A

inwvent

A Game Tree Strategy for Automated Negotiation

Alan H. Karp, Ren Wu, Kay-yut Chen, Alex Zhang
Intelligent Enterprise Technologies Laboratory

HP Laboratories Palo Alto

HPL-2003-154

July 28" | 2003+

E-mail: {alan.karp, kay-yut.chen, ren.wu,alex.zhang} @hp.com

web services, We present a strategy for automatic negotiation that takes the same
automated approach as computer programs that play games such as chess; we
negotiation build the game tree. For every offer we look at every counteroffer,

every counteroffer to each of them, and so on. The strategy then
selects the counteroffer that has the largest expected payoff.

A number of problems arise that are unique to using this strategy
for negotiation. These include uncertainty in the opponent's goals,
the fact that a bad move can penalize both players, and moves that
are continuous, as opposed to discrete. We show how the standard
methods of building the tree and evaluating the results were
adapted to this environment.

* Internal Accession Date Only Approved for External Publication
a8 Copyright Hewlett-Packard Company 2003

A Game Tree Strategy for Automated Negotiation

Alan H. Karp, Ren Wu, Kay-yut Chen, Alex Zhang
Hewlett-Packard Laboratories
{alan.karp kay-yut.chen ren.wu,alex.zhang }@hp.com

July 21, 2003

Abstract

We present a strategy for automatic negotiation that takes the same ap-
proach as computer programs that play games such as chess; we build the
game tree. For every offer we look at every counteroffer, every counteroffer to
each of them, and so on. The strategy then selects the counteroffer that has
the largest expected payoff.

A number of problems arise that are unique to using this strategy for
negotiation. These include uncertainty in the opponent’s goals, the fact that
a bad move can penalize both players, and moves that are continuous, as
opposed to discrete. We show how the standard methods of building the tree
and evaluating the results were adapted to this environment.

1 Introduction

Negotiation can be treated as a game[l], and computers have been used to play
games, such as chess[4]. However, none of the proposed strategies for automatic
negotiation combine these two ideas. The strategy presented here involves treating
the negotiation as a two-player game and traversing the game tree that results from
enforcing the protocol.

Of course, there are issues that arise in a negotiation that don’t enter into
playing chess. For example, in chess each player knows what the other one wants;
this intent must be estimated in a negotiation. Not surprisingly, the quality of the
deal reached by a player depends on how good an estimate of the opponent is used.
Secondly, in chess, if you make a bad move, your opponent does better. That’s
not true in a negotiation, both parties may suffer, so a strategy must be able to
deal with inept opponents. All moves in chess are discrete, the queen moves two
squares or three, but some attributes in a negotiation are continuous, such as fluid
measures, or effectively so, such as price.

These issues and others are discussed in this paper. Section 3 describes how the
tree is built, and Section 4 explains the move evaluation process. Dealing with our
uncertainty in what the other player wants is also described in Section 4. Some
examples of using the tree strategy against some other, simple strategies are shown

in Section 5. As with any game, you can’t play unless you know the rules, which
are described in Section 2.

2 Rules of Engagement

The rules controlling the negotiation process have an important influence on the
viability of any strategy. For example, if negotiators exchange complete offers, they
are implicitly searching a very large set of points for an acceptable deal. A good
strategy is one based on some heuristic for improving the value of the deal, such
as hill climbing or simulated annealing[3]. If the protocol allows parties to change
their minds, avoiding cycles becomes an important part of the strategy. This section
summarizes the rules of engagement used for the tree strategy described in Sections 3
and 4. More detail is provided elsewhere [6].

We assume that the goal of the negotiation is to fill in the blanks in a con-
tract template provided by the marketplace in which we’re negotiating. A contract
template consist of a set of sections. Each section defines a specific aspect of the
contract, such as terms of payment or product description. The description in
a section is specified in a wvocabulary, which consists of a collection of attributes.
Each attribute is a name-value pair and has a number of other properties, such as
multiplicity and matching rule.

