-hand Y axis;
megabytes are represented by vertical bars read on the right-
hand Y axis.

From our analysis we observe the following.

● The httpd  throughput for the two month period aver-
aged 2.5 GB/day for all transfers or 30KB/sec aggregate
continuous traffic. This is the total data volume out of all
httpd  processes for all concurrent connections.

● The system received 12.3 million connection requests
over the period averaging over 200,000 hits/day (nearly
8,400 hits/hour). During periods of activity there were
on average 24 concurrent connections1; the peak was 90
concurrent connections at one point.

● The average throughput per HTTP connection was
1.5KB/sec. Connection throughput is calculated by
dividing the transfer size of a request by server response
time.

● The traffic athttpd  is increasing both in terms of hits
per day and megabytes transferred per day.

● A linear regression of the traffic on weekdays for these
two months showed the traffic to be increasing at
roughly 7,000 hits per week and 37MB per week. Some
caveats to be aware of with this estimation:

❏ Growth may not be linear: Internet usage is growing at
an exponential rate [4].

❏ System capacity will eventually limit growth, reducing
the apparent growth rate.

❏ Advertising of the site (explicit and implicit, such as
by advertising a product discussed on the site) can
have a significant effect upon traffic.

❏ The correlation coefficient for the weekday regression
fit was r2=0.58 indicating there is still a substantial
amount of variance not covered by our estimate (when
considering all days the fit was very poor: r2=0.19).

Weekly Traffic

The traffic in Figure 2 shows clear periodicity with the day
of the week. A further analysis shows the expected periodic-
ity with hour of day as well. Figure 3 plots the aggregate
HTTP traffic by hour for each day of the week in the period
studied.

1.  A concurrent connection is a request that starts prior
to the end time of one or more earlier requests. End
time is defined as start time plus server response time.

Figure 3 Weekly Traffic

From Figure 3 we observe:

● Monday through Friday have a similar traffic pattern;
Saturday and Sunday are slower days and show different
patterns from each other and from the other days.

● The slow time in the above chart is between 04:00 and
07:00 each day. The busy time is 16:00 on weekdays;
22:00 on weekends.

● The number of hits at 22:00 on Sunday is greater than
the number of hits at 22:00 on any other day of the
week.

Hourly Traffic

The weekly traffic is also periodic within a day (as evident
from Figure 3). The peak utilization is during the work week
so we examined traffic for the weekdays (Monday-Friday)
by hour.

Figure 4 Weekday Hourly Traffic
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Figure 4 shows that the byte traffic tracks closely with the
request rate during weekdays and indicates the peak traffic
hours are 15:00-16:00 (Eastern time). Further analysis of
system resource utilization and bottleneck analysis will
focus on this peak time.

3.0 USER REQUEST CHARACTERIZATION

Aggregate Requests by Type

This section characterizes the user requests by looking at the
type of requests made by users, the request interarrival time,
and the size distribution of files requested from the site.

Figure 5 presents the traffic by HTTP request type. The
request type is determined by looking at the URL (path and
extension) requested by the client. At this site the dominant
type per request is images; this is consistent with what we
observe at other sites with professionally developed content.
Looking at the numbers in terms of bytes transferred, images
are by far the dominant type with nearly 90% of the byte
traffic (see Figure 12 in Appendix A). This is typical given
the size distribution of images (see Figure 15). Note that
there is no video content on the site and audio content repre-
sents only a small portion of the requests.

Figure 5 Aggregate Requests by Type

Request Interarrival Time

The interarrival time for hits at the server indicates the rate of
user requests as well as the think time for both browsers and
human users. A user request is a collection of hits starting
with an HTML request and including that HTML and any
subsequent inlined Image requests. Browser think time is the
interval between retrieval of an HTML file and the subse-
quent request for inlined images within the same user

request. User think time is the time between user requests by
the same user.

