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Abstract
High capacity, high throughput, chunk-based inline
deduplication systems for backup have been commer-
cially successful, but scaling them out has proved chal-
lenging. In such multi-node systems, the data needs to
be routed at a large enough granularity to sustain local-
ity at the back ends. Two routing algorithms, Min Hash
and Auction, have been put forth for this purpose. We
demonstrate that these algorithms perform poorly on in-
terleaved data. Interleaved data occurs when multiple
streams are multiplexed into a single high-speed stream
to speed up backups. Of particular commercial impor-
tance, database backup procedures produce such inter-
leaved data, where multiple threads read database files in
parallel.

We present a new routing algorithm, Sticky Auction
routing, that, unlike existing algorithms, handles inter-
leaved data with little deduplication loss. It also achieves
comparable or better deduplication performance for non-
interleaved data and good load balancing, especially
when multiple streams are used, the typical case.

1 Introduction

High capacity, high throughput, chunk-based inline
deduplication systems, primarily aimed at deduplicating
backup streams, have been successfully introduced to
the market by multiple vendors. These systems achieve
high scale (e.g., 1 GB/s per input stream, 100s of TBs of
raw capacity) throughput economically by holding only a
fraction of chunk hashes in RAM and selectively retriev-
ing hashes from disk based on chunk locality [7, 10].

Scaling out such deduplication systems to multiple
nodes with global deduplication (i. e., all data remains
available to deduplicate against) while keeping their cost
advantage has proved challenging. To maintain chunk lo-
cality upon which their cost advantage depends, each in-
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coming stream needs to be routed between nodes in such
a way that locality is sufficiently preserved for each node.
The only known solution [3,5] is to break each stream of
chunks into much larger segments, and then route each
segment in its entirety to a single node such that similar
segments (i. e., segments that have many chunks in com-
mon) are routed to the same node with high probability.
Then each node can use its locality-based deduplication
scheme locally to economically find identical chunks. A
small amount of deduplication is expected to be lost due
to routing inefficiencies because nodes do not dedupli-
cate against data mistakenly sent to a different node.

Two routing algorithms have been proposed for this
purpose: Min Hash [3], which routes segments based
solely on their contents, and Auction [5], which routes
segments based on which nodes currently have data most
similar to the current segment. They have been demon-
strated to work well on many types of backup data.

However, as we show, they perform poorly on inter-
leaved data, which occurs when multiple streams are
multiplexed to produce a single high speed stream. In-
terleaving is recommended as a ‘best practice’ technique
for speeding up database backups by major database ven-
dors [1, 2]: backup windows can be shortened by having
multiple threads read tables in parallel, multiplexing the
results into a single stream. Databases are of particular
commercial importance in the backup market since pro-
tecting database applications is seen as top priority [9].

We present a new routing algorithm, Sticky Auc-
tion routing, which, unlike the existing algorithms,
handles interleaved data with little deduplication loss
and achieves comparable or better deduplication perfor-
mance for non-interleaved data. It also achieves good
load balancing, especially when multiple streams are
used, the typical case.

The rest of the paper is organized as follows: the next
section provides the background. Section 3 demonstrates
the problem caused by interleaved data. Section 4 de-
scribes our approach, Sticky-Auction routing. Section 5
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Figure 1: A multi-node deduplication architecture.

demonstrates the effectiveness of Sticky-Auction using
simulation experiments with real and synthetic data. We
conclude in Section 6.

2 Background

There are a number of ways to architect a system that
uses these routing algorithms to scale out economi-
cally. For illustration, we show a simple one in Fig-
ure 1. Here, there are a number of clients of the sys-
tem connected to front-end nodes. Communication is
stream-based, so clients stream backup data to be stored
to a front-end node. The front-end nodes break up
the incoming streams into small (≈4–8 KB) variable-
size chunks. Each stream of chunks is then grouped
into ≈1 MB segments using a variable-size segmenta-
tion algorithm [5, 7]. Similar to variable-sized chunking,
variable-size segmentation breaks segments using con-
tent landmarks (chunk hashes in this case) so that local
changes tend not to disturb segment boundaries.

A router running one of the routing algorithms is used
to route each segment to one of the back-end nodes.
Alternatively, each front-end node could run a separate
router instance; this is possible because these routing al-
gorithms maintain no or only stream-local state and each
stream passes through only one front-end node.

