

Secure Hardware-based Distributed Authorisation
Underpinning a Web Service Framework

Marco Casassa Mont, Adrian Baldwin, Joe Pato
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2003-144
July 17th , 2003*

E-mail: marco_casassa-mont@hp.com, adrian_baldwin@hp.com, joe.pato@hp.com

authorization,
access control,
secure
hardware,
web services

This paper presents a distributed authorisation model suitable for
use in a web service framework where multiple parties are involved
in performing a particular transaction. The authorisation model uses
a third party authorisation service that checks users or services’
credentials against a set of authorisation policies. A traditional
service provision model does not scale well for such transactions.
The proposed model uses a hardware security appliance to deliver
the service to the most appropriate site involved in the transaction.
The authorisation model supports a multi-party session so that
authorisation policies can be checked and built as part of the web
service composition process.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Secure Hardware-based Distributed Authorisation
Underpinning a Web Service Framework

Marco Casassa Mont (marco_casassa-mont@hp.com)

Adrian Baldwin (adrian_baldwin@hp.com)
Joe Pato (joe.pato@hp.com)

Trusted Systems Laboratory

Hewlett-Packard Laboratories

Abstract

This paper presents a distributed authorisation model suitable for use in a web
service framework where multiple parties are involved in performing a
particular transaction. The authorisation model uses a third party authorisation
service that checks users or services’ credentials against a set of authorisation
policies. A traditional service provision model does not scale well for such
transactions. The proposed model uses a hardware security appliance to deliver
the service to the most appropriate site involved in the transaction. The
authorisation model supports a multi-party session so that authorisation policies
can be checked and built as part of the web service composition process.

1 Introduction
Web services offer the ability to form complex and ad hoc services involving multiple parties.
This opens up a large number of security issues. In this paper, we address one particular issue
– that of authorisation within a web service framework. In particular, we propose an
authorisation model, which allows for complex authorisation polices whilst ensuring trust and
privacy between the services and a client as well as ensuring the solution is efficient and
scalable.

The proposed authorisation model relies on creating a separate authorisation domain where
authorisation decisions for a complex (multi-party) web service transaction are made. In many
situations, a trusted third party would provide this authorisation domain. Rather than
following a simple third party authorisation service model an alternative service delivery
model based on secure hardware is used. This model allows a separate authorisation domain
to exist using a secure hardware-based service. It can be located at any point within the
service provision chain – the hardware protects the service from subversion by those who
have physical access to the device. This leads to an authorisation model that allows
computation to occur at the edge of a transaction whilst maintaining the privacy of all
authorisation information.

This paper starts with a brief outline of web service frameworks and the way services may be
composed into larger services. Section 3 then describes authorisation problems associated
with web services, both stressing the need to separate authorisation policies from the normal
business functionality and the problems exhibited when multiparty services are used. The
need for a separate authorisation domain is then introduced. The proposed authorisation
model is then described in the next two sections. Section 4 explains how an authorisation
domain or service is created and delivered using a hardware security appliance (HSA).
Section 5 describes how HSA based authorisation services solve the authorisation problems
associated with web services. The model naturally provides strong privacy enforcement for
authorisation policies and personal data used in the authorisation process. We proceed to
explain how our model avoids server bottlenecks thereby addressing computational efficiency

 1

issues associated with third party authorisation systems. The final discussion addresses some
of the properties and wider issues relating to the model.

2 Web Services
Web service frameworks, including Microsoft .Net [1] and Java-based [2], offer ways of
delivering complex services over the Internet. These frameworks support user interactions
through their web browsers and html form interfaces as well as programmatic interfaces
through SOAP procedure calls. These communication mechanisms allow a range of services
to be offered over the Internet from simple client/server applications through multi-party
services built using a number of individual web services. This section, very briefly, sets out
how web services can be used hence grounding the authorisation model proposed in this
paper.

A web service framework provides a mechanism for simple client/server interactions, for
example, an e-commerce site with clients using a browser. More importantly, they provide a
framework for allowing collaborations between backend IT systems from multiple companies
through programmatic interfaces. They are starting to be used for a range of scenarios, from
supporting collaborative projects through optimising supply-chain management. These types
of scenarios obviously have some critical authorisation issues. This paper proposes an
efficient authorisation model addressing these issues and that preserves privacy between the
various parties.

This paper uses a hypothetical travel service scenario to illustrate authorisation issues and
describe how the proposed model works. In this scenario, a user, perhaps within a company,
goes to a web portal to choose a travel agent. The user would then contact this on-line travel
provider to book their journey. The travel request may involve booking plane tickets, a hotel
and a hire car each through different component web services. The travel service may be
programmed to choose from a set of preferred partner services or alternatively web services
could be found dynamically through a market place.