Unfortunately at this site a majority of the requests come
through firewalls and cache servers. These intervening serv-
ers coalesce many users into one client IP address (which is
how users are identified), so the content server sees only one
apparent user. Therefore our ability to detect individual user
requests is greatly diminished, and we cannot perform an
analysis of user think time at this site. Our measurement of
user requests provides only a lower bound on the actual
number of user requests at the site.

Figure 6 shows the distribution of the interval in seconds
between subsequent requests for any content on the site. This
httpd  implementation logs requests with only second gran-
ularity so a finer breakdown of the interarrival times within
one second is not available.

Figure 6 Request Interarrival Time

This distribution is consistent with the high concurrent usage
rate on the server (on average 24 concurrent requests): the
interval of time between requests should be very small with
so many concurrent requests (the mean request interarrival
time at this site was 0.4 sec). When we examine the interar-
rival time just for HTML documents the peak moves to the
[1-2) second bucket but still drops off rapidly as above.

Looking at the interarrival times strictly for the site’s home
page we see that the median arrival time between requests
for the site’s home page is 8-15 seconds. (See Figure 13 in
Appendix A). We interpret this to mean that a new user is
selecting the site that frequently, either by clicking a link that
leads to the site or selecting the site from their bookmarks or
favorites. Existing users navigating within the site should not
generate a hit on the home page since it will likely be in their
browser’s cache.
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File Size Distribution

First we examine the distribution of the unique files on the
server system (i.e., ignoring multiple requests for the same
file).

Since this analysis used only thehttpd  logs we cannot ana-
lyze the distribution of files that were never requested, only
those that were requested one or more times. We only con-
sidered those transfers which had non-zero size and were
successfully retrieved (i.e., had a HTTP server response code
of “200 OK”). Aborted transfers were ignored (they are
detected as “short transfers” as described below).

From Figure 7 the most common file size (the mode) is
between 2-4KB with 25% of the available files in that (2KB
wide) range. The CDF curve crosses the 50% mark at 4KB
as well, which indicates the median and the mode are coinci-
dent. Further, 95% of all files are less than 64KB in size.

The average (arithmetic mean) file size is 18KB; over 80%
of the files are smaller than the mean file size. This indicates
that relatively few very large files are responsible for much
of the upper tail of this distribution, and supports our use of a
logarithmic scale for examining file sizes. By contrast, the
geometric mean of this distribution is 4KB, which is coinci-
dent with the median.

We also looked at the rate of change of content files and
observed that the retrieval size for certain URLs changed
very frequently. The types of content changing in size fall
into the following categories.

● CGI (dynamic) content. The most frequently changing
content are CGI scripts, which return variable sized con-
tent depending upon the user query. Size changes are
expected to be frequent here (on the order of number of
retrievals per URL).

● Dynamic (.shtml) pages. Many of the pages on the site
return a dynamic date and time stamp; the formatting of
the date has a “feature” in which a leading 0 for the
minute or second value is omitted thereby changing the
size of the page by one or two characters.

● Large images. Size “changes” for these files often corre-
spond to short transfers—where the user clicks a link on
the page containing the image or instructs the browser to
quit loading the image (possibly by navigating through
their history stack or bookmarks, clicking with an image
map that is partially downloaded, or clicking the stop
button), causinghttpd  to receive a “broken pipe” indi-
cation on the socket. (The server still records it with the
status “200 OK”.)

The short transfers are of interest as they can indicate both
user frustration (in the case where transfers are too slow) and
unnecessary system work (transferring data that is ultimately
discarded). The six files with the most short transfers for
April and May were GIF images; most of them were image
maps, including the site’s home page. Over a quarter of all
transfers for these images were terminated before they were
complete. Their size ranged from 37KB to 67KB.

Performance Hint
To reduce the number of short transfers, frequently retrieved images
should be kept to a minimum size if possible, by reducing the image
size, its color depth, or by encoding it more efficiently (e.g., using
the JPEG instead of GIF format).