The negotiating parties, two in the examples studied, take turns exchanging
offers. An offer consists of values, numeric ranges or sets of values, for a (proper)
subset of the attributes included in the previous offer. A legal counteroffer must
narrow the range of potential deals by eliminating at least one attribute value or
narrowing a numeric range. Once an attribute has appeared with a single value
in both an offer and counteroffer, it is settled and may not be reintroduced into
the negotiation. A binding contract is formed when all the attributes are settled.
Either party can declare the negotiation failed at any time before an agreement is
reached.

3 Building the Tree

It is clear that the protocol described in Section 2 is guaranteed to terminate in a
finite number of steps. That means that we can think of the negotiation as a game
with a finite number of positions, very much like a game of chess. Playing such a
game on a computer involves building a game tree and evaluating the outcomes of
each possible move.

Conceptually, building a game tree is quite simple. The root node represents
the current position. Create a child node for every legal move from the node’s
position. If there are no legal moves from a node’s position, the node is a leaf, and
the expansion stops. Continue until there are no more moves to examine or you run
out of time. We’ll call leaf nodes and nodes that weren’t expanded terminal nodes.
Next, we evaluate the nodes, as described in Section 4 and pick the move that has
the highest payoff.

Although the basic procedure is very much like playing chess, there are a number
of complications. First of all, the protocol allows compound moves, moves that could
be made separately but are made in a single move. Secondly, we need to deal with
continuous moves or moves with so many choices that we can’t hope to produce a
node for each possibility.

3.1 Move Generator

You've got to be able to make legal moves to play a game. The same applies to
negotiation; you’ve got to follow the protocol. In chess, the moves are quite simple,
but any combination of single moves is also a legal move according to the negotiation
protocol we use.

While it is possible to write a procedure to generate all possible moves, we took
a different approach. We have a procedure to find every legal move that changes a
single attribute value. For each, we produce a child node and a sibling. The sibling’s
move is a combination of the move used for the child and the move to reach the
current node.

An example illustrates the procedure. Say that the offer of the current node
includes two attributes,

shoe style [wingtip,loafer]
shoe color [black,brown]

We want to generate all legal moves from this position. First, we create a child to
represent a simple move, say

(shoe, style, [wingtip])
(shoe, color, [black,brown])

This node produces a child node representing the move to

(shoe, style, [wingtip])
(shoe, color, [black])

and a sibling representing this offer. The sibling is equivalent to the parent node
producing two children, one with the simple move that eliminated loafers and one
with a compound move that eliminated both loafers and brown. Applying this
approach recursively results in child nodes for all possible moves.

The advantage of this approach is the simplicity of the move generator. However,
it does have a down side. We can build the tree depth first by creating the child
before the sibling, but we can’t generate the tree breadth first. There don’t appear
to be any negative implications of this limitation.

3.2 State of the World

Throughout, this work has followed the advice implicit in Knuth’s statement that
“premature optimization is the root of all evil” [8]. There is one optimization that

was implemented, though, detecting when a position has been seen before. The
primary reason this optimization is important is when we consider the game as
a whole instead of just a move at a time. Building and evaluating a game tree
is computationally expensive, and the number of nodes that can be evaluated is
limited by the available resources. On the opening move, we have no choice but to
build the tree and evaluate the nodes. However, on subsequent moves, we’d like to
be able to reuse the work done previously. If the position is one we’ve seen before,
we can simply read off the value of the node if it’s a leaf or continue expanding the
tree from that point if it is not.

We call a position in the tree, including the time because payoffs are generally
functions of time, a State of the World, SoW. Clearly, comparing the attribute
values one by one would be too time consuming. Instead, we use a representation
similar to the Zobrist keys used in chess programs [10, 12]. Like these functions, we
compute a hash function with a value that does not depend on the order in which
terms are included.

The hash of the n’th term is h(c,), where ¢, represents the triple (vocabulary
name, attribute name, attribute value). There is one such triple for each, individual
attribute value. Starting with h(0) = 0, compute

h(n) =h(n —1) + h(cy). (1)

This hash function can also be downdated by subtracting the hash of the term being
removed. This approach is closely related to a standard hash function [9]. The only
difference is that work uses a different hash function for each update because order
dependence is desired. We use MD5[11] for all terms.

Using exclusive-or (XOR, denoted @) instead of addition in Equation 1 works if
the same attribute value can’t appear more than once. If it could, XOR would be
guaranteed to produce collisions since both a®a and b& b produce a zero. Although
repeated attribute values violate the protocol, the way attributes with continuous
attributes are handled does result in repeats.