3 Web Service Authorisation
Much of the web service research concentrates on how to provide service functionality, and
how to compose the services. Many security issues must be addressed before web service
frameworks can be easily used in business critical situations. This section discusses issues
relating to authorisation within a web service framework as a precursor to setting out an
authorisation model (sections 4 and 5).

Many web services use a very simple access control model based on placing access control
lists on particular web pages. Where there is code behind these services performing tasks at
the business level, authorisation mechanisms will often be directly coded in the application.
This produces maintenance problems. More advanced and flexible solutions separate such
rules from the application into an authorisation server, for example as described by [3].
Throughout this paper, these rules are described as authorisation policies – the form of these
rules is not significant. They may be arbitrarily complex but the resulting decision must be
computable using information about the user and their rights.

This simple form of web service keeps all the authorisation functions within each web
service’s boundary; each will be responsible for maintaining users’ accounts, a credential or
rights database as well as maintaining and evaluating authorisation policies. Over time, it is
believed that there will be a number of credential providers each asserting that particular
individuals have particular properties (e.g. attributes, rights, roles, job titles, credit limits,
nationalities). These credential providers form trust services [4] that specialise in validating
certain attributes and issuing and managing credentials [5] [6] for these attributes.

This type of credential provision helps distribute the authorisation process; or the process of
managing rights and attributes leading to authorisation architectures such as that shown in

 2

Figure 1. In these types of architectures, some credential provision may be distributed and the
local service provider may maintain some user information. The authorisation system is still
tightly bound to the web service infrastructure and, where complex authorisation policies are
involved, the authorisation engine can become a bottleneck.

Internet

Web
Service

Authorisation System

Access
Control
Polices

Identity &
Profile
Data

Service Provider

Enterprise

User

Policies User Data

Trust and
Certification
Authorities

User Request,
Credentials

Issuance of
Digital Credentials

Issuance of
Digital Credentials

Figure 1: A traditional web service architecture

This can be illustrated with an example; let us consider a scenario where a corporate
purchaser makes a request to buy new computers for say £5000. They would accompany their
request with their corporate credentials showing they are an employee of that company.
Before enacting the web service, the request is filtered through the authorisation system. The
system first finds the rule or policy associated with the request and then obtains any
supporting information such as the company account information or the user’s credit card
payment credential. The policy is then checked to ensure that the transaction with that person,
company and payment information is acceptable; only valid requests are passed through to the
web service.

Research has been done on distributed authorisation mechanisms, including [7] [8] [9] [10]
[11], and related systems to address the efficiency problem and reduce bottlenecks. Most of
the proposed systems are purely based on a software approach. They scale within enterprises
or organization boundaries but fail to address trust, privacy and security issues in broader
contexts, such as B2B environments. Software solutions are often ad-hoc and heavily reliant
on PKI infrastructures and consequentially inherit limitations due to scalability, management
and trust issues related to such infrastructures.

3.1 Authorisation and Composed Services
Web service frameworks present opportunities for considerably more complex interaction
models than the simple client/server situations discussed previously. These range from more
symmetric peer-to-peer transactions, where both parties want to check the others
authorisations, through to multi-party composed services, where authorisation is an issue for
each component service.

Using the example of the on-line travel reservation service, there are a number of
authorisation requirements. The user might need to check the travel provider meets their (or
the corporate1) policies. This introduces the need for a two-way authorisation process. During

1 As we develop our example, the inclusion of corporate policies becomes more interesting since these
are controls that the user is not necessarily aware of and can’t compensate for in direct manipulation of
the service client.

 3

the booking processes, the travel agent will need to check their authorisation policies are met;
for example, by checking the user’s identity, payment and passport credentials. Other
composite services will also require that the user match their authorisation policies; for
example, on booking a plane ticket the airline would need to show they have an appropriate
passport and visa credentials.

The above example suggests a number of authorisation issues that are problematic for
conventional authorisation services. An appropriate authorisation framework is needed to
allow for the smooth flow of a transaction between multiple parties whilst respecting the
privacy of the personal data used in satisfying the policies. The rest of this section describes
problems occurring in general web-service authorisation, which are then addressed in sections
4 and 5, where an alternative authorisation framework is proposed.