HTML and Image File Size Distribution

For HTML pages, the mode of the distribution is 2-4KB;
HTML files in this range account for most of the files in the
overall distribution for this range. The distribution of HTML
files tails off very quickly over 8KB. (See Figure 14).

The response size distribution illustrates the relative popular-
ity for files in each bucket. See Figure 16 on page 15 for that
discussion.

For images the file size distribution has a much heavier tail
than HTML files. The mode of this distribution is 16-32KB,
corresponding to moderate size and resolution GIF or JPEG
images. There are also quite a few images in the range 1-
2KB, corresponding to thumbnail or other small or low reso-
lution images. (See Figure 15.)

Content Popularity

Previous studies of Web workloads [8][9] have shown a high
degree of locality of reference among request streams. The
popularity for the content at a site tends to follow a power

Figure 7 File Size Distribution
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law distribution; some studies suggest that content popular-
ity specifically follows aZipf distribution. In general a power
law distribution is one of the form:

Y = xa (EQ 1)

For some constanta. In the case of the Zipf distribution the
constanta is exactly-1. Put another way, Zipf’s law predicts
that the number of hits of a document (H) is related to the
document’s popularity rank (r) via the formulaH = 1/r.

When we examine the popularity rank versus request count
at this site we see a similar pattern. We visualize this distri-
bution using a log-log plot in order to be able to see detail at
the low end of both the rank and hits axes; we also use the
log transformed data for curve fitting (linear regression).

Figure 8 Document Popularity vs. Number of Requests

For the first 1,000 URLs in popularity the slope of the best fit
curve (on the log-log plot) is -1.05 (with a correlation coeffi-
cient of 0.986). We include a line of slope -1.00 for compari-
son. However, for the first 100 URLs the slope is only -0.71.
The slope for the next two thousand URLs is 1.77 (with a
correlation of 0.999), and beyond that the slope was consis-
tently below -2 with a correlation coefficient of 0.99 or bet-
ter. This distribution confirms that popular content on this
site is very popular; in addition we observe that unpopular
content rapidly becomes increasingly unpopular. (Note that
there were over 10,000 distinct URLs available in April.)

These results were confirmed when looking at individual
days (to help reduce the effect of transient content).

4.0 SERVER RESPONSE

This section characterizes the response of the server to the
user request stream by HTTP response code (success, redi-

rect, failure), server response time, and response throughput
(the response size divided by the server response time).

On this site 88.9% of the requests are satisfied directly and
without error (the “200 OK” response code). Another 10.7%
of requests are “successful” in that they returned useful
information to the client browser. Less than half a percent of
the total responses were errors at the site. The other “suc-
cessful” request types are:

● 302 Found: The “Found” response type indicates that a
document has a different temporary location. This status
code is usually returned as a result of clicking on an
image map. The response contains a URL that the
browser should access instead—which typically the cli-
ent browser does immediately (causing a subsequent hit
on a different URL).

● 304 Not Modified: Some browsers and proxy cache
servers use HTTPCONDITIONAL GET requests to check
whether an HTML file or image in their cache is up-to-
date. TheCONDITIONAL GET request carries the last
known modification time for that content; the server
determines if the content has been modified since then.
If the server has newer content for that URL the newer
content is returned to the client (typically resulting in a
“200 OK” status code). If the document has not been
modified the server responds only with the “304 Not
Modified” status code saving a document transfer.

● 301 Moved: This response type indicates the document
has moved permanently to a different location. This is
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Table 1 Server Responses by Code

Response
code  Hits

% of
Total KBytes

% of
Total

200 OK 21863046 88.9% 3130003 99.9%

302 Found  1695286 6.89%  151406 0.05%

304 Not
Modified

 946528 3.85%  0.00 0.00%

404 Not
found

 74828 0.30%  30214 0.01%

500 Inter-
nal Error

 5672 0.02%  2888 0.00%

301 Moved  4784 0.02%  0.00 0.00%

401 Unau-
thorized

 1418 0.01%  0.00 0.00%

000
Unknown

 104 0.00%  28 0.00%
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returned in most cases when a client browser requests a
URL that corresponds to a directory without including
the trailing “/” character. The response also includes the
URL the client browser should contact for the document
(with the trailing “/”)—the browser will immediately
request that URL.