At first glance, there appears to be a problem. There are exponentially many
ways to form a particular sum. That observation seems to indicate that the prob-
ability that distinct deals produce the same hash value, the collision probability,
approaches unity.

It’s easy to see that the collision probability of the sum is the same as that of
any single term. Say that there is some set of k numbers that produces a collision
with the sum of another set. At some point, the sum will have accumulated k — 1
of them. What’s the chance that the next number is the one that produces the
collision? It’s exactly 1/M, the probability that any two inputs produce a collision
in the base hash function. In fact, any set of kK — 1 numbers is a member of a set
that collides because there is always (in modulo arithmetic) a number that can be
added to their sum to produce a collision. It’s just rare that this particular number
gets picked next.

3.3 Attributes with Continuous Values

Some attribute values can be continuous, such as liquid measures, or effectively
continuous, such as price. The latter are effectively continuous because there are
far too many discrete values to assign each to a node in the tree. One approach
would be to select a modest number of values. The problem is knowing which values
will lead to the best end result.

The approach used here is to defer the problem by expanding the tree and
evaluating the nodes in different steps. As we generate the moves and instantiate
the child and sibling nodes, we mark any move involving any set of one or more
range-valued attributes. The exact values to be used are determined during the
evaluation step. We can’t terminate the tree on complete deals because we don’t
know how many rounds of counteroffers will occur over the continuous attributes.
However, we know that a child node that represents the same state of the world as
its parent is in such a situation. That fact means that the pattern of offers from the
child is identical to that of the parent, and the set of children of the child is known.

19

SAE
@I_;U
(=)
el
O
B

EELFEEW .
18‘9582@ -

oG g
® |® D

@@@@@

Figure 1: Tree expansion of a small example.

Figure 1 illustrates this procedure for a very simple case. The offer is for wingtips
or loafers at a price between $150 and $300. We start at the root node labeled 0.
Each link is labeled with a flag denoting the change made in moving to that node.
For example, the state of the contract at node 17 differs from that at node 0 by

having selected loafers. We use the label “R” to denote any set of changes involving
range-valued attributes.

Node 1 represents offers that narrow any combination of range-valued attributes,
only price in this simple example. We now expand node 1 by creating node 2, which
corresponds to another counteroffer on the range-valued attributes. Node 2 next
generates a sibling, node 3, which represents the move to node 2 plus another legal
move, selecting loafers in this case.

Node 3 creates node 4, which corresponds to a counteroffer on only range-valued
attributes. Node 3 does not produce a sibling, because the only legal counteroffer
would be the same state of the world as node 3. The expansion along this branch
ends when node 4 creates node 5, a node that makes the exact same change as
its parent. The arrow under a node denotes that the negotiation cycles through
the node and its parent until all range-valued attributes are settled. Some of the
branches in the tree end early. For example, node 7 is not expanded because it
represents the same state of the world as node 4.

4 Evaluating the Tree

Once the tree expansion is complete or we’ve run out of time, we compute the payoff
of each terminal node. If the node is a leaf, we use the appropriate payoff function.
For example, in chess the node will have a score of -1 if it is a win for the other
player, 0 if it represents a draw, and +1 if it is a win for me. In a negotiation, we
use the utility functions of the players. If the terminal node is not a leaf, use some
heuristic to estimate its payoff.! We’ll use an evaluation based on all the attribute
values in the offer[6]. The value of a non-terminal node is that of the child with the
largest value for the player that can move to it. Propagate these values to the root
node, and move corresponding to the child node with the largest value is the one
to make.

Figure 2 shows the expansion of the shaded part of Figure 1 using the parameters
shown in Section 5. Node 1 corresponds to a change in a range-valued attribute,
price in this case, and the seller makes the minimum concession specified in the
parameters, $57. In the move to node 2, the buyer also makes the minimum con-
cession, $53. The subtree under node 2 is identical to that under node 1, with node
1 replacing node 2, reflecting the fact that the legal counteroffers from node 2 are
identical to those from node 1. The seller’s move from node 2 to the node 1 below it
settles the price. The only move for the buyer to make from that point is to choose
either wingtips or loafers.