• Client validating proposed services. As well as the service provider checking the
client, the client may need the ability to check the service provider matches their
authorisation policies associated with such service provision. Some interactions may
not take the form of client/server but may involve a negotiation between two peers
and in this case, the authorisation checks are symmetric and carried out by both
entities.

• Each composed service has unique authorisation policies. Services may be composed
from multiple services and each individual service may have its own authorisation
requirements. The conventional authorisation service discussed previously does not
aid this type of transactions where, for example, a coordinating service would need to
exchange policy and credential information as well as managing the transaction
details. Managing these authorisation exchanges can lead to processing bottlenecks
within the service as well as privacy concerns given that the co-ordinating service
retains visibility and control.

There are two extremes within composed service frameworks: pre-composed and dynamically
composed services. Both have particular authorisation issues. A composed service may be
formed from well worked out relationships – here services all have existing trust and business
relationships and may share authorisation information (at least in a controlled manner).
Alternatively, services may be composed on the fly to meet particular requests – for example
finding a hotel at a particular location. This suggests a need to communicate authorisation
information between the services and clients.

3.2 Authorisation Domain
Separating the authorisation aspects from the general service functionality, into a set of rules
or policies that can be run in a separate authorisation service, aids the manageability of web
services. The service provider needs to define and maintain these authorisation policies i.e.
under what conditions a given transaction is acceptable. They must enforce the policies
before allowing access to a service but they do not need to make the policy decisions
themselves – this can be done in a separate (authorisation) domain if they trust this domain.

Figure 2 shows this type of situation where the web service is provided in one domain where
the policies are also defined and maintained. Within this service domain, there is also a policy
enforcement point (PEP) ensuring services are only provided to those having the appropriate
rights. The authorisation service, that is the policy decision point (PDP), is now in a second
domain; the user is in a third domain. The request must pass through the authorisation domain
before reaching the web service. The authorisation domain will produce an appropriate ticket
that can be trusted by the policy enforcement point.

From the web services point of view it is critical that the authorisation service is trustworthy
and cannot be influenced or subverted by the user. The web service will probably also be
concerned about the privacy of their policies and the requests that they are receiving. They
must trust the authorisation domain – they are allowing them to see their requests and

 4

credentials. A separate authorisation domain could be created as a trusted third party service
and either the user or the service provider could choose the authorisation service, as long as it
is trusted by both parties.

Authorisation service

UserUser

Web ServiceService Request

PDPPDP
PEPPEP

Policy DBPolicy DB

Service Request

Authorisation Ticket

Policy Package

Service Model
Component Policy#
Component Policy#

......
Policy# Policy
Policy# Policy

......

Authorisation
domain

User Domain

Service
Domain

Figure 2: Policy, Service and User domains

In a traditional authorisation example, a third party can be used to enforce privacy between
the two main parties. The authorisation domain must see the policies and the user’s
credentials but the credentials need not be passed onto the service provider. The use of a
separate authorisation domain also means that the computation can be moved from the service
infrastructure; the next section discusses how this can be achieved whilst avoiding bottlenecks
associated with a central service.

Section 3.1 described some of the authorisation problems associated with composed web
services; it is in these situations where there is a considerable advantage in creating a separate
authorisation domain. Although Figure 2 shows a single web service interacting with a user,
several services could have been added with all the services communicating authorisation
information via this authorisation domain. This authorisation domain would be responsible for
making policy decisions based on each services authorisation policies and the user’s
credentials. As with the traditional authorisation service, it is essential that any interested
party including the users and the co-ordinating services cannot influence it. Additionally each
party may want to keep their authorisation policies and credentials private from others in the
transaction again supporting the need to carry out authorisation within a separate domain of
control. All these factors mean that the authorisation domain should be thought of as a third
party trust service.

4 Secure Hardware Authorisation Services
A third party authorisation service would typically be run as a central service and as such, it
merely moves some of the computational bottlenecks to an additional web service. In doing
so, it creates additional latency associated with the network traffic. Considerable risk is placed
in running this central authorisation service – it becomes a point of attack for both getting bad
transactions authorised and for observing the content of credentials and transactions. As such,
a central service does not meet the basic goals for the proposed authorisation model of

 5

providing an efficient authorisation framework that also preserves the privacy of the data
involved in the authorisation process.

The basic algorithm run by the authorisation service requires looking at the service request;
collecting the service policies; getting and validating credentials from the users and matching
these with the policy requirements. Other functionality described in section 5 to deal with the
multi-party composed services is achieved by extending this basic algorithm. As such, the
authorisation service needs to be able to run the basic algorithm and have some form of
network access.