Performance Hint
Links to directories on a site should either end with “/” or fully
specify the HTML file “.../index.html” to prevent the additional
round-trip from the client.

Response Size

The httpd  response size analysis is similar to the file size
distribution analysis except it examines each transfer, not
just each unique file. As mentioned earlier this response size
value is the size of the HTTP data and does not take into
account protocol overhead. Overhead varies with connection
type, HTTP content, and network condition (which deter-
mines retransmission requests and TCP window size).

Figure 9 HTTP Response Size

At this site the arithmetic mean of the response size was
13KB; the median response size was 2-4KB. The mode coin-
cided with the median but the distribution of response sizes
has a minor mode at 128B and another at 64KB. These
minor modes correspond to the modes of the distribution of
CGI and Image requests respectively. These can be seen
clearly from the HTML, Image, and CGI response size
graphs (see Appendix A). The 64KB bucket includes trans-
fers of the site’s home page which is a 49KB image map.

From this CDF 50% of all responses are for 4KB of data (the
median) or less and 95% of all requests are for files of 64KB
or less. The mean in this distribution is much larger than the
median and mode indicating that some very large transfers
are responsible for a significant amount of the traffic.

Comparing this distribution with the distribution of file sizes
it is apparent that the CGI content is responsible for a moder-
ate number of accesses (the CGI file size distribution cannot
be calculated and therefore is not presented). The file size
distribution also falls off more consistently from its mode
than the response size distribution, indicating that large files
(especially images in the 32-64KB range) are relatively more
popular on a hits-per-file basis. This could be caused by cli-
ent caching effects (such as large image files flushing other
files out of the browser’s cache) or user preference.

Figure 16 presents the size distribution for HTML files only.
The figure shows that the 2-4KB HTML files are very popu-
lar, accounting for nearly 50% of all HTML transfers. In the
HTML file size distribution (Figure 14) there were a number
of HTML files in the 1-2KB range which are proportionately
less popular than 2-4KB HTML files; and 256-512B files
(5% of all HTML files) are rarely requested (less than 1%).

For images (Figure 17) the most common transfer size on
our logarithmic scale is for images in the range from 32-
64KB (a 32KB wide range) with 16% of the transfers. How-
ever the scale is deceptive—the number of transfers of
images in the 7KB range [1KB-8KB) (represented on the
chart by the 2KB, 4KB, and 8KB histogram buckets) is
nearly three times greater accounting for about 45% of all
image transfers. Furthermore 77% of the transfers were
smaller than 32KB.

Comparing this figure to the file size distribution of images
(Figure 15), there is a preference for requests of the larger
(32-64KB) images on the site as compared with the 8-16KB
and 16-32KB images, of which there are actually many more
files on the site. The site’s home page explains some of this
effect: it is 49KB and accounts for 3% of all transfers.

The CGI content returned (Figure 18) shows a pronounced
spike at 64-127 bytes corresponding to a few lines of text or
URLs. There is another peak at 2-4KB corresponding to
larger content such as documentation or image thumbnails.

Server response time

The server response time metric at this site was collected
using a special instrumented version of the NCSA 1.5
httpd . This daemon notes when a request arrives at an
httpd  process and computes the total elapsed time in milli-
seconds until the last byte has been written to the network
protocol stack byhttpd . This measurement does not cap-
ture client or network delay—in particular it does not take
into account the time for:

● client connection setup (one round trip to the server sys-
tem) prior to the request arriving at the Web server
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● request queueing and protocol processing delay on the
server system prior to arriving at thehttpd  process

● server transmission of the last window of TCP data from
server system’s network buffers to the client system

● TCP connection teardown on the server system

● Any processing time or I/O latency on the client system.