Each back-end node is responsible for performing lo-
cal deduplication of and storing the segments it receives.
It deduplicates every segment locally, against only the
data that it stores, not data stored at any other back-end
node. The system as a whole, nonetheless, performs
global deduplication because similar segments with high
probability do get deduplicated against each other. Each
back-end node operates autonomously, with local in-
dexing, storage, garbage collection, and management of
data.

2.1 The Min-Hash algorithm
Min Hash routes a segment based on the smallest hash
of any of its chunks. By Broder’s theorem [4], two seg-
ments that are highly similar—i. e., have many chunks

and hence chunk hashes in common—have the same
minimum hash with high probability [3]. Taking the
maximum hash instead or the only chunk meeting a land-
mark condition (e.g., the first hash in Dong et al. [5])
works similarly. Given m, the minimal hash of a seg-
ment’s chunks, a destination back-end node for that seg-
ment can be determined by numbering the back-end
nodes 0 . . . N−1 and choosing the back-end node num-
bered m mod N .

Min Hash is a stateless routing algorithm. That is,
where a segment gets routed depends only on the con-
tents of that segment and not on the state of the back-end
nodes. Auction, by contrast, is stateful, because where a
segment gets routed depends on the current contents of
the back-end nodes. The same segment could get routed
to different nodes at different times with Auction in some
corner cases. This means that routing results must be re-
membered with Auction but not Min Hash.

2.2 The Auction algorithm

In its simplest form, the Auction algorithm broadcasts (a
sample of) the hashes of the segment to be routed to all
of the back ends. Each back end returns a bid indicating
how well it expects that segment to deduplicate against
its data. The segment is then routed to the back end with
the highest bid. If no back end bids high enough, the
segment is routed to a random node. Ties are broken
randomly.

The idea is that the first time we see some data, we
put it somewhere convenient for load-balancing, and
thereafter when we see it again we send it to the same
place. For speed reasons, bid generation is usually done
via an approximation method that does not require ac-
cessing disk. For example, with a system based on
Zhu et al. [10], the number of hashes that hit in a node’s
Bloom filter can be used, whereas with a system based
on sparse indexing [7], the number of hashes that hit in a
node’s sparse index can be used.

We consider a somewhat more sophisticated version of
Auction in this paper, where the random decisions above
are replaced by choosing first in favor of the least-loaded
node, defined as the node currently using the least of its
raw capacity (i. e., size of deduplicated data). Any re-
maining ties are broken randomly. Preferring the least-
loaded node improves how evenly data is distributed
across the nodes (load balancing). Dong et al. [5] sug-
gest a number of additional modifications (e.g., weighing
bids, ignoring relatively overloaded nodes, rebalancing
nodes) to improve load balancing still further that we do
not consider in this paper.

In general, Auction has been found to perform better
than Min Hash on deduplication quality and load bal-
ancing at the cost of requiring more communication and
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Figure 2: Effect of interleaving.

computation [5].

3 The Problem

Interleaving, a process in which multiple streams of data
are multiplexed into one stream, is done to create a high-
speed stream from multiple low-speed streams. For ex-
ample, multiple slow disks may be read in parallel and
their data merged to into a single high speed backup
stream. Interleaving is not a deterministic process: the
order in which data pages from different streams are
merged depends on factors that differ moment to moment
(e.g., relative thread/disk speeds, I/O budget of the RAID
array).

Interleaving is commonly used to speed up backing
up databases in order to honor limited backup win-
dows [1, 2]. Here, one backup stream is created from
multiple database files stored on separate disks. Rather
than reading files sequentially, one thread is assigned to
each disk. Each thread reads the files on its disk, fill-
ing up a private buffer of interleave-page size. When
its buffer fills up, a thread empties it into the single out-
put stream as a unit. The resulting interleaved data is
thus a series of interleave-page–size units, each poten-
tially from a different disk.

Interleaving plays havoc with segment routing. Con-
sider what happens when interleaved data is received for
deduplication. As an example, we show in Figure 2 two
different interleavings of six underlying database streams
and how they might be segmented. The different col-
ors/shapes correspond to six different underlying streams
of data. Each colored shape is a chunk and each continu-
ous sequence of chunks of the same color/shape is an in-
terleave page. For illustration purposes, we show dozens
rather than hundreds of chunks per segment and only the
first two segments per backup.