The third party responsible for the authorisation service does not interact with the running
process but it is responsible for the typical system management tasks of ensuring the system is
running, available and secure. A hardware security appliance (HSA) [12] [13] offers an
alternative mechanism for delivering such secure authorisation services by encapsulating a
running service within secure hardware. Using this approach to service provision, an
authorisation services can be placed anywhere from the clients to various services sites, with
the secure hardware ensuring that the services cannot be subverted. Therefore, the
authorisation decisions are trusted, privacy requirements are fulfilled and computation can be
moved to the most appropriate position. Section 4.1 describes the HSA approach to service
provision. Section 4.2 describes how this is applied to the authorisation service.

4.1 HSA Approach
The hardware security appliance (HSA) approach offers a mechanism for logically running a
service within its own trust domain but that is physically located at the heart of conventional
IT systems. The HSA itself is a tamper resistant hardware device; for example, based on a
hardware security module (HSM), which provides a safe environment for services to run.
Such a device has active hardware protection [14], which on detecting tampering will destroy
cryptographic material – this protection ensures that the correct code is running and that any
secret required by the service is highly protected and will not leak.

An HSM traditionally offers a cryptographic API such as PKCS#11 [15]; an HSA is a very
similar – if not identical—physical device but with very different firmware allowing a service
to be loaded, certified and configured. In doing so, the service binds together various critical
security functions such as authentication, authorisation and audit along with cryptographic
key usage into a simple service API. For example, an HSA based service could bind the
authentication and authorisation processes with the use of a decryption key thereby securing
access to decrypted files [12].

On a service being loaded into the HSA (Figure 3), it is configured with its own management
policies and given its own identity (e.g. a PKI based identity where the service provider issues
a certificate for the service). As well as the service, offering its normal functional API it also
defines how it can be managed and the initialisation binds it very strongly to a service
controller. The service now operates within its own trust domain – physically enforced by the
tamper resistance of the secure hardware and logically enforced through the limited service
API and these initial management policies. The management policies define not only who
controls the service but the extent of their control (even specifying no management control).
These management functions can be carried out remotely using the PKI identities of the HSA
based service and the service controller.

 6

HSA Based Service
IT Infrastructure

Service API
Service

(Key use, Authentication,
Authorisation, Audit....

Management Policies
Service Identity

Network

Management Interface
(Constrained by Policy)

Service Controller

Signed Chain of
Management events

System
Administrators
Domain

Figure 3: An HSA approach to service delivery

In effect, this changes the secure hardware device from one offering a simple cryptographic
interface to a service delivery model. Simple cryptographic APIs [15] help protect keys from
disclosure but a subverted process can lead to the misuse of keys. Research has shown [16]
[17] [18] how further security can be achieved by putting more of the application within the
secure hardware. The HSA approach takes this further by using the secure hardware as a
service delivery device creating a strongly controlled domain for a limited but security critical
process to run.

This approach can be contrasted with the TCPA [19] [20] approach that uses a simple and
cheap trusted computing module to provide identity and measurement roots of trust. These
roots of trust form an essential building block for gaining trust in an OS and therefore trust in
the applications running on a computer system. Instead of providing a root of trust on which
other layers can build, the HSA approach is to secure small but critical slice of the computing
infrastructure by pulling it out as a service. Trust in this slice or service is then rooted in the
secure hardware with the hardware security protecting the integrity and identity of the service.

4.2 HSA based Authorisation
This approach opens up the possibility of having an authorisation service provider delivering
HSA based authorisation services over which they retain (limited) control. The third party
will load service code, initialise and certify the service running within the HSA. It can now be
shipped to those wishing to use the service.

The authorisation service itself is the same as if the third party was running it – it is the same
basic code. The difference is now that the service provider no longer has a central server that
is a bottleneck. They distribute their processing power by distributing the HSA to the most
appropriate location. Instead of all authorisations being performed at the service side it can
now be moved to the clients’ sites. The bottleneck associated with policy computation (and
networking for policy validation) is thus dissipated from the centre to the edges of the
transaction.

The characteristics of the third party authorisation service have now changed considerably.
Rather than operating and securing a set of servers seeing all transactions they now act as a
certification authority. They load their service code into HSA along with policies defining

 7

limitations on the service. This creates an instance of their authorisation service. This service
instance then receives an identity by creating an RSA key-pair, which the authorisation
service provider certifies (via an X509 Certificate) as a valid service that they control. The
active protection provided by the hardware device will prevent this identity from being stolen
– attempts to gain the key will lead to its destruction and therefore the revocation of the
service.