The last TCP window of data is typically not more than 8KB
of data and can be even less (the TCP window cannot open to
its full size if there is little data to transmit). The server
response time metricdoes include the round trip time of all
network transfers and the corresponding client acknowledg-
ments except for the last window of data. Client acknowl-
edgment of each data packet is required by TCP before the
window size is increased or subsequent data is sent by the
server.

We have studied the correlation betweenhttpd  server
response time and client response time in LAN and FDDI
environments and have found the discrepancy of reporting to
vary considerably with the response size. The response time
is within 10% of the server response time for transfers over
128KB; but for smaller transfers the metrics can differ by
more than a factor of 10. We have not evaluated the discrep-
ancy across the global Internet. Such a study must take into
account the variety of clients and service providers; the dis-
crepancy here would also be substantial.

Figure 10 Server response time

Note that while the server response time metric does not give
an accurate measure of client response time for most (98%
of) transfers, it is still a valuable measurement in the sense
that it reflects the timehttpd  took to satisfy each request.
This is potentially important for server resource utilization
and system capacity planning.

The server response time distribution shows that the most
common server response time was 256-511 msec. The
median server response time was under 512 msec (60% of
clients were served within 512 msec ofhttpd  residence).

However this distribution has a very heavy tail. Thehttpd

arithmetic mean server response time was nearly nine (9)
seconds and 10% of all requests took 15 seconds or longer to
satisfy. The distribution of image and CGI requests
accounted for much of the heavy tail as can be seen from
their graphs in the following sections; in particular the con-
tribution of images accounts for 85% of this tail of requests
taking 15 seconds or longer to satisfy.

For HTML files (see Figure 19) the server response time has
a strong peak and falls off consistently on the upper and
lower ends paralleling the HTML response size distribution.
Interestingly, the mode and median of the HTML response
time distribution are 256-511 msec, and there are very few
(less than 4%) responses less than 128 msec. However, we
see that 28% of all responses (and nearly 40% of Images) are
served in under 128 msec. This anomaly is caused by the use
of parsed HTML, in which thehttpd  examines the HTML
content and expands variables in the content (e.g., the
LAST_MODIFIED tag is replaced by the modification date
of the HTML file). However, since the content sizes are rela-
tively small (compared to Images) the network latency is
limited; and since they are consistent in size (see "HTML
File Size Distribution" on page 15), the processing time is
also limited on the upper end.

Performance Hint
In order to reduce CPU consumption on this site the use of parsed
HTML should be limited. Nearly all of the HTML content on this
site was parsed by thehttpd , requiring additional CPU time. The
main use of parsed HTML on this site was to expand the content
modification time. This technique can be replaced by the use of
static information in the content to reduce CPU utilization.

Images present an entirely different distribution from HTML
content (see Figure 20). The CDF for this distribution is
nearly a straight line on a logarithmic plot, indicating an
exceedingly heavy tail. Further analysis reveals:

● The median server response time for image requests is
still under one half second, but the arithmetic mean is
over 13 seconds! A few very long requests are skewing
the mean significantly from the distribution’s median
value.

● Only 18% of all requests take longer than the mean
server response time; 5% of all requests have longer
than a minute server response time.
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● 3 requests took over an hour of server response time to
satisfy. These requests have a significant effect on the
mean, making it less useful as a predictor of system
behavior.

The heavy-tailed distribution is likely caused by large image
files going over slow network connections. The tendency for
a significant number of requests to take more than a second
combined with the relatively high request rate at this site
indicates a need for processing requests in parallel. (The
average concurrency level of 24 requests indicates that
response parallelism is being exploited at this site.)

The CGI response time distribution (for dynamic content)
also shows a heavy tail, although not as prominent as for
Images. The response time is quite long relative to the
response size distribution. This is because each CGI request
requires CPU processing (typically the running of aperl

script) in addition to disk data transfer and network protocol
overhead. The CPU processing time increases the server
response time prior to the data being returned. The CPU time
can be significant depending upon the nature of the CGI
application invoked.