We now want to compute the value of node 1 at time 1, so the seller will know
if this price concession will lead to the best end result. We start at the bottom and
work our way up. To avoid confusion, the buyer’s payoffs are underlined. Look first
at nodes 6 and 13 on the last row. If the buyer picks loafers, the payoff to the buyer
is 12.5; it is 16.7 if the buyer picks wingtips. Hence, the buyer will pick wingtips
for $203. This deal has a payoff of 16.2 to the seller, so that’s the value assigned to
node 1 in the third row. We compute the payoffs of the other nodes the same way.

IThe quality of these heuristics affects how strong a game a program plays.

E \2,\5)3,243 @ 203,243 @

132 18.0 16.7 12.6 17.3
15085 [L] [203.208 203203 | | 203208 (150,186
> ® @ © |0 ® 6
151 156 164 16.2 154 166 16.1
186,186 | 243,243 | L] 243243 | [186,186

@ﬁ @M m @@ 15.1(15 17.3(16

Figure 2: First evaluation of a small example.

Note that nodes 7 and 14 represent the same states of the world as nodes 4 and 11,
respectively, which aren’t shown in this figure.

The second row shows the payoff to the buyer. Note that node 14, corresponding
to wingtips for no less than $203, is worth more than that of node 13 in the last row.
The time penalty explains the difference. The seller’s move is to concede the price
of $203. Thus, the buyer gets a higher payoff by picking wingtips and conceding on
price on the same turn instead of separately. Continuing up the tree, we see that
the best payoff to the seller is 16.4. That’s because the seller expects the buyer to
make the best move, namely to select wingtips and concede on price.

We’re not done, yet. There might be a different concession in the range-valued
attributes that we can make going to node 1. If getting to a deal sooner has value,
perhaps a larger price concession will lead to a better payoff for the seller. Figure 3
shows the result. Indeed, a deal is reached sooner, but not enough sooner to offset
the difference in price, $150 versus $203.

4.1 Conceding a Continuous Attribute Value

Deciding how much to concede on a given round is difficult. There is little infor-
mation to be gleaned from game theory because it usually considers only purely
competitive attributes, such as price. The problem is that there is no theory to

150,167 |

16.1
\];\?7,167 167,167 ‘ 667,167 @
6 14 @ @ 13)
14.7 20.7 20.5 141 21.5

Figure 3: First evaluation of a small example.

be developed; all such points are Pareto optimal[1]. Another field, that of making
decisions under uncertainty, provides more guidance[5]. When encountering a node
corresponding to a continuous value in a decision tree, apply an algorithm, such as
importance sampling, and see which value is best.

We don’t have the information needed to do importance sampling, so we use a
very simple optimization algorithm. Each negotiator specifies minimum and max-
imum concessions for each range-valued attribute. Our optimization involves com-
puting the payoff of the node for each of these and their mean value, then fitting a
parabola through these three points. The fourth try is the concession corresponding
to the maximum of the parabola if it lies on this interval. This strategy is a simple
one chosen only to illustrate the principal. A better algorithm should be used in an
operational system.

We'll illustrate the approach with a particularly challenging case, a linear time
penalty and a linear price utility. Since the sum of two straight lines is a straight
line, we know that the optimal price concession occurs for either the minimum
concession or the maximum. The minimum concession is best when the price term
dominates the time penalty; the maximum concession, otherwise.

The situation is more complicated in a real negotiation as shown in Figure 4.
The points computed by looking at the outcome of different concessions do not lie

+ Computed — Fit

12.9

12.7

12.5 4

12.3 4

Payoff

12.1 4

11.9 4

11.7 4

115

150 200 250 300
Price

Figure 4: Best counteroffer for a range-valued attribute.

on a straight line because of the granularity of the changes. If the parties concede
too slowly, the time penalty will outweigh the benefits of any deal before it can be
reached, and the negotiation fails. If the parties use a larger concession, there is a
parity effect. Consider an offer with everything settled except the price, which has
a range of $150 to $170, and a time penalty such that the minimum concession is
$20. If it is the buyer’s turn, the final price will be $170; if the seller moves, the
result will be $150.