This certification process allows the various parties to see why they should trust the
authorisation service. A known service provider, on known secure hardware, and even using
known code, provides the authorisation function. Each party can decide whether to trust the
authorisation service based on this certificate. Wherever the HSA based authorisation service
is located, the relying parties know that it is protected by the secure hardware and therefore
cannot be subverted by any interested parties. In this way, a separate authorisation domain has
been created.

Information such as authorisation policies and credentials can now be shipped directly to the
HSA based service with appropriate encryption. They are only unencrypted within the
protected boundary and therefore never become visible to those hosting the service or the
service provider itself.

5 Distributed Authorisation Services
The HSA provides a mechanism for delivering an authorisation service and in doing so it
brings some unique computational and privacy properties to a distributed system. This section
examines the service that is provided within the HSA in more detail. Firstly, the traditional
client/server authorisation problem is addressed – this describes the core mechanisms. This is
followed by sections that describe how this HSA based authorisation service can be extended
to create an authorisation domain for a multi party transaction.

5.1 Simple Authorisation
Figure 4 extends Figure 2 showing the role of the HSA based authorisation service within a
simple client/server authorisation example. Here there are the two basic parties involved in
the transaction as well as the authorisation service provider, credential providers and the
authorisation service running within the HSA within the client’s IT infrastructure.

Internet

Web
Service

Access
Control
Polices

Identity &
Profile
Data

Enterprise
User

Policies

User Data

Issuance of
Digital Credentials

Issuance of
Digital Credentials

Authorisation
Service
Provider

Authorisation
Service
Provider

Service Provider

HSA

User Request,
Credentials

User Request,
+ Authorization Ticket

Trust and
Certification
Authorities

1

2

Web Service
Access

Service
Certification

3

4

Authorisation Domain

Figure 4: HSA based Authorisation

 8

Traditionally the user’s request with accompanying certificates and credentials would be sent
straight to the service provider for verification. Instead, the request (1) and accompanying
credentials are passed through the HSA based authorisation service.

This authorisation service must then obtain the authorisation policies and any additional
authorisation data (2) from the service provider. The HSA will identify itself to the service
provider (through its certificate ID) and request the current set of policies. The service
provider can make a decision as to whether they trust the HSA based service and assuming
they do they will return the policies. In cases where there is authorisation service or it is not
acceptable to the web service provider, the transaction could proceed with the service
provider running their authorisation rules.

The communication between the two parties could be done using SSL or TLS sessions which
would ensure that policies received at the HSA have integrity and will not have been observed
(even by the user’s host system that may run the TCP stack). Alternatively, policy data could
be transmitted as signed encrypted SMIME or XML structures. The secure session and policy
exchange could prove expensive but both can be optimised where the two parties’ interact
regularly. Firstly, TLS session state can be stored and re-established reducing the full
handshake. Secondly and more significantly, the HSA can cache policies (perhaps in an
encrypted form on the host systems disks) which will only change occasionally. An exchange
could firstly consist of a hash of the policies with the secure session only being established
where a (confidential) policy exchange is necessary.

The HSA authorisation service now checks the web services policies against the user’s
credentials. In doing so, it may check credential revocation but CRLs may be cached between
various service invocations; performing authorisation at the client site means that the client
can download and maintain periodic CRLs. The authorisation service can now make a
decision about the policy and it will generate a signed authorisation ticket that is then used to
communicate its decision.

This authorisation ticket will be a signed document containing the yes, no decision along with
the details of the request (e.g. the hash of the SOAP request) and details of the policy package
used (e.g. the policy package version, hash and name). It may also include details of the
credentials used or where disclosure is more sensitive it could include a hash of each
credential along with say the public key of the user (for linking to secure communications
with that user). The authorisation ticket is now an item that the web server can validate and it
contains references to all information used in authorisation and is therefore a useful audit
record. The web service must make a decision to trust the authorisation service (hence the
ticket); this is probably done early in the communication session but should be confirmed on
validating the tickets signature.

This ticket is now simply forwarded (3) to the web service provider along with the request
thereby allowing the user to gain access to the services (where appropriate). The service
provider must interpret the ticket but this is now a case of making a decision as to whether
they trust the authorisation service and checking the signature. They can now allow the
transaction with the user (4) or, where appropriate, block it. As described earlier, it is not
necessary for the trusted third party to perform their computation on their site. This activity
can be distributed to the client’s computer or within the client’s local IT infrastructure using
an HSA to deliver an encapsulated distributed authorisation service. This now removes many
of the bottlenecks associated with an authorisation server by distributing its computing power
to the client side by issuing simple to manage hardware devices.