Throughput (Response Size by Server Response Time)

Given the response size and server response time we com-
pute thehttpd  throughput on a per request basis.

At this site the server was on a 10BaseT Ethernet segment
connected to the Internet by a T3 link. The actual maximum
network bandwidth of the Ethernet segments and routers
between the server and the site’s Internet Service Provider
was not measured, but is assumed to be on the order of 5-8
Mb/sec.

The server throughput histogram and CDF show that the
median throughput is nearly 64Kb/sec (8KB/sec) and there is

a strong concentration of the rates around this value. 90% of
the requests result in 8Kb/sec or better transfer from the
server. Recall that server response time is a poor predictor of
client response time, so this throughput measure only
describes response throughput at the server.

We further examine the throughput for the HTML. Image,
and CGI types. We can see that the HTML throughput (see
Figure 22) is more consistent than for the other types. This is
expected given the response time and response size distribu-
tions.

For the Image type (Figure 23) the throughput distribution is
significantly broader than the HTML distribution—having
faster as well as slower transfer rates. The faster rates are due
to the small image content being transferred without parsing.
The slower rates of course are due to large image content
being sent across the Internet, possibly encountering net-
work congestion or slow connections. Interestingly, the
median throughput is the same for both HTML and image
content: 64Kb/sec.

The CGI throughput (Figure 24) is influenced by the added
latency due to extra CPU processing required to process
these requests.

5.0 CLIENT DOMAIN ANALYSIS

In this section we examine the domain origin of the user
requests. In thehttpd  logs only the IP address is recorded
(conversion to a DNS domain name is disabled on this site).
To compute the client network name we stripped off the host
portion of the requesting client’s IP address yielding just the
network number and converted this to a network name using
the InterNICnetworks.txt  database.

The 12.3 million requests to the site during the analysis
period, were from 368,000 distinct client IP addresses on
48,571 distinct IP networks. Of those:

● 17 were class A networks, 4,395 were class B networks,
and the rest were class C.

● The distribution of requests by client network followed
a power law distribution (y=xa) in terms of both hits and
bytes transferred. The correlation coefficient for this fit
was r2=0.98 for hits (r2=0.61 for bytes).

● The greatest number of requests came fromAOL-BNET

with 2.81% of the requests (1.27% of the bytes, also the
most).

● The UUNETCUSTB36 + UUNETCUSTB37 networks
together accounted for 1.80% of hits and 1.70% of bytes
(more thanAOL-BNET).
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● User access from Internet Service Providers (ISPs
including AOL, UUnet, PSI, Prodigy, CompuServe),
Universities, industries, and governments seem to be the
main sources of requests to the Web Server.

❏ The most frequent University users are at UCB (Uni-
versity of California Berkeley) and RIT (Rochester
Institute of Technology)

❏ The most frequent industrial users are Xerox, HP, and

IBM, in that order.

● About 22% of accesses were from networks whose net-
work number was not registered in the InterNICnet-

works.txt  file as of May 30, 1996. This illustrates the
difficulty of keeping up with network changes.

6.0 CONCLUSIONS AND FUTURE WORK

The Web Server under study is a busy Internet site receiving
a quarter million hits per day and experiencing increasing
traffic on a week-to-week basis. The traffic tends to be simi-
lar to that at other Web sites based upon our experience and a
review of the literature. In particular, we can confirm several
of the invariants proposed by Arlitt in [9]. We see a similar
traffic growth to Kwan, McGrath and Reed [10], and confirm
their weekly and hourly request patterns.

We also observe that the document popularity profile as
noted by Almeida, Bestavros, Crovella, and de Oliveira [8].
We have not to date explored their other findings regarding
content locality of reference, and note this as an area for
future research.