In the example shown in Figure 4, we assume that the seller’s minimum and
maximum concessions are $30 and $110, respectively. Thus, our algorithm tries the
prices $270, $190, and $230. The parabola through these points has a maximum
at $236.77, a concession of $63.23, a value unlikely to have been chosen a priori.
Running the negotiation with this concession produces a payoff of 12.6, slightly less
than the payoff predicted by the fit, but better than using either of the end points.
Note that a $20 concession would have resulted in a better result due to the parity
effect, but there’s no way to know that without sampling a large number of points.
Additionally, a concession that small is not allowed by the parameters specified by
the seller.

4.2 Including Uncertainty

Thus far, we’ve been assuming that we know what the other player wants. That’s
clearly not the case in most negotiations. There are two kinds of uncertainty.
We may not know precisely the other player’s payoff for a particular attribute
value or how much weight the player assigns to the attribute. This uncertainty is
adequately represented by a mean and standard deviation. Including this factor in
the evaluation step is discussed in Section 4.3.

The second uncertainty is in the other player’s constraints. I may know with
a great deal of precision how much a seller values black wingtips, but I may not
be at all certain that they are in stock. Including this uncertainty is discussed in
Section 4.4.

4.3 Payoff Uncertainty

We evaluate a node using the payoffs of its child nodes. If we know with certainty
the payoff assigned to each attribute value, then we can simply take the payoff to
be the largest of the payoffs of the children. However, we are assuming some mean
and standard deviation for the contribution of each attribute value to the payoff.

The first problem is to compute the mean and standard deviation of a deal when
all we have are means and standard deviations of the individual attribute values.
In general, the distributions are not independent. For example, we might not be
surprised if the uncertainty for the estimated utility of brown is correlated with
that of loafers. This observation not withstanding, we assume the uncertainties are
independent because we believe the uncertainty of our estimations far exceeds the
error introduced by making this assumption. In this case the mean and standard
deviation of the payoff of a deal can be computed from v = >, v; and 0% = Y, 07,
respectively. Here the sums are over all terms in the utility representation con-
tributing to the payoff.

We’ve made the assumption that neither party will accept a deal with negative
utility. Since our estimates have a spread about a mean value, we need to compute
the probability that a particular deal has a positive utility for all the parties. For
each player, the probability that the result has a positive payoff is

a@p@):iﬂ%ﬁ(\%@)), @)

and the probability that the offer will be accepted by everyone, P,, is the product
of these probabilities. In order to properly account for this likelihood, we multiply
the payoffs by these probabilities. To summarize, the adjusted payoff assigned to a
node for player ¢ is

J
v, = H Pj@i- (3)
Jj=1

Let’s say that we have two players, Sally Seller and Bob Buyer. Sally is selecting
between two nodes, 1 and 2. Call Sally’s payoffs for these nodes vg; and vge and

10

Bob’s payoffs vg; and vgy. Sally will choose the node with the larger value, say
node 1, but Bob only has an estimate of Sally’s utility. In particular, Bob assigns a
mean and standard deviation to his estimate of Sally’s utility. Call the mean values
my and ms and standard deviations o7 and o9. We assume that these two values
are uncorrelated, which may not be the case if the two child nodes are both part of
the same combination, but this error can be included approximately in the standard
deviations.
The probability that Sally will choose node 1 is

p1 = P{us1 > vs2} = / ¢1()P2(t)dt, (4)
where 1
_ = (t-m1)?/207
¢1(t) \/%e) (5)
By (t) = [a(t)dt = % [j e da. (6)
Hence,

1 > 2 01 mo — My
= — e ¥ 1+erf(——— || dy. 7
N [oo [0’ V2o Y)
This result is in a form amenable to numerical integration using Gauss-Hermite
points and weights. Since erf is smooth and high accuracy isn’t needed, only a few
points are needed.

When the node has more than two children, we have the joint probability. So,
in general, the probability that node 1 will be chosen is

oo K
n=[o] e ®)
- k=2

Bob’s expected payoff is then
K
ve =Y DrB, 9)
k=1

4.4 Constraint Uncertainty

The second uncertainty is the likelihood that an attribute value or combination of
values violates a constraint of one of the players. For example, I may insist on using
a credit card for merchandise to be shipped to me. An offer that includes only cash
or check as payment options violates my constraint. We assume such an offer has a
payoff of —oco and results in a failed negotiation.