Having multiple parties generating and evaluating policies suggests standardisation of various
parts of the authorisation process would smooth interoperability. The initial request (1) needs
to be in a standard form as do the credentials – for example as a SOAP request accompanies
by X.509 identity and attribute certificates. The authorisation service needs to be able to
obtain a set of policies (2) and supporting service description [21] – this may be a simple web
request to obtain the data but there is a need for a standard policy language. The authorisation

 9

service issues a ticket for the service provider (3) which again must take a standard form (e.g.
as it could be a SAML assertion [22]). This determines whether the client is authorised to
access the web service (4) for the specified transaction.

A simple authorisation example has been described showing how an HSA based authorisation
can be used. The authorisation service is provided within the secure hardware and credentials
and policies need only be shared between the secure hardware and the owner of the data –
hence preserving privacy of the data. Computation has also been moved to the edge of the
transaction reducing the policy evaluation bottleneck at the web service.

5.2 Symmetric Authorisation
As web services offer complex services and as they are provided on a more ad-hoc basis, both
parties will want to perform some form of authorisation. In the example scenario in section 2
a user booking their travel will want to check that a travel agent meets their (or corporate)
policies as well as the travel agent needing to check the users abilities (e.g. to travel and to
pay).

Two-way authorisation ensures that for a given type of task the user can specify a set of
policies stating required aspects of a service (e.g. visa accredited). As well as the local HSA
service checking the user’s credentials match the web service’s policies, the user can send
their policies to an HSA based service run at the web services site. Here the user would expect
to see an appropriate validation ticket. Where clients use standard policies, the service
provider’s authorisation service can cache tickets for the period of any credential revocation.

Alternatively, the client’s HSA based authorisation service could check the policies getting
credentials from the service provider. This approach fits nicely with the movement of
computation to the edge of the transaction. Privacy is retained in that credentials will be
passed through to the HSA based service and only unencrypted in the secure hardware.

This symmetric authorisation example relies on having the underlying authorisation domain
that is protected from all interested parties. The computation is performed in secure hardware
and which can be located either at both sites or just within the client’s site.

5.3 Authorisation for Pre-composed Services
A well-planned composed web service would consist of a number of potentially independent
web services each having their own set of policies that must be satisfied for any particular
request. This could lead to a composed policy consisting of a conjunction of each of the
service’s individual policy (where there is a choice of services, a disjunction of different
policies could be included). A service invocation must satisfy the overall composed policy in
order to proceed successfully.

The combined policy will be passed to the HSA based authorisation service associated with
the client that evaluates the policy producing a composite ticket. A composite policy could
include a number of individual policies and the associated ticket would include a table of the
hash of each individual policy along with the decision. This decision table is part of the
signed authorisation structure and a constituent service getting a ticket can find the digest of
their policies and check the decision.

For example, the travel service scenario described in section 2 would involve the travel
service pulling together a number of policies for various services they offer such as airlines,
car hire, etc. On authorising a travel package, the authorisation service checks the composite
policy and each constituent service can check their policies have been satisfied by looking
inside the authorisation ticket. They must of course check that they trust the authorisation
service signing the authorisation ticket.

In the above discussion, the central service pulls together a policy set from the constituent
services that will then be transmitted securely to the client’s authorisation service. The
constituent services will have no view on what policies other services are using but this

 10

central service will. Policies could be requested from each constituent service for each
transaction such that they would be encrypted for the user’s HSA based authorisation service.
This would loose some of the efficiency gains from pre-composing policies.

The symmetric authorisation section above suggested that the service side could also have an
HSA based authorisation service so that the authorisation domain is extended from the edge
of the transaction to the middle. For this type of example, this authorisation service would
manage the policy set, combining policies provided by other constituent services. Privacy can
now be preserved in that each service supplies its own policies to the authorisation domain.
The full authorisation domain, for any transaction, is then formed by the co-operating set of
HSA based authorisation services.

5.4 Authorisation for Dynamic Composition
The above discussion suggests a simple way to extend authorisation for composite services
where there is a well-defined combination of services and associated policies. Often the
situation will be more complex as a transaction is formulated in a more dynamic manner.
Services can be added as required and may be derived from a dynamic service registry or
through an auction. The user may want each constituent service to meet appropriate policies.
In these cases authorisation becomes more of a dialog. For example, instead of having a
simple book travel request it is more likely that the client interacts with a travel agent who in
turn interacts with various service providers.