During the workload characterization phase we have not
examined system resource utilization in depth; but based
upon the data we have it does not appear the server system
was under extreme pressure for the duration of this study. We
conclude this by examining the daily and weekly traffic
graphs: systems under severe request pressure tend to have a
pronounced “flat top”, a period during which the maximum
number of hits or bytes per time period remains consistent. A
“flat top” can indicate either that the request or response traf-
fic exceeds the available network bandwidth or that the mean
arrival rate at the server is greater than the mean service rate.
In the latter case, a server system or network bottleneck is
limiting the service rate. This simple analysis does not give
any insights on how to improve the performance for the end
user, nor does it indicate the point at which a resource bottle-
neck will limit system performance in the future.

6.1 System Performance Recommendations

During this study image content dominated the site’s traffic
in terms of bytes transferred with HTML coming in second.
This is consistent with traffic at other Web servers with many
images (commercial sites with professional content tend to
rely heavily on images). The primary task of thehttpd

when returning image and HTML content is the transfer of
file system data from disk (or cache memory) to the network.
In order to maximize system performance the key factors are
cache size and overall I/O bandwidth.

Table 2 Top 25 Client Networks

Client
Network Hits % MB %

aol-bnet 345409 2.81 1988362 1.27

uunetcustb36 155062 1.26 1834390 1.17

psineta 69153 0.56 922992 0.59

websterxerox 67946 0.55 299624 0.19

ucb-ether 67197 0.55 206383 0.13

uunetcustb37 66320 0.54 819372 0.52

194.25.2.0 62592 0.51 617513 0.39

hp-internet 39272 0.32 620935 0.40

swipnet 39262 0.32 563956 0.36

204.148.103.0 32104 0.26 255688 0.16

198.83.19.0 31111 0.25 294468 0.19

mindspring 27800 0.23 333586 0.21

ans-bnet14 27763 0.23 423865 0.27

demon 27113 0.22 301735 0.19

hinet-b 25338 0.21 236085 0.15

jaring-nat 24608 0.20 299322 0.19

ans-bnet15 24401 0.20 326063 0.21

rit 22809 0.19 276080 0.18

ibm-hpcc14 21767 0.18 341732 0.22

203.241.132.0 20960 0.17 238972 0.15

198.83.18.0 19881 0.16 158079 0.10

commscicntr2 19061 0.16 377036 0.24

motorola 18253 0.15 261326 0.17

idt2 18139 0.15 225869 0.14

uiuc-campus-b 17621 0.14 229962 0.15
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● WWW content exhibits a great degree of server-side
temporal locality of reference (see [5][8][9]), so LFU
caching allows hot content to be served from memory
instead of disk. Client side and proxy caching are also
important to reduce server load.

● I/O bandwidth from disk to memory and bus bandwidth
between memory and network are a premium resource
in large, busy web servers.

● Network bandwidth between the server and the nearest
Internet NAP is a key performance factor (this may be
the limiting resource at the site we studied). The local
network must have sufficient bandwidth for the number
of concurrent connections.

● At busy Internet sites there will be a large number of
concurrent requests. To serve these requests there
should be a sufficient number ofhttpd  processes; this
may require tuning the maximum number of user pro-
cesses. Operating system network buffer space and the
maximum allowed number of open TCP connections
must also be sufficient for the expected workload.

6.2 WWW Workload Evolution

Over the next few years we expect to see a change in Web
workload as more content becomes available, as more of it is
professionally produced and managed, more clients (end
users) come on-line, network bandwidth increases, and avail-
able content expands to include new media types.

Currently Internet bandwidth is a limited resource, particu-
larly at the network edges (and especially into homes with
analog phone line modems). With increased deployment of
Broadband Internet Delivery Systems (HP BIDS or its com-
petitors) into consumer premises using high speed access
networks like cable modems or high speed telephony
(ADSL, etc.), consumer connection speeds will approach
that of the enterprise desktop. This deployment is projected
to take many years due to the high cost of installing infra-
structure capable of providing this access to consumer pre-
mises. But as network bandwidth increases audio and video
content will become possible to deploy in real-time and with
adequate quality. Availability of these services will likely
cause a significant change in the user request pattern and
given the media size, will quickly dominate today’s image
and HTML content in terms of total bytes transferred.