Because of the nondeterminism involved, even if the
underlying streams have not changed (e.g., the database
has not really changed much), very different interleav-
ings and hence grouping of pages into segments can re-
sult. In our example, on the first day the red/diamond and
purple/square pages were in different segments, whereas
on the second day they were in the same segment. It is
this inconsistency that causes problems. If on the first
day, segment 1 and segment 2 are sent to different nodes
because they are new data and hence there is no good bid,
then on the second day there is no way to route segment
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Figure 3: Deduplication results for interleaved data
(Customer data set).
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Figure 4: Deduplication results for non-interleaved
data (Workgroup data set).

3 without duplicating either its square or diamond data.
This problem is not just theoretical: Figure 3 shows

how in practice deduplication drops off rapidly in the
presence of interleaved data as the number of nodes in-
crease. This is true for both Min Hash and Auction.
Contrast this with their behavior of non-interleaved data
as shown by Figure 4, where—especially for Auction—
there is little drop-off in deduplication. Results of ran-
domly routing each segment are shown for comparison;
experiment details may be found in Section 5.

In an ideal world, we would simply de-interleave the
data and segment each underlying stream separately. Un-
fortunately, however, this would require us to be able
to detect and correctly parse the format of the incom-
ing data, which is dependent on the nature of the data
(databases have their own proprietary storage formats)
and the backup agent (backup agents put extra formatting
information in the data stream). This would be a main-
tenance nightmare for real-world commercial systems so
we strongly prefer an alternative solution that does not
require correctly parsing stream formats.

In Figure 2 we showed an interleave-page size about
one third of our segment size. Although the interleav-
ing problem would be less severe if the interleave-page
size was orders of magnitude larger than our segment
size, we cannot make our segment size much smaller and
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still maintain locality. Attempting to make the interleave-
page size much larger runs into the conservatism of ad-
ministrators, who are understandably reluctant to muck
with hundreds of time-tested backup scripts. Accord-
ingly, a system that can handle interleaving data with any
interleave-page size will be much easier to sell and de-
ploy.

4 Our Approach

We take advantage of a property of interleaved backup
streams that we have discovered, which we call extended
locality: if data has not changed much from one backup
to another then two interleave pages of data that are close
to each other in the first backup stream are highly likely
to be close to each other in the second backup stream.
How close is close depends on the system producing the
streams and the overall length of the streams, but seems
to be in the small number of GB’s range in practice.

This follows from the fact that if the hardware and
software have not changed between the two backups then
the average relative speeds of reading the streams being
interleaved are the same. This means that when the data
does not change too greatly, each page ends up in roughly
the same spot in the interleaved backup. How much its
location varies depends on the read variances and the
square root of the backup length,1 which are limited in
practice. Because pages tend to end up in the same loca-
tions, close pages tend to remain close between backups.

We modify Auction to take advantage of extended lo-
cality as follows: when there is no useful bid from any
of the back-end nodes—i. e., when the data is new—we
try to send large swaths (GBs) of the incoming stream
to the same node. Thus, the first backup of new data
gets placed in large swaths. Now consider what hap-
pens during the second and later backups of that data.
Each incoming segment will typically be composed of at
least two partial interleave pages. Clearly these pages are
close to each other in the current backup’s stream, so by
extended locality their distance in the first backup stream
is not large. Thus, there is a good chance that they were
routed during the first backup as part of the same swath
and thus to the same back-end node, causing the auction
process to find that back-end node and send the segment
to it, successfully deduplicating those pages. We call our
routing algorithm the Sticky-Auction routing algorithm.

4.1 The Sticky-Auction algorithm
The Sticky-Auction algorithm takes a global parameter,
the sticky threshold, which determines the size of our

1The relative motion of the underlying streams is a random walk,
with expected divergence O(

√
n).

swaths. For each incoming stream, its front-end node
maintains two values: the current sticky node, n, and a
current sticky counter, c. When the stream begins, c is
initialized to 0 and n is set to the back-end node with the
smallest load (defined per Section 2.2). In the event of a
tie, one of the least-loaded nodes is chosen at random.