Our representation of the players’ utility functions [7] includes an explicit value
for the estimation that a particular combination is required, P;x, for combination &
in player i’s utility function. The aggregate acceptance probability is

11

K
Pi:]._H(]-_Pik>7 (10)
k=1
which is multiplied by the probability that a deal’s payoff is positive, P., when
computing the node’s payoffs for the players.

4.5 Payoff with Uncertainty

We can see how these factors enter into the node evaluations. First, consider the
shaded area of Figure 2. The seller assigned a payoff of 16.2 to this node because
that’s the seller’s payoff if the buyer picked wingtips, the buyer’s best deal. However,
the seller isn’t sure of the buyer’s valuation or constraints.

Say that the seller has a payoff of 16.2 to the deal if the buyer selects wingtips
and 15.3 if the buyer opts for loafers, both with a standard deviation of 1, and a
50% probability that either wingtips or loafers violate the buyer’s constraints. The
seller’s expected value is 16.0 + 1.4 with an acceptance probability of 75%. Thus,
when comparing this node with others, we use an effective payoff of 12.0 + 1.1.

5 Experiments

We present several experiments that illustrate how the tree strategy operates. These
results don’t show any great advantage for the tree strategy because the case studied
is simple enough that many strategies reach a Pareto optimal deal. More extensive
testing is clearly needed, but these tests must be done in the context of a specific,
realistic negotiation, which is beyond the scope of this work.

We assume that the seller’s utility function is

Vielier = —t/5+by by + by + by +3(2bca +ber) +2(bjo,0) +b11,00]) + H (P —100) /100,

(11)
where t is a measure of time , b, = 1 if attribute value z is in the complete deal
and 0 otherwise.? Here w and ! denote wingtips and loafers, respectively; bl and br,
black and brown; ca and cr, cash and credit; [a, b] delivery delays between a and b.
The function H(x) =« if £ > 0 and is —oo, otherwise. In this notation the buyer’s
utility is

‘/E)uyer = _t/lo + 3[(3 - 2t/5)bwbbl + (2 - t/lo)blbbr] + bcab[0,0] + bcrb[l,oo]+
2(by + by) + by + by + H(300 — P)/25
(12)
Fach negotiator has a set of parameters for the range-valued attributes, which
are summarized below.

2This simplified form of the utility function can only be used for complete deals.

12

Table 1: Results with Random and Local Strategies
Buyer Seller Style Color Price Time Viuyer Vieller

Random Random wingtip brown 192.16 7 7.6 11.5
Local Local wingtip black 243.00 9 3.6 11.6
Random Local loafer black 250.00 9 5.1 11.7
Local Random loafer black 158.39 9 8.8 10.8
Random Tree wingtip black 248.09 4 9.9 12.7
Local Tree wingtip black 186.00 5 11.1 11.9
Tree Random loafer brown 186.00 7 11.8 11.5
Tree Local loafer brown 243.00 7 9.5 12.0
Tree Tree loafer brown 243.00 7 9.5 12.0
Price Delay

Negotiator Buyer Seller Buyer Seller

First 50 300 3 2

Final 250 100 0 0

Minlnc 53 -57 -2 -1

MaxInc 151 -153 -3 -2

A few strategies have been tested against each other [6]. Here we'll try each
of them against the tree strategy. The first strategy, denoted Random, is to make
a random change to an attribute value. Since the strategy doesn’t check to see if
the offer violates a constraint, this strategy may fail to find a deal. Several random
seeds were tried to produce the results shown. The second strategy, denoted Local,
examines all the attribute values and changes the one that results in the best local
change without considering future changes. The third is the tree strategy described
here.

All negotiations start from the same initial offer made by the buyer.

delivery delay [0, 1]

shoe color [black, brown]

shoe style [wingtip, loafer]

payment price [150.0, 300.0]
payment method [check, cash, credit]

The strategies produce the deals summarized in Table 1. The first two columns
are the buyer and seller strategies, respectively. The next three columns are the
agreed upon style, color, and price. All combinations ended with a deal for cash
and a delay of 0. The last two columns are the payoffs to the participants. We
can’t say that the seller got a better deal because these payoffs are independent;
they may even be in different units. What we can compare are the payoffs between
deals.