However, it is not likely that significant amounts of audio
and video content will be served by today’shttpd  with the
current download-and-play model. For these content sizes,
streaming is a more natural access method:

● Downloading content first takes a significant time dur-
ing which the user must wait; with a streaming service
the user begins playing the content as soon as a local
buffer pool is sufficiently primed (to accommodate jitter,
or network delay variance).

● Downloading content requires a large amount of disk
cache on the client system. Using a browser’s native
download-and-play model this large content will flush
many smaller pieces of content from the cache, lowering
cache utilization. By contrast streaming applications are
designed to buffer only enough content to provide the
required quality of service for the stream, and thus do
not involve the browser cache.

● However, streaming media will not be possible until
there is enough available network bandwidth to accom-
modate the stream with acceptable delay jitter. If the
network pipes are either too small, or subject to conges-
tion and high delay variance, downloading the content is
the only viable solution.

In addition to isochronous audio and video content, higher
network bandwidth will allow the use of more and larger
high resolution images. With the coming availability of high
quality consumer print devices (the next generation of Desk-
Jet technology), consumers will increasingly be retrieving
and printing large image content. This content will not cause
a qualitative change in the workload, but will cause more
image content to be transferred per connection. Depending
upon a site’s file size distribution and response size distribu-
tion, alternative local and remote caching mechanisms may
be in order to reduce either user requests (by caching many
small files) or bytes transferred (by caching more large popu-
lar files). This trade-off is discussed to some extent in [9].

6.3 Future Work

The next phase of our study will focus on system resource
utilization as a function of offered workload. The study of
resource utilization will be based uponhttpd  logs and daily
MeasureWare Agent (PCS) logs we collected during the
study period. The primary contributions of the resource utili-
zation phase will be to understand current system behavior,
perform a primary bottleneck analysis to determine the
resource most responsible for limiting current performance,
and to create a model describing system resource consump-
tion as a function of offered workload and a related capacity
planning model to allow system sizing based upon expected
workload. Using the resource model we will be able to esti-
mate the point at which the current system will be saturated
and the most effective solution to that condition.
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At the time of this publication a study of the data from this
site using the Layered Queueing Network Model analysis
technique has been performed and the results prepared for
publication in [2].

In addition to the exploration of Web server performance,
other important areas of research include proxy and cache
server performance. A proxy server provides clients the abil-
ity to cross security domains (firewalls) to retrieve content; a
cache server provides a single content cache for many co-
located client systems. Content caches are often located at
proxy servers, since requests must travel through the proxy.
This combination is referred to as a “proxy cache”. Some
research topics in this area include cache server utilization,
bandwidth reduction on network links, and latency reduction
for clients. All these are affected by cache server topology
and must be studied in relation to various topology models.

Another area of study is exploration of the traffic for self-
similarity. Several papers have characterized traffic at Web
servers and observed the presence of long-range dependence
in the traffic [6][8]. These studies have not analyzed traffic
over long time frames as we have; it would be interesting to
determine if a two month traffic trace shows the same levels
of long-range dependence and locality of reference among
requests as seen in these other research papers.
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APPENDIX A

This appendix contains 13 supplemental images referenced
in the text.

Figure 12 Aggregate Response Bytes by Type

Figure 13 Home Page Interarrival Time
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Figure 14 HTML File Size Distribution

Figure 15 Image File Size Distribution

Figure 16 HTML Response Size Distribution

Figure 17 Image Response Size Distribution

Figure 18 CGI Response Size Distribution
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Figure 19 HTML Server Response Time

Figure 20 Image Server Response Time

Figure 21 CGI Server Response Time

Figure 22 HTML Response Throughput

Figure 23 Image Throughput

Figure 24 CGI Throughput
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