When a segment needs to be routed, the broadcast and
bidding are done the same way as Auction. If at least one
adequate bid is received (e.g., one exceeding a minimum
bid threshold), the segment is sent to the node that Auc-
tion would have sent it to—one of the winning bidders.

If no adequate bid is received, the segment is sent to
the current sticky node for this stream, n, and the sticky
counter for this stream, c, is increased by the size of the
segment. If c exceeds the sticky threshold, a new sticky
node is chosen and assigned to n, and c is reset to 0. A
new sticky node is chosen using the same procedure as
was used to initialize n.

Higher values of sticky threshold handle more un-
balanced interleaving processes but produce less overall
system balance. Experimentally, we find values in the
tens of gigabytes work well (see Section 5.5).

5 Results

To demonstrate the efficacy of our approach we simu-
late Sticky-Auction and measure deduplication and load-
balancing using several data sets.

5.1 Data sets
We test against four primary data sets, two of which con-
tain interleaved data, as well as a composite data set,
Combined, which alternates backups from the four data
sets simulating multiple stream ingest (see Section 5.4).
Each backup in these data sets was chunked into either
4 KB (Workgroup, Homer) or 3850 byte variable-size
chunks using the TTTD chunking algorithm [6].

Both of the interleaved data sets are a series of back-
ups of a (different) Microsoft SQL Server database done
using the SQL BACKUP command. The Customer data
set contains nine backups, each 300 GB, of a database
belonging to HP storage customer. This trace was origi-
nally provided by the customer using their usual backup
parameters; we do not know the exact parameters used
or the details of the database, but inspection of the trace
shows the interleaving-page size is 1 MB.

The Clickstream data set consists of 6 backups of
anonymized clickstream data provided by Nielsen. The
first backup here holds the tables for January 2008. Be-
fore each succeeding backup we added the tables for an-
other month. The final backup thus contains data from
January 2008 through June 2008. Each month’s tables
occupy roughly 130 GB of space. The backups were
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done using the default settings, which means that the
MAXTRANSFERSIZE parameter—the interleave-page
size—is 1 MB. The database was set up using 8 mount
points so 8 underlying streams were interleaved to pro-
duce each backup.

The first non-interleaved data set, Workgroup, is cre-
ated from a semi-regular series of backups of the desk-
top PCs of a group of 20 engineers taken using uncom-
pressed tar over a period of four months. These backups
comprise 3.8 TB of data. We generate the Workgroup
data set from these backups by grouping backups taken
on the same day into a single “system-wide” backup, re-
sulting in 91 backups with mean size 42 GB. We believe
this data set is representative of a small corporate work-
group being backed up via tar directly to a NAS interface.

The second non-interleaved data set, Homer, is in-
tended, by contrast, to be representative of a small or
medium business server backed up to virtual tape. It
contains two weeks (3 fulls, 12 incrementals) of Ora-
cle & Exchange data backed up via Symantec’s Net-
Backup to virtual tape with the fulls averaging 169 GB.
The Exchange data was synthetic data generated by the
Microsoft Exchange Server 2003 Load Simulator (Load-
Sim) tool [8], while the Oracle data was created by in-
serting rows from a real 1+ TB Oracle database belong-
ing to a compliance test group combined with a small
number of random deletes and updates.

5.2 Simulator

The simulator is a 9,000 line C++ program capable of
simulating several modes and styles of deduplication.
Here, it is set to simulate a multi-node system a la Fig-
ure 1 where each back-end node locally performs so-
called perfect deduplication where no chunk is ever du-
plicated. We use variable-size segments with mean size
1 MB (same as Doug et al. [5]).

When bidding, we use 1:8 sampling also per
Doug et al., broadcasting only hashes with three particu-
lar bits zero. Using 1:1 sampling did not produce better
results. A bid is the number of sampled chunks found
at the given back end (i. e., no approximation is done,
which somewhat improves results) and ties are broken as
described in Section 2.2. Bids below 2 are considered
insufficient and ignored. When using Sticky Auction, we
use a sticky threshold of 64 GB unless we say otherwise.