In these situations, there is an interaction as the service provider pulls together a transaction
over multiple parties. To perform the transaction involving all these parties the client must
satisfy the union of all the individual policies. Once the service provider knows each subpart
of the transaction is satisfied, it can allow the client to commit to the overall transaction.

The service provider forming a composite policy from their set of partners and testing the
client’s ability to satisfy the transaction (as described in section 5.3) could do this. However, a
failure to meet an aspect of this transaction could lead to the need to renegotiate how the
transaction is provided.

Instead, the formation of a transaction could be accompanied by an authorisation session. As
the co-ordinating service (e.g. the travel agent) finds a possible provider for an aspect of the
transaction, they enter that services policies into this authorisation session and get a suitable
ticket. A service provider may be chosen purely on the basis that the client has authorisation
to use them but part of the authorisation session may be checking that the client’s policies are
also met. For example, a travel agent proposing a particular airline may send the airlines
policies to the client so that they show they have the appropriate passport, visas and they
would get the client to check that the airline meets any specific airline policies.

Once they have the set of appropriate tickets, they can let the transaction complete. The set of
tickets with the common session ID then form the authorisation for the overall transactions –
although individual services will only see the tickets relevant to them. The co-ordinating
service needs not see each individual services policy or how it has been satisfied by the
client’s credentials; this knowledge remains only in the authorisation domain.

The authorisation session must be independent of all the parties involved in the transaction –
each may have some reason for influencing the authorisation service; or trying to gain a view
on policies and credentials involved in a transaction. The HSA based authorisation service
provides a way of getting such an authorisation session and since the service has a (PKI
based) identity, each party can talk securely to such a service. As with previous examples, this
authorisation service can be placed on the client’s site relying on the secure hardware to
protect the integrity of the service. This results in the transaction being processed at the edge
of the system.

More generally, a set of authorisation services running at various sites involved in the
transaction can be combined to all work together in a single authorisation session (see Figure

 11

5). As a party is introduced into the authorisation session, they may also introduce an HSA
based authorisation service, which must be certified by a provider trusted by the other parties
and the other authorisation services. The policy decision can now be computed by an HSA
hosted by any party involved in the transaction.

As well as providing the policy decision engine, the authorisation services can help manage
the users’ or services’ credential wallets and policy database. A party having such a service
can then make all requests via their HSA-based authorisation service. This service may then
manage disclosure of policies; for example, ensuring that they are encrypted and only sent to
other trusted authorisation devices. It can also manage disclosure of credentials; as with
policies ensuring that they are only disclosed to other authorisation services or even making
sure that they execute policies referring to certain credentials.

Web
Service

Access
Control
Polices

Identity &
Profile
Data

Enterprise

User

Service Provider 1

HSA

Authorization
Request

Service Provider 2

Web
Service

HSA

HSA

Service
Request

Service
Request

Authorization
Request

Authorization
Domain

Figure 5: Multi-device authorisation sessions

6 Discussion
The provision of secure, trustworthy and efficient authorisation systems is a major problem
when dealing with access control for web services in distributed and heterogeneous
environments, such as B2B contexts, supply-chains and federated e-commerce sites. Classic
centralised authorisation services or traditional distributed authorisation systems show their
limitations.

Authorisation is typically thought of as a request, access control decision, followed by access
to a service or resource. The model promoted here firstly allows form more complex access
control policies that can be based on a variety of credentials, that can be matched with the
service request in a manner specified by the policy. This is enabled due to the ability to move
what could be complex computation towards the client (user) - thereby removing traditional
bottlenecks. The third party nature of the service also makes strong privacy guarantees that
mitigate some of the concerns often associated with using credentials in authorisation.

The proposed authorisation model also brings considerable flexibility allowing an
authorisation session to be established underneath a service session. This enables complex
service interactions, in that ad-hoc authorisation is now possible but the privacy and
computational properties of the model are preserved.

A major issue with this type of solution is the cost associated with placing the trusted
hardware on the client’s side. Such solutions are not appropriate form typical consumer

 12

transactions. The approach is appropriate where companies are regularly interacting with
services maybe as part of supply-chain systems or corporate B2B portals.

7 Conclusion
This paper proposes a model combining a third party authorisation service approach with a
hardware security service delivery model to achieve mobility of the authorisation policy’s
decision point. In a simple authorisation case, this has two major advantages: firstly,
computation is moved from a single service bottleneck to the client’s site thereby achieving a
more even spread of workload. Secondly, having policies and credentials validated at the
client’s site brings significant privacy properties.