All these runs were made with both negotiators making the minimum concession
for range-valued attributes. Doing so makes comparisons among the strategies
simpler by removing one variable from the analysis. Secondly, the tree strategy

13

would always pick the minimum concession in price in this case because of the
balance between the time penalty and the price dependence. Since each price tried
in the tree strategy increases the run time by a multiplicative factor, trying only
one price saved a considerable amount of computer time.

The most notable feature of these results is the poor behavior for the buyer
when both use the Local strategy. The reason is the time dependence of the buyer’s
utility for black wingtips and brown loafers. In the negotiation, the buyer selects
black at time 2, a time when black wingtips have a higher payoff than brown loafers.
However, a deal isn’t reached until time 8, a time when brown loafers have a much
higher payoff. That doesn’t happen when the buyer uses the tree strategy.

6 Summary

We’ve shown that it is possible to use the same approach to negotiation as used when
programming a computer to play chess. In spite of the additional complications,
the tree strategy produces results in line with expectations.

There is much more work to be done. The performance of the prototype is simply
terrible, evaluating fewer than 100 nodes per second. Improving the performance
will enable more systematic studies, particularly to find a better strategy for range-
valued attributes. We should also study more complex contracts, and test the tree
strategy against more realistic strategies, including testing it against people. We
also need to quantify the cost of poor estimates of the other player’s utility.

One important issue that hasn’t been addressed in the current work is the ques-
tion of what happens when the tree doesn’t fit in memory. It is not clear whether
the approach taken here should require more or less memory than the standard ap-
proach. On the one hand, the full tree will be smaller because all moves involving
range-valued attributes are lumped into a single node. On the other hand, we can’t
prune the tree while it is being built because we defer the evaluations. The working
set in memory will probably be smaller, because we visit the same data structures
many times during the evaluation phase, as shown in Figure 3. Clearly, this issue
needs more study.

References

[1] K. Binmore, Fun and Games: A Text on Game Theory, D. C. Heath and
Company, Lexington, MA, 1992

[2] Multinomial Probit: The Theory and its Application to Forecasting, Academic
Press, NY, 1979

[3] P. Faratin, M. Klein, H. Sayama, and Y. Bar-Yam, “Simple Negotiat-
ing Agents in Complex Games: Emergent Equilibria and Dominant Strate-
gies”, in Proceedings of the 8th Int Workshop on Agent Theories, Archi-
tectures and Languages (ATAL-01), Seattle, USA, pp. 42-53, 2001, also at
http://ccs.mit.edu/peyman/pubs/ATAL-01.pdf

14

[4] F.-H. Hsu, Behind Deep Blue, Princeton Univ. Press, 2002

[5] G. Infanger, Planning Under Uncertainty, South-Western Publishing, Danvers,
Mass., 1994

[6) A, H. Karp, “Rules of Engagement for Web Service Ne-
gotiation”, HP Labs Technical Report HPL-2003-152, 2003
http://www.hpl.hp.com/techreports/2003 /HPL-2003-152.html

[7] A. H. Karp, “Representing Utility for Automated Negotiation”, HP Labs Tech
Report HPL-2003-153, 2003, http://www.hpl.hp.com/techreports/2003 /HPL-
2003-153.html

[8] D. E. Knuth, Literate Programming, Center for the Study of Language and
Information, Stanford, CA, (CSLI Lecture Notes, no. 27.) 1992

[9] D. Knuth, “The Art of Computer Programming: Sorting and Searching”, pg.
519, Addison-Wesley, 1998

[10] B. Moreland, “Zobrist Keys”, http://www.seanet.com/ brucemo/topics/zobrist.htm

[11] R. Rivest, “The MD5 Message Digest Algorithm”, RFC 1321,
http://www.ietf.org/rfc/rfc1321.txt, 1992

[12] Zobrist, A. L., “A Hashing Method with Applications for Game Playing”,
Technical Report 88, Computer Science Department, University of Wisconsin
Madison 1970, reprinted in International Computer Chess Association Journal,
13, #2, pp. 69-73, 1990

15