Though the simulator produces extensive statistics,
here, we are concerned with the system-wide (estimated)
cumulative deduplication factor (total raw/total dedupli-
cated = sum of every non-deleted input chunk’s length
/ sum of every currently-stored chunk copy’s length)
and a measure of load-balancing, max/mean node size
= the maximum node size over the mean node size
where a node’s size is measured as the total deduplicated
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Figure 5: Deduplication results for interleaved data
including sticky routing (Customer data set).
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Figure 6: Deduplication results for non-interleaved
data including sticky routing (Workgroup data set).

stored on that node. The estimated cumulative dedupli-
cation factor does not take into account metadata over-
head (causing it to overestimate) or local compression
of chunks (causing it to underestimate total compaction).
We ignore local compression for this paper, measuring
segment sizes and the sticky threshold in terms of un-
compressed chunk lengths. Except where we say other-
wise, displayed data is for the last backup of the given
data set; cumulative thus here refers to all the backups of
the data set.

5.3 Deduplication
Figure 5 updates Figure 3, showing Sticky-Auction rout-
ing’s superior deduplication performance on interleaved
data. Figure 6 shows that Sticky Auction’s deduplica-
tion quality for non-interleaved data is somewhat better
than Auction, which in turn is noticeably better than Min
Hash. These results are typical, with similar results seen
for the other data sets (not shown).

5.4 Load balancing
The typical use case for multi-node deduplication sys-
tems is where hundreds of streams are being ingested si-
multaneously. Sticky Auction has worse load balancing
than Min Hash and Auction on individual streams be-
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Figure 7: Load balancing with multiple streams for
Sticky Auction. Clickstream data set derived from
Nielsen data.

cause it switches nodes less often. But when it processes
multiple independent streams, the overall load balanc-
ing significantly improves because unrelated streams are
routed independently.

Our simulator does not directly support simultaneous
ingestion of multiple streams, but we can simulate this
by interleaving the daily backups from different data sets
in a round-robin manner. We do just this with the Com-
bined data set, which alternates the first 10 daily backups
from the other four data sets when available.

Figure 7 shows the effect of combining streams. The
first four results are single stream results, showing the
load balancing of the system after only the first 10 days
of that data set has been ingested. Workgroup is about
as unbalanced as it is possible to get, with essentially
all data located on one node. The other data sets and
Workgroup over time—it falls at 32 nodes from 31.4 af-
ter backup 10 to 5.2—exhibit better load balancing.

As can be seen, combining the data sets significantly
improves load-balancing: 2.0 for 32 nodes at the end of
the Combined dataset. For perspective, at 32 nodes Min
Hash is at 5.0 for Homer and averages 1.06 for the other
3 uncombined data sets. Auction is at 2.0 for Homer and
averages 1.03 for the other 3. While we show the results
of combining four streams here, with larger numbers of
streams load balancing will only get better.

We expect that incorporating some of the suggestions
from Dong et al. [5] for improving Auction’s load bal-
ancing would improve Sticky Auction’s numbers here.
As expected, Sticky Auction deduplicates better than the
other algorithms on Combined because it contains inter-
leaved data: on this data set, Sticky Auction’s cumulative
deduplication factor at 32 nodes is 3.1 while Min Hash’s
is 1.7 and Auction’s is 2.1.

5.5 The sticky threshold

Changing the sticky threshold trades off load-balancing
against deduplication. Figure 8 shows this trade-off for
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Figure 8: Effects of varying the sticky threshold using
8 nodes (Customer data set). Sticky threshold for vary-
ing Sticky is varied from 1 GB to 512 GB in powers of 2
from left to right, with 64 GB called out.

Customer using 8 nodes. A similar trade-off is seen for
the other data sets and node numbers: there is a sweet
spot around our default of 64 GB where increasing the
sticky threshold will show little improvement in dedupli-
cation while impairing load balancing.

6 Conclusions

We have demonstrated that the existing routing algo-
rithms, Min Hash and Auction, have a major flaw: they
perform poorly on interleaved data, which is of commer-
cial importance because most database backups are inter-
leaved. Our new routing algorithm, Sticky-Auction rout-
ing, is similar to Auction but does not suffer from this
flaw. Although it has somewhat worse load-balancing
on individual streams, when a large number of indepen-
dent streams are ingested simultaneously—the typical
use case for this type of system—the load balancing is
completely acceptable. Even on non-interleaved data its
deduplication performance is somewhat better than the
existing methods, and it does not require understanding
stream formats or require the interleaved-page size to lie
in a particular range. We believe this makes it a promis-
ing replacement for the existing algorithms.
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