Web service frameworks offer possibilities of composed multi-party services that have more
complex and dynamic authorisation requirements. The proposed authorisation model allows a
number of HSA-based authorisation services to be formed into an independent authorisation
domain enabling the free flow of authorisation information needed for such compositions.

8 References
[1] Richter, J., Applied Microsoft .Net Framework Programming. Microsoft Press (2002)

[2] Apte, N, Mehta, T, Web Services: a java developer’s guide using e-speak Prentice Hall
(2001)

[3] Karjoth G., The Authorization Server of Tivoli Policy Director, 17th Annual Computer
Security Applications Conference, ACSAC 2001, December 10-14, 2001

[4] Baldwin A., Beres Y., Casassa Mont M., and Shiu S., Trust Services: A trust
infrastructure for e-commerce. HP Labs TR HPL-2001-198
http://www.hpl.hp.com/techreports/2001/HPL-2001-198.html, 2001

[5] Housley R., Ford W., Polk W., Solo D., RFC2459: Internet X.509 Public Key
Infrastructure Certificate and CRL profile, IETF, 1999

[6] Farrell S., Housley R., An Internet Attribute Certificate Profile for Authorization –
IETF, 1999

[7] Rosenberry, W., Kenny, D., Fisher, G., Understanding DCE. O’Reilley & Associates,
Inc., 1992

[8] Woo, T.Y.C, Lam, S.S., Authorization in Distributed Systems: a formal approach. In
proceedings of the 13th IEEE Symposium on Research in Security and Privacy, pages
33-50, Oakland, California, May 4-6 1992

[9] Newman, B.C., Proxy-based Authorization and accounting for distributed systems. In
proceedings of the 13th International Conference on Distributed Computing Systems,
Pittsburgh, Pennsylvania, May 1993

[10] Woo, T.Y.C, Lam, S.S., Designing a Distributed Authorization Service, University of
Texas at Austin, 1998

[11] Ryutov, T., Newman, C., Representation and Evaluation Policies for Distributed
System Services, University of Southern California, 2000

[12] Baldwin, A., Shiu, S., Encryption and Key Management in a SAN, In Proceedings First
IEEE International Security in Storage Workshop, Maryland, December 2002

[13] Baldwin, A., Shiu, S. Hardware Security Appliances for Trust, In Proceedings First
International Conference on Trust Management. Springer Verlag, 2003

[14] Fips, Security Requirements for cryptographic modules. Fips 140-2 2001
http://csrc.ncsl.nist.gov/publications/fips/fips140-1/fips1402.pdf, 2001

 13

http://www.hpl.hp.com/techreports/2001/HPL-2001-198.html
http://csrc.ncsl.nist.gov/publications/fips/fips140-1/fips1402.pdf

[15] RSA Labs, PKCS#11 v2.11 Cryptographic Token Interface Standard,
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v211/pkcs-11v2-11r1.pdf, 2001

[16] Smith, S.W., Palmer E.R, Weingart S., Using a High Performance Programmable
Secure Coprocessor. In Proceedings of the second international conference on financial
cryptography. Lecture Notes in Computer Science. Springer-Verlag, 1998.

[17] Itoi N., Secure Coprocessor Integration with Kerberos V5.USENIX Security
Symposium, www.citi.umich.edu/techreports/reports/citi-tr-00-2.ps.gz, 2000

[18] Smith S.W., D. Safford, Practical Private information retrieval with secure
coprocessors. IBM Research T.J. Watson Research Centre, 2000

[19] Pearson, S. (ed.), Trusted Computing Platforms, Prentice Hall, 2002.

[20] Trusted Computing Platform Alliance, TCPA Main Specification, Version 1.1,
http://www.trustedcomputing.org, 2001

[21] W3C, Web Service Description Language (WSDL) version 1.2 -
http://www.w3.org/TR/wsdl12, 2003

[22] OASIS, SAML 1.0 Specification Set - http://www.oasis-
open.org/committees/security/#documents, 2002

 14

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v211/pkcs-11v2-11r1.pdf
http://www.citi.umich.edu/techreports/reports/citi-tr-00-2.ps.gz
http://www.w3.org/TR/wsdl12
http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/

	Introduction
	Web Services
	Web Service Authorisation
	Authorisation and Composed Services
	Authorisation Domain

	Secure Hardware Authorisation Services
	HSA Approach
	HSA based Authorisation

	Distributed Authorisation Services
	Simple Authorisation
	Symmetric Authorisation
	Authorisation for Pre-composed Services
	Authorisation for Dynamic Composition

	Discussion
	Conclusion
	